1. Field of Invention
The present invention relates to a static memory. More particularly, the present invention relates to magnetoresistive random access memory (MRAM).
2. Description of Related Art
Magnetoresistive random access memory is a type of non-volatile memory with fast programming time and high density. A MRAM cell has two ferromagnetic layers separated by a non-magnetic layer. Information is stored as directions of magnetization vectors in the two ferromagnetic layers.
In conventional MRAM of a standard structural design, a single via is utilized for each GMR (Giant Magnetoresistance) memory bit end, and a metal is deposited into each via. However, the via in such conventional design is usually small, which results in residue remained inside the via after etching. In addition, the smaller via also causes unfavorable electrical contact between two adjacent GMR memory bits.
For the forgoing reasons, there is a need for developing a method and a structure to improving the contact of two adjacent GMR memory bit.
A method is provided for contacting two adjacent GMR memory bits. First, a GMR stack layer is formed on a first dielectric layer, which is on a substrate. Then, the GMR stack layer is patterned to form at least two GMR memory bits. Next, a second dielectric layer is formed on the GMR memory bits and the first dielectric layer. Then, the second dielectric layer is patterned to form a via to expose two adjacent ends of the GMR memory bits. Finally, a metal plug is formed in the via and on the second dielectric layer.
A connection for two adjacent GMR memory bits is also provided, wherein at least two GMR memory bits are on the first dielectric layer, on a substrate. In addition, a second dielectric layer is on the first dielectric layer and the GMR memory bits, wherein a via in the second dielectric layer is to expose two adjacent ends of the GMR memory bits. Finally, a metal plug is filled in the via and on the second dielectric layer.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The invention can be more fully understood by reading the following detailed description of the preferred embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
According to one embodiment of the present invention, a manufacturing process is proved, wherein one single larger via is utilized for two adjacent bit ends.
Next, as shown in
Referring to
A third dielectric layer 114 can be further formed on the second dielectric layer 108 and the metal plug 112. The first dielectric layer 102, the second dielectric layer 108, and the third dielectric layer 114 are formed by, such as chemical vapor deposition. Moreover, a material of the dielectric layers 102, 108 and 114 can be, for example, silicon oxide, silicon nitride, silicon oxynitride, metal oxide, or other usable dielectric materials. The thickness of the dielectric layer is about 1500-3500 Angstroms.
Accordingly, a larger via is proved, which decreases residue inside the via after etching process. In addition, since a single larger via is utilized for two adjacent bit ends, higher density bit layout is allowed. The electrical contact between the two adjacent GMR memory bits is also improved.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application claims the priority benefit of provisional application Ser. No. 60/721,214, filed Sep. 28, 2005, the full disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60721214 | Sep 2005 | US |