The present invention relates to cutting off web material, and in particular to a method and a structure for cutting off web material in a winding machine.
A conventional winding machine comprises an upper winding roller, a guide plate, a lower winding roller, and a rider roller. The guide plate is arranged at a location close to and below a circumferential surface of the upper winding roller and forms a channel with the upper winding roller. The upper winding roller, the lower winding roller, and the rider roller form therebetween a winding nip.
A core around which a web material is wound to form a roll of paper is fed by a conveyor to a location beside the upper winding roller and is then pushed by a core inserter into a passage delimited by the guide plate to reach the winding nip where the web material is wound around the core to form the roll of paper, such as a roll of toilet tissue. After completion of the winding operation of a roll of paper, a rotatable arm is controlled to have a speed that is faster or slower than the rotational speed of the upper winding roller in order to induce a speed difference by which the web material is torn and thus separated.
Another known technique uses a method and a structure that realizes separation of web material with physical engagement. For example, a driving arm is positioned against a surface of an upper winding roller arranged in a winding machine to hold down a web material passing through the surface of the upper winding roller. The web material is then torn and thus separated by a pulling force induced by a roll of paper that is formed in a winding nip by wounding the paper around a core.
However, in the above discussed conventional winding machine, care must be taken for the rotatable arm to rotate at a speed not equal to that of an upper winding roller in order to pull apart the web material through a difference in speed. In case the web material is made of a tough material, the speed difference between the rotatable arm and the upper winding roller must be sufficiently large, otherwise the web material would not be pulled apart by the speed difference. In a known winding machine, a perforation device is often provided at a location before a web material reaches a winding channel to form perforation in the web material in advance, so that the web material can be torn or broken at a predetermined location when the web material goes through a subsequent winding process. This complicates the structure of the winding machine.
In the known web material separation technique that employs physical engagement, the driving arm must be positioned to physically contact the surface of the upper winding roller. This causes certain concerns about durability and operation safety of the components and parts of the machine.
Thus, an objective of the present invention is to provide a web material winding machine comprising a cut-off mechanism that cuts off a web material by employing a cutting blade together with a pinch arm.
Another objective of the present invention is to provide a winding machine that comprises an evacuation device and a cut-off mechanism comprising a suction channel and a passage.
A further objective of the present invention is to provide a method and a device for cutting off web material in a winding machine that employs a vacuum suction force that cooperates with a cutting blade to cut off the web material.
The solution adopted in the present invention to overcome the problems of the conventional techniques comprises a winding machine that comprises an upper winding roller having a circumferential surface close to and below which a cut-off mechanism is arranged. The cut-off mechanism comprises a pivot shaft having an outer circumferential surface and at least one pinch arm having a connecting end and a web engagement end. The connecting end is mounted to the outer circumferential surface of the pivot shaft. The web engagement end extends outward from the outer circumferential surface of the pivot shaft and forms at least one suction opening. At least one cutting blade is provided on the web engagement end of the pinch arm at a location immediately by the suction opening. When the pinch arm is driven to rotate the web engagement end of the pinch arm to an engagement position where the web engagement end opposes the upper winding roller, the suction opening of the web engagement end sucks and holds a web material passing therethrough, whereby the web material is subjected to a pulling force induced by a roll of paper formed in a winding nip and is thus stretched to have the cutting blade set in tight engagement with the web material to cut off the web material.
With the solution provided by the present invention, a cutting blade is adopted to work with a pinch arm and a suction opening formed in a web engagement of the pinch arm, whereby the suction opening of the web engagement end sucks and holds a web material passing therethrough when the pinch arm is driven to rotate the web engagement end to an engagement position where the web engagement end opposes an upper winding roller, so as to subject a web material that is being wound and forms a roll of paper in a winding nip to a pulling force induced by the roll of paper in the winding nip and thus stretch the web material with which the cutting blade is set in tight engagement with the web material to cut off the web material. The cutting process can be performed in a smooth and reliable manner and the web material shows improved regularity at the location where cutting is made.
In respect of the structural arrangement of the whole winding machine, since the cutting blade is provided to precisely and reliably cut off the web material at a predetermined location, it no longer needs to provide a perforation device that is adopted in the conventional machines, whereby the structure of the winding machine can be simplified.
Further, at the time when the web material is to be cut off by the cutting blade, the web material is sucked and securely held by the suction opening formed in the web engagement end of the pinch arm and the web material is properly stretched by a pulling force induced by a paper roll that is being formed in a winding nip so as to allow the cutting blade to be set in tight engagement with the web material to cut off the web material. In the process, no physical engagement is formed between the cutting blade and a circumferential surface of the upper winding roller, so that durability and operation safety of the components and parts of the machine can be improved.
The present invention will be apparent to those skilled in the art by reading the following description of preferred embodiments of the present invention and the best modes for carrying out the present invention, with reference to the attached drawings, in which:
With reference to the drawings and in particular to
The guide plates 13 are located at positions close to and below the upper winding roller 12 such that a channel 3 is formed between the guide plates 13 and the upper winding roller 12. A winding nip 19 is formed between the upper winding roller 12, the lower winding roller 15, and the rider roller 16. A long tape of web material 4 that has a predetermined thickness and width is fed forward in a feeding direction I1 by the feed rollers 21 to be then positioned against a lower circumferential surface of the upper winding roller 12 and wound around a first core 5 in the winding nip 19 to thereby form a roll of paper 51 having a predetermined diameter, such as a roll of toilet paper, in the winding nip 19.
Referring to
A driving mechanism (not shown) drives the pinch arm 142 to rotate about the pivot shaft 141. The pinch arm 142 is rotatable in a rotation direction I3 that is the same as a rotation direction I2 of the upper winding roller 12 so that the web engagement end 142b of the pinch arm 142, when rotated to reach an engagement position A, is moved in a direction opposite to the rotation direction I2 of the upper winding roller 12. The rotation of the pinch arm 142 defines a circular rotation locus 142d.
Also referring to
The web engagement end 142b of the pinch arm 142 is provided with at least one cutting blade 144 (see both
Further, in addition to the suction opening 142c, the web engagement end 142b of the pinch arm 142 forms a secondary suction opening 142f between the suction opening 142c and the cutting blade 144. The secondary suction opening 142f is also in communication with the passage 142e. Preferably, the secondary suction opening 142f is formed at a location that is slightly lower than the projection distance of the cutting blade 144 if reference is taken to the circular rotation locus 142d.
Referring to
As shown in
A second core 6 is carried forward by one of a number of carriers 171 of the core conveyor 17 to a loading nip of the channel 3 between the guide plates 13 and the upper winding roller 12. Afterwards, a core inserter 172 of the core conveyor 17 turns to push the second core 6 into the channel 3 (as shown in
Subsequently after the web material 4 is sucked and held by the suction opening 142c of the web engagement end 142b of the pinch arm 142, a portion of the web material 4 at an adjacent location is sucked and held by the secondary suction opening 142f, whereby the web material 4 is set in a configuration comprising bends (as shown in
With the pinch arm 142 being rotated by an angle in the rotation direction I3, the paper roll 51 that is formed by being rolled up in the winding nip 19 applies a pulling force to a right-hand side portion of the web material 4 so as to stretch the web material 4 and the cutting blade 144 provided on the pinch arm 142 is put in tight engagement with the web material 4 and thus cuts off the web material 4 (as shown in
When the web material 4 is cut off, the web engagement end 142b of the pinch arm 142 is caused by the evacuation device to suck and hold the leading edge 44 of the web material 4 and the pinch arm 142 that is caused to rotate in a direction opposite to the web material at the engagement position A brings the leading edge 44 of the web material 4 toward the second core 6 that is just fed into the channel 3, to allow the leading edge 44 of the web material 4 to be primarily wound around an outer circumferential surface of the second core 6 (as shown in
When the pinch arm 142 is rotated to such an extent to get away from the web material 4 and the channel 3, the second core 6 keeps on rolling forward along the channel 3, and the leading edge 44 of the web material 4 is completely wound around the second core 6. Meanwhile, the trailing edge 43 of the web material 4 is attached to the paper roll 51 to complete the winding operation of the roll paper 51 (as shown in
The second core 6 is transferred to the winding nip 19 due to an effect of speed difference between the upper winding roller 12 and the lower winding roller 15 caused by speed reduction of the lower winding roller 15 (see
When the paper roll 51 is being discharged through the inclined chute 23, the rider roller 16 that is connected to a rocker arm 161 having a rotation shaft 162 about which the rocker arm 161 reciprocally rotates is allowed to do reciprocal rotation about the rotation shaft 162, whereby the rider roller 16 that is connected to the rocker arm 161 is moved upward and downward, following the reciprocation path of the rocker arm 161. Thus, when the paper roll 51 has been discharged, the rider roller 16 that initially presses against the paper roll 51 moves downward to press against the second core 6.
In the above arrangement, the cutting blade 144 is the element that actually performs the cut-off operation. The cutting blade 144 has a cutting edge 144a that can be a flat and straight edge or it can alternatively be of a serrated structure (see
In the previous description, the present invention has been explained with reference to the preferred embodiments thereof and the best modes for carrying out the present invention. And, it is apparent to those having ordinary skills in the art and related fields that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
96127668 A | Jul 2007 | TW | national |
This Application is being filed as a Continuation-in-Part of patent application Ser. No. 11/902,812, filed 26 Sep. 2007, currently pending.
Number | Name | Date | Kind |
---|---|---|---|
6948677 | Biagiotti et al. | Sep 2005 | B2 |
20040061021 | Butterworth | Apr 2004 | A1 |
20040256513 | Perini | Dec 2004 | A1 |
20060011767 | Biagiotti et al. | Jan 2006 | A1 |
20080224383 | Feygelman | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 2005075328 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100258670 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11902812 | Sep 2007 | US |
Child | 12822411 | US |