This application is related to the following co-pending U.S. patent applications, being identified by the below enumerated identifiers and arranged in alphanumerical order, which have the same ownership as the present application and to that extent are related to the present application and which are hereby incorporated by reference:
This invention relates generally to the field of electronic devices and systems, and more specifically to electronic switching technology.
A relay or switch may be used to change an electrical signal from a first state to a second state. In general there may be more than two states. In applications that require a small switch geometry or a large number of switches within a small region, microelectronic fabrication techniques may be used to create switches with a small footprint. A semiconductor switch may be used in a variety of applications, such as industrial equipment, telecommunications equipment and control of electromechanical devices such as ink jet printers.
In switching applications, the use of piezoelectric technology may be used to actuate a switch. Piezoelectric materials have several unique characteristics. A piezoelectric material can be made to expand or contract in response to an applied voltage. This is known as the indirect piezoelectric effect. The amount of expansion or contraction, the force generated by the expansion or contraction, and the amount of time between successive contractions are important material properties that influence the application of a piezoelectric material in a particular application. Piezoelectric material also exhibits a direct piezoelectric effect, in which an electric field is generated in response to an applied force. This electric field may be converted to a voltage if contacts are properly coupled to the piezoelectric material. The indirect piezoelectric effect is useful in making or breaking a contact within a switching element, while the direct piezoelectric effect is useful in generating a switching signal in response to an applied force.
A method and structure for an electrical switch is disclosed. According to the structure of the present invention, a liquid-filled chamber is housed within a solid material. Switch contacts within the liquid-filled chamber are coupled to the solid material, while piezoelectric elements are coupled to a plurality of membranes. The plurality of membranes are coupled to the liquid-filled chamber. The plurality of switch contacts are coupled to a plurality of liquid metal globules. According to the method of the present invention, a piezoelectric element is actuated, causing a membrane element to be deflected. The deflection of the membrane element increases pressure of actuator liquid and the increase in pressure of the actuator liquid breaks a liquid metal connection between a first contact and a second contact of the electrical switch.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however, both as to organization and method of operation, together with objects and advantages thereof, may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
A liquid metal switch may be represented using a plurality of layers, wherein the plurality of layers represent layers created during a fabrication of the liquid metal switch.
Referring now to
Referring now to
Pusher element 227 resides in the actuator fluid reservoir layer 120. Pusher element 227 is separated from an adjacent pusher element by the use of actuating fluid 205. In certain embodiments of the present invention, each pusher element in actuator fluid reservoir layer 120 is separated by actuating fluid 205. In certain embodiments of the present invention, actuating fluid 205 is composed of an inert, low viscosity, high-boiling fluid such as 3M Fluorinert. A forward electric potential is operable to elongate a piezoelectric element of the plurality of piezoelectric elements 215, while a reverse electric potential is operable to shorten a piezoelectric element of the plurality of piezoelectric elements 215. It is noted that a forward electric potential could be used to shorten a piezoelectric element, while a reverse electric potential could be used to elongate a piezoelectric element without departing from the spirit and scope of the present invention. Pusher element 227 is coupled to membrane layer 130 as shown in
Channel 240 comprises plurality of liquid metal 235, plurality of switch contacts 245, and switching fluid 230. The liquid metal 235, such as mercury or a Gallium alloy, acts as a friction-reducing lubricant. The plurality of liquid metal 235 are coupled to plurality of switch contacts 245, and one of the plurality of liquid metal 235 is coupled to two of the plurality of switch contacts 245. The plurality of switch contacts 245 are further coupled to circuit substrate layer 150.
Pusher mode liquid metal switch 105 operates by means of an applied electric potential to two contacts of the plurality of contacts 210. The applied electric potential causes a piezoelectric element of the plurality of piezoelectric elements to elongate. This elongation increases a pressure of switching fluid 230. Switching fluid 230 is then forced into chamber 240. A corresponding increase of a pressure of switching fluid 230 in chamber 240 causes a liquid metal, currently coupled to a first switch contact and a second switch contact of the plurality of switch contacts 245, of the plurality of liquid metal 235 to separate into two distinct regions where a first region is coupled to the first switch contact of the plurality of switch contacts 245 and a second region is coupled to the second switch contact of the plurality of switch contacts 245. In certain embodiments of the present invention, the liquid metal separates so that the second region is coupled to the second switch contact and a third switch contact of the plurality of switch contacts 245. The separation of the liquid metal of the plurality of liquid metal 235 is operable to change a value of the pusher mode liquid metal switch 105 from a first state to a second state. It is noted in certain embodiments of the present invention, the separation of the liquid metal is operable to be used to change a state of pusher mode liquid metal switch 105 without the use of the third switch contact. The liquid metal is maintained in a coupling to the second switch contact and the third switch contact by a surface tension between the liquid metal and a corresponding surfaces of the second switch contact and the third switch contact.
It is also noted that two pusher elements could be used so that a first pusher element separates a liquid metal of the plurality of liquid metal 235 coupled to the first switch contact and the second switch contact and a liquid metal is then coupled to the second switch contact and the third switch contact. A second pusher element could then be used to separate the liquid metal coupled to the second switch contact and the third switch contact. In certain embodiments of the present invention, the first pusher element could be made to push (elongate), while the second pusher element could be made to pull (shorten) so that the liquid metal is pushed by the first pusher element while the second pusher element creates a negative pressure to pull the liquid metal apart.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
While the invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those of ordinary skill in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2312672 | Pollard, Jr. | Mar 1943 | A |
2564081 | Schilling | Aug 1951 | A |
3430020 | Tomkewitsch et al. | Feb 1969 | A |
3529268 | Rauterberg | Sep 1970 | A |
3600537 | Twyford | Aug 1971 | A |
3639165 | Rairden, III | Feb 1972 | A |
3657647 | Beusman et al. | Apr 1972 | A |
4103135 | Gomez et al. | Jul 1978 | A |
4200779 | Zakurdaev et al. | Apr 1980 | A |
4238748 | Goullin et al. | Dec 1980 | A |
4245886 | Kolodzey et al. | Jan 1981 | A |
4336570 | Brower | Jun 1982 | A |
4419650 | John | Dec 1983 | A |
4434337 | Becker | Feb 1984 | A |
4475033 | Willemsen et al. | Oct 1984 | A |
4505539 | Auracher et al. | Mar 1985 | A |
4582391 | Legrand | Apr 1986 | A |
4628161 | Thackrey | Dec 1986 | A |
4652710 | Karnowsky et al. | Mar 1987 | A |
4657339 | Fick | Apr 1987 | A |
4742263 | Harnden, Jr. et al. | May 1988 | A |
4786130 | Georgiou et al. | Nov 1988 | A |
4797519 | Elenbaas | Jan 1989 | A |
4804932 | Akanuma et al. | Feb 1989 | A |
4988157 | Jackel et al. | Jan 1991 | A |
5278012 | Yamanaka et al. | Jan 1994 | A |
5415026 | Ford | May 1995 | A |
5502781 | Li et al. | Mar 1996 | A |
5644676 | Blomberg et al. | Jul 1997 | A |
5675310 | Wojnarowski et al. | Oct 1997 | A |
5677823 | Smith | Oct 1997 | A |
5751074 | Prior et al. | May 1998 | A |
5751552 | Scanlan et al. | May 1998 | A |
5828799 | Donald | Oct 1998 | A |
5841686 | Chu et al. | Nov 1998 | A |
5849623 | Wojnarowski et al. | Dec 1998 | A |
5874770 | Saia et al. | Feb 1999 | A |
5875531 | Nellissen et al. | Mar 1999 | A |
5886407 | Polese et al. | Mar 1999 | A |
5889325 | Uchida et al. | Mar 1999 | A |
5912606 | Nathanson et al. | Jun 1999 | A |
5915050 | Russell et al. | Jun 1999 | A |
5972737 | Polese et al. | Oct 1999 | A |
5994750 | Yagi | Nov 1999 | A |
6021048 | Smith | Feb 2000 | A |
6180873 | Bitko | Jan 2001 | B1 |
6201682 | Mooij et al. | Mar 2001 | B1 |
6207234 | Jiang | Mar 2001 | B1 |
6212308 | Donald | Apr 2001 | B1 |
6225133 | Yamamichi et al. | May 2001 | B1 |
6278541 | Baker | Aug 2001 | B1 |
6304450 | Dibene, II et al. | Oct 2001 | B1 |
6320994 | Donald et al. | Nov 2001 | B1 |
6323447 | Kondoh | Nov 2001 | B1 |
6351579 | Early et al. | Feb 2002 | B1 |
6356679 | Kapany | Mar 2002 | B1 |
6373356 | Gutierrez | Apr 2002 | B1 |
6396012 | Bloomfield | May 2002 | B1 |
6396371 | Streeter et al. | May 2002 | B1 |
6408112 | Bartels | Jun 2002 | B1 |
6446317 | Figueroa et al. | Sep 2002 | B1 |
6453086 | Tarazona | Sep 2002 | B1 |
6470106 | McClelland et al. | Oct 2002 | B1 |
6487333 | Fouquet | Nov 2002 | B1 |
6501354 | Gutierrez et al. | Dec 2002 | B1 |
6512322 | Wong | Jan 2003 | B1 |
6515404 | Wong | Feb 2003 | B1 |
6516504 | Schaper | Feb 2003 | B1 |
6559420 | Zarev | May 2003 | B1 |
6633213 | Dove | Oct 2003 | B1 |
6768068 | Wong et al. | Jul 2004 | B1 |
20010048353 | Streeter et al. | Dec 2001 | A1 |
20020037128 | Burger et al. | Mar 2002 | A1 |
20020146197 | Yong | Oct 2002 | A1 |
20020150323 | Nishida et al. | Oct 2002 | A1 |
20020168133 | Saito | Nov 2002 | A1 |
20030035611 | Shi | Feb 2003 | A1 |
20040037708 | Murasato et al. | Feb 2004 | A1 |
20040076531 | Takeuchi et al. | Apr 2004 | A1 |
20040201317 | Wong | Oct 2004 | A1 |
20040201330 | Fong et al. | Oct 2004 | A1 |
20040202558 | Fong et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
0593836 | Oct 1992 | EP |
2418539 | Sep 1979 | FR |
2458138 | Oct 1980 | FR |
2667396 | Sep 1990 | FR |
2005473 | Sep 1978 | GB |
2385989 | Feb 2003 | GB |
36-18575 | Oct 1961 | JP |
47-21645 | Oct 1972 | JP |
63-276838 | May 1987 | JP |
01-294317 | May 1988 | JP |
08-125487 | May 1996 | JP |
9161640 | Jun 1997 | JP |
WO 9946624 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040201317 A1 | Oct 2004 | US |