Field of the Invention
The present invention generally relates to a method and structure for resource requirements planning for configurable products or services. More specifically, a stochastic programming formulation based on forecast values allows a determination of resource requirements.
Description of the Related Art
When managing risk and flexibility in a configure-to-order supply chain, such as an automotive supply chain, it is important to account for the uncertainty associated with how finished products are configured (i.e., order configuration uncertainty) and to recognize the value of supply flexibility. Today, manufacturers typically perform capacity planning using “average” representations of product configurations and apply deterministic methods to align supply and demand.
For example, automotive companies allocate millions of dollars every year for new types of machine tools for the manufacture of automobiles. The variability in customer preferences, products, and technology makes it difficult for automotive manufacturers to estimate future capacity requirements. Moreover, the procurement of supplier capacity occurs before actual customer demand is realized, typically several years before production launch.
In the presence of order configuration uncertainty, a manufacturer or service provider runs the risks of overage (overstock), in which excess resources are invested in capacity, and shortage, in which sales and/or goodwill are lost if customers cannot obtain their preferred configurations. Both overstock and shortage reduce profits. An optimized resource plan that accounts for order configuration uncertainty would minimize the risk exposure of the manufacturer/service provider to both overstock and shortages.
An attach rate is defined for a component-product pair, and represents the quantity of a component that is used to configure the corresponding product. Examples of components in a manufacturing supply chain may include supplier parts and sub-assemblies. Examples of components in a services supply chain may include human resources such as software programmers, customer service representatives and project managers. Attach rates may be derived qualitatively (e.g., using rules of thumb or judgement based on experience with similar products or services), or quantitatively (e.g., using historical averages or driven by sales targets). When attach rates are treated as numerical constants, they do not account for variation or uncertainty in product configurations.
In a configure-to-order supply chain, various components of a bill of resources must be determined prior to entering production. For example,
The various options may be combined in different ways. Some options might require or preclude others.
The components required for the various configurations constitute a bill of resources. A single-level bill of resources deals with only a product or service and its components.
The available options or allowable combinations of options might vary from one product planning period to another. For example, a six-speed manual transmission might be offered only in the second and subsequent model years of a vehicle. This is of particular concern because expensive production resources, such as investments in tooling and supplies, must often be arranged long before product configurations are in full production.
The procurement of supplier capacity has become more and more challenging for a number of reasons, including:
Product variety. Technology is changing rapidly, which means that new products and options are being introduced into manufacturing and planning processes all the time. This translates into ever changing requirements for capacity and tooling. Moreover, the choice of vehicle options available to customers has continuously increased, making forecasting future demand for stand-alone options and options packages even more difficult.
Procurement lead time. Most tooling equipment required by automotive suppliers is customized and made-to-order. The lead time for expanding capacity at a supplier (by purchasing additional tooling) could range anywhere from three months to several years. As a result, planners have to decide on supplier capacity based on forecasts of customer demand and customer preferences several years ahead where forecasts could be highly inaccurate.
Capacity cost. The cost of machine tools is significant, and automotive companies could spend tens of millions of dollars every quarter on procurement of new tools. Thus, even a small improvement in capacity planning decisions could have a large impact on the manufacturer's financial performance.
Various resource planning models for CTO (configure-to-order) systems are known. For example, Kessinger and Pieper (2005), “Managing risk with structured supply agreements”; Huang and Ahmed (2005), “The Value of Multi-stage Stochastic Programming in resource requirements Planning Under Uncertainty”, working paper, Georgia Tech; Chen-Ritzo (2006), “Availability Management for Configure-to-Order Supply Chains”, Dissertation, Penn State University. However, these models consider at most one level in the bill of resources (i.e., a product level and a component level). They fail to address the complexities of a multi-level model.
There are also known inventory models for CTO Systems, such as: Cheng, et al. (2002), “Inventory-Service Optimization in Configure-to-Order Systems”, MSOM, and Lu, et al. (2003), “Order Fill Rate, Leadtime Variability, and Advance Demand Information in an Assemble-to-Order System”. However, these models are used to study the structure of inventory ordering policies, not to compute a multi-period resource plan. That is, they cannot forecast needs and produce different resource plans for future periods.
The prior art also addresses demand conditioning for ATO (assemble-to-order) Systems. Ettl, et al. (2006) “Product Offering Conditioning in Assemble-To-Order Supply Chains”, IBM Research Report RC23878, deals with deterministic models having specified take rates or attach rates, but has no uncertainty in the bill of resources. Chen-Ritzo, as discussed above, considers at most one level in the bill of resources (i.e., a product level and a component level).
Thus, a need exists to provide planning which deals with effects of uncertainty.
In a first exemplary aspect of the present invention, to achieve the above and other features and purposes, described herein is an exemplary method for planning under uncertainty, the method comprising: processing a stochastic programming formulation based on forecast values of at least one of product and service configurations, and determining a resource requirements plan for one or more planning periods in a non-deterministic bill of resources of at least two levels.
Preferably, the forecast values comprise random variables.
Preferably, the forecast values are expressed as range forecasts.
Preferably, the resource requirements plan comprises at least one of a capacity investment plan, a human resources deployment plan, a material requirements plan, and a skills requirements plan. Incidentally, a capacity investment plan describes the level of investment in capital resources in one or more time periods, for the purpose of meeting a business objective (e.g., related to forecasted demand for said resources). A human resources deployment plan is defined as a plan for allocating human resource supply to demand for those resources, as generated by forecasted demand. A skills requirements plan describes the quantities and types of skills required to meet a business objective (e.g., related to forecasted skills demand as generated by forecasted demand) in one or more future time periods. A material requirements plan describes the types and quantities of non-capital goods/materials needed to meet a business objective (e.g., related to forecasted material demands) in one or more time periods.
Preferably, the product and service configurations comprise one or more of an optional feature or service component which is not required in a final product or service configuration, a mandatory feature or service component which is required in a final product or service configuration, and a selective set of features, where one or more feature or service components of said selective set are required in a final product or service configuration.
Preferably, the method includes inputting a number of planning periods in a planning horizon.
Preferably, the forecast values of product or service configurations selectively vary across planning periods.
Preferably, the stochastic programming formulation comprises a two-stage stochastic program with recourse.
Preferably, the stochastic programming formulation is solved using Sample Average Approximation.
Preferably, the planning under uncertainty comprises determining sales targets for products or services in one or more planning periods.
Preferably, the forecast values comprise random variables expressed as range forecasts.
Preferably, the product and service configurations comprise one or more of an optional feature which is not required in a final product configuration, a mandatory feature which is required in a final product configuration, and a selective set of features, where exactly one feature of said selective set is required in a final product configuration and comprises two or more levels in the bill of resources.
Preferably, the method includes inputting a number of planning periods in a planning horizon.
Preferably, the forecast values of finished products and of product and service configurations selectively vary across planning periods.
Preferably, the stochastic optimization is formulated as a two-stage stochastic program with recourse.
Preferably, the stochastic optimization is solved using Sample Average Approximation.
Preferably, an optimal sales target is selected from an independent sample set of demand scenarios.
Preferably, the method includes a step of restricting said sales target to be within predetermined constraints.
In another exemplary aspect of the present invention, there is disclosed a computer-readable medium tangibly embodying a program of machine-readable instructions executable by a digital processing apparatus to perform a method of planning under uncertainty, the method comprising processing a stochastic programming formulation based on forecast values of product and service configurations, and determining a resource requirements plan for one or more planning periods in a non-deterministic bill of resources of at least two levels.
The foregoing and other exemplary purposes, aspects and advantages will be better understood from the following detailed description of an exemplary embodiment of the invention with reference to the drawings, in which:
This exemplary embodiment of the invention accounts for uncertainty in product configurations by treating attach rates as random variables, and incorporating information about these random variables (e.g., their probability distributions) when determining the optimal resource plan. When attach rates are random variables, then the bill of resources for the product is considered to be non-deterministic, or stochastic.
An exemplary feature of this invention is to position capacity and inventory in such a manner as to maximize the revenue generated from those assets. Given the uncertainties present in resource planning decisions, as reflected by forecast errors in top-level volume requirements and product configurations, the inventors have developed a rigorous mathematical framework for capacity planning based on stochastic optimization for managing the effects of demand and product configuration uncertainty. The framework aims at developing risk-adjusted capacity recommendations at all relevant levels of the product bill of materials and evaluating the overall performance of the supply chain against a range demand forecast for products. The range demand forecast captures the variable nature of the market by considering demand scenarios that may deviate from a projected average demand scenario.
It is an exemplary feature of the present invention to provide an analytical model for capacity procurement that incorporates the uncertainty in demand forecasts and configuration preferences, with the objective of maximizing one or more business objectives (e.g., minimizing shortage/overage costs, maximizing services levels, maximize revenue/profit). The demand scenarios are generated automatically by applying statistical sampling techniques to the range demand forecasts. The problem is modeled as a multi-period mathematical program. Without loss of generality, each period in this exemplary model represents one year because this is the typical length of a planning period used for capacity planning in the automotive industry. The possible outputs of the invention include one or more of the following: recommendations for capacity procurement, material procurement, material production, and sales targets for each period in the planning horizon.
Referring now to the drawings, and more particularly to
The decision faced in the long-term supply planning phase is represented by a stochastic explosion model. The stochastic explosion model differs from a traditional Material Requirements Planning (MRP) explosion model in that it explicitly accounts for configuration uncertainty, as represented by the range forecast of attach rates, inherent in the automotive supply chain. It also accounts for component dependencies and commonality of sales codes or part numbers across vehicle models or programs. The solution to the stochastic explosion model determines a risk-adjusted, profit maximizing capacity plan corresponding to the top-level volume targets set in the long-term demand planning stage.
Supplier capacity limitations or other procurement considerations may lead to cases where the supply volumes that suppliers are able to commit will deviate from the optimal capacity plan determined by the stochastic explosion model. Therefore, a thorough review of the capacity and top-level demand plan is preferably done to achieve alignment of demand and supply over the planning horizon. This alignment problem is captured by a stochastic implosion model. Its solution suggests how the achievable component supply—constrained by the capacities and flex positions maintained by suppliers—should exemplarily be adjusted so as to maximize expected profit. As in the explosion model, the implosion model accounts for uncertainty in the way finished products are configured. The final capacity plan produced by the model leverages any flexibility in supplier capacities to determine the quantities of all finished products that can be optimally supported by the supply chain over the planning horizon.
The desired financial or operational objective of the stochastic capacity optimization problem is formulated as the following:
The model employs advanced forecasting and stochastic optimization techniques to find profit-optimal flex positions that balance excess capacity with product shortage risk, mitigating the cost of underutilized assets and missed revenue. It takes into account factors including demand uncertainty, profitability, service level objectives, capacity costs, and liability costs, and it allows the analysis of flex positions against demand range forecasts and confidence limits. In conjunction with the range forecast, the capacity optimization model enables planners to estimate the financial performance of a product portfolio as function of flex. An exemplary objective is to maximize risk-adjusted portfolio return by optimizing flex alternatives based on excess and overage exposure, liabilities, and lost sales risk.
The capacity optimization problem is formulated as a multi-period stochastic programming problem with recourse. The multi-period formulation has the advantage that changes in the top-level demand or attach rate distributions over the product life cycle can be incorporated into the capacity procurement decisions.
For example, if there is a sales code that is used exclusively in a single vehicle program in the first year and the sales code is adopted by other vehicle programs in subsequent years, then it may be better to make a nominal capacity investment in the first year and gradually expand the capacity over the following years, as opposed to buying all tooling equipment at once and keeping large portions of it idle in the first year.
Conversely, if there is a sales code that is used in a vehicle program whose product life cycle is expected to end in the next year, then it may be better to incur shortage costs or penalties for substituting the sales code with an alternative, as opposed to buying additional tools and keeping them idle in future years.
The optimization model utilizes the information in scenario-based forecast estimates and generates an efficient capacity plan over the multi-period planning horizon. The first stage variables are the amounts of capacity procured for each sales code, and the second stage variables determine the allocation of different sales codes to customer demand (expressed as demand at the price class/body style level) in each demand scenario. This is one of the first models that explicitly captures uncertainty in demand and uncertainty in customer option preferences while generating a capacity procurement plan. Since an industry-sized capacity planning problem is very large (hundreds of sales codes and thousands of parts to build the sales codes resulting in an exponentially large number of possible demand and attach rate realizations), it is nearly impossible to obtain the truly optimal capacity plan within a reasonable time. Therefore, the present inventors use a statistical approach, called Sample Average Approximation (SAA), that is particularly suitable for solving stochastic programs with very large scenario spaces when exact stochastic programming techniques become ineffective.
Subject matter experts can provide a top-level demand forecast—either in the form of a point forecast or a range forecast—for one or more vehicle programs at the level of price class/body style. These top-level sales targets will be established by a demand planning team in the long-term demand planning phase. An objective of the stochastic capacity optimization is to determine the capacity and flex position of each CPOS package and options sales code so as to meet established sales targets and maximize expected (discounted) profit over the planning horizon.
The capacity and flex positions are determined in the presence of order configuration uncertainty as represented by range forecasts of attach rates. The optimized capacity plan will account for correlations that arise out of product dependencies, CPOS package rules and bill-of-materials relationships. The optimized capacity plan will take advantage of risk-pooling effects that arise from commonality at the sales code level, i.e., sales codes that are used in multiple CPOS packages and sales codes that are used across multiple vehicle programs. For best results, the top-level demand and the attach rates forecasts should be stated as a range forecast so that the financial risk can be captured effectively.
Data inputs and notation are used to formulate the stochastic capacity optimization problem. The data inputs comprise of top-level sales forecasts, sales code attach rates, contribution margins, shortage costs, and capacity investment costs. The following planning parameters determine the size of the optimization problem.
Sales forecasts ensure that the recommended capacity plan can support the demand volume established by subject matter experts.
The product structure is provided in the form of a bill-of-materials structure for the selected set of Price Class/Body Style combinations and includes CPOS package and sales code information.
Additional inputs are product configuration rules that define existing relationships between Sales Codes within a Sales Code Class (substitution rules) as well as attach rate properties that may apply to a given Sales Code Class. These include:
Sales code attach rates explode the sales forecasts at price class/body style level all the way down to the sales code of the end vehicle. Point forecasts and (so far as is feasible) range forecasts of the attach rates will be supplied by a forecasting model (Module 1). Alternatively, attach rate information supplied by subject matter experts may be used.
ω is a set of N demand scenarios where each demand scenario ωi can be obtained by sampling from the distributions of the demands Dpt and the attach rates ajpt using the simulation techniques described above (see section entitled Simulation of scenarios of attach rates below). The sampled (deterministic) values of the demands and attach rates in a demand scenario ωi are denoted by Dpt(ωi) and ajpt(ωi) in the remainder of this section. Further, let D(ω) represent the vector (D(ω1), . . . , D(ωN)) and let a(ω) represent the vector (a(ω1), . . . , a(ωN)).
Vehicle Profit Margins
To assess the expected profitability of a sourcing strategy, information on the profitability of each saleable vehicle configuration is needed. This includes CPOS and Sales Code profit margins and costs, or alternatively, Sales Code revenue and costs. The cost of a CPOS or Sales Code is the estimated cost of purchasing a given CPOS or Sales Code from a supplier. The gross profit captured from the sale of a given end vehicle can be estimated as the gross profit of the base configuration, combined with the gross profit of all CPOS and Sales Codes selected for the vehicle.
Shortage Cost
Shortage costs are an appropriate means of modeling delivery performance in an environment where customer satisfaction is increasingly important. Shortage costs can be estimated as loss of customer goodwill. The loss of goodwill is difficult to quantify because it involves estimating the future revenue pertaining to a customer that intends to purchase an end vehicle. The idea is that a delinquent vehicle loses a portion of its assigned future revenue, the longer the delinquency the more it loses. The future revenue derived from a customer is sometimes referred to as customer lifetime value. It is known that loss of goodwill is the main driver of shortage costs, and it may account for up to 80 percent of the shortage costs.
Shortage costs can be provided as an average cost for each vehicle program, or derived from sales code level data.
Capacity Cost
Capacity costs are used by the optimization model to assess the overall investment cost and profitability of a capacity plan. In the capacity planning stage where capacities are determined at the sales code level, capacity costs must be provided by Sales Code as a per unit capacity cost.
The stochastic capacity planning problem can be formulated as a two-stage stochastic programming problem with recourse. The first-stage variables representing the amount of capacity to be procured are decided before the demands are known. The second-stage continuous variables representing the allocation of capacity to vehicle programs are the best recourse action to take, so that the (discounted) supply chain profit is maximized. The first-stage variables are chosen so that the expected profit (expectation with respect to demand and configuration uncertainty) realized in the second stage is maximized.
The output of the optimization is an optimized capacity plan for all sales codes pertaining to the selected set of vehicle programs. Capacity recommendations are provided in the form of a base capacity plus upside flexibility for each sales code so that the expected (discounted) profit of the firm is maximized over all possible demand and attach rates scenarios.
An additional set of outputs is the expected number of configured saleable vehicles that can be produced in each vehicle program under the recommended capacity plan. This information is useful for subsequent scenario analyses where the recommended capacity plan can be modified and re-evaluated, or for conducting sensitivity analyses for different values of the cost or profit parameters.
Next is presented an exemplary capacity optimization problem where a manufacturer plans procurement of capacity based on the current demand forecast for a set of price/class/body style combinations, and the distribution of attach rates for each of these forecasts.
The stochastic capacity optimization problem can be expressed in the form of a profit maximization problem as follows:
Stochastic Capacity Optimization Problem:
subject to the constraints
Xjt≤Xj,t+1 for all j=1,2, . . . , S and t=1,2, . . . , T (7)
where the second term in the objective function represents maximum total expected profit over all realizations of demand given the capacity decision X.
The constraints (7) ensure that capacities are non-decreasing over time. It is assumed that capacity cannot be decreased or “sold off” over time, however, capacities can be expanded over time by procuring additional tooling in later planning periods. The total reward of the capacity plan given by (6) is evaluated by the expected profit from sales minus the expected shortage costs incurred due to unfulfilled demand at the end of a planning period. The first term in the objective function (6) is the total investment cost for procuring capacity Xjt for all sales codes j=1, 2, . . . , S over the planning horizon. The second term, Q(X,D,a), is the maximal total expected profit attainable under a recommended capacity plan X over all possible demand scenarios ϕ and is expressed as:
Q(X,D,a)=Eϕ[Q(X,D(ϕ),a(ϕ))] (8)
The term Q(X, D(ϕ), a(ϕ)) is the maximal total profit under a single demand scenario ϕ for a recommended capacity plan X. It can be obtained by solving the following sub-problem:
subject to the constraints
Constraints (10) indicate that the total number of vehicles that can be allocated to a vehicle program is less than or equal to the top-level demand Dpt(ϕ). Constraints (11) indicate that the total number of sales codes than can be allocated to all vehicle programs in each scenario is limited by the available capacity of that sales code. Notice that the allocation quantities Ypt are modeled as continuous variables because these are typically large values in which case such an assumption is reasonable.
For a given set of N demand scenarios ω=(ω1, . . . , ωN), the deterministic equivalent of the above stochastic program can be expressed as:
subject to the constraints
If N is the number of all possible demand scenarios, then the solution of the deterministic problem (12)-(15) would represent the capacity plan X that maximizes the expected total profit pertaining to the original stochastic capacity optimization problem (6)-(11).
Sample Average Approximation
The stochastic capacity optimization problem represented by constraints (6)-(11) is formulated as a two-stage stochastic program with recourse. In this problem, the uncertainty in vehicle demand and sales code attach rates is captured by the scenario space, where each scenario expresses one possible realization of demand and attach rates. In situations where the number of scenarios is large, it can be difficult to determine the optimal solution to the problem modeled by (6)-(11) using traditional optimization methods. The present invention solves this problem by using an approximation method based upon a Monte Carlo simulation-based approach called the Sample Average Approximation (SAA) method.
The SAA method approximates the expected objective function of the stochastic program with a sample average estimation based on a number of randomly generated sample scenarios. It solves a number of deterministic equivalent instances of the stochastic explosion problem and seeks to optimize the average of the objective (expected discounted profit) across the sampled scenarios. The combination of sampling followed by deterministic optimization is well established and used in other simulation-based optimization techniques such as Sample-Path Optimization and Infinitesimal Perturbation Analysis. Because the number of scenarios in the stochastic capacity optimization problem is prohibitively large, the SAA method considers sample average functions whose values depend only on a small subset of all scenarios. For a two-stage stochastic program with recourse, the SAA method samples scenarios from the set of all possible scenarios, and seeks to optimize the average of the second stage objective across the sampled scenarios. When the sample space is extremely large, multiple sub-problems generated from multiple, independent groups of samples need to be solved.
First, select appropriate values 410 for N, M and initialize k:=0 (410).
Then work the stochastic ‘explosion’ problem as follows: Generate an N-scenario sub-problem 420 by independently sampling N demand scenarios D(ωk) and a(ωk) from the scenario space where ωk=(ωk1, ωk2, . . . , ωkN). Set (431) k:=k+1 and construct 432 the SAA sub-problem (12)-(15) using D(ωk) and a(ωk). Solve Vk(N) optimally to get Xk. If k<M, then go to 420; otherwise go to 440.
Work the stochastic ‘implosion’ problem as follows: Generate 440 an independent sample set that consists of L>N demand scenarios D(ξ) and a(ξ) where ξ=(ξ1,ξ2, . . . ,ξL) and initialize (441) k:=0. Set (451) k:=k+1 and construct 452 the SAA problem (12)-(15) using D(ξ) and a(ξ). Step 453, let
Finally, choose the optimal capacity plan X*=Xk* where
k*=arg max{
The SAA method approximates the true objective function with a sample average objective function that consists of only a subset of all possible scenarios. For example, if there are K possible scenarios, then instead of expressing the expected profit as an average over all K scenarios (i.e., the true objective function), the SAA method approximates this function using an average taken over only N scenarios, where N is typically much smaller than K (i.e., N<<K). Thus, the SAA method is able to determine the solution to stochastic problems with large scenario spaces by considering a carefully selected subset of all possible scenarios.
In order to achieve statistically robust results, the SAA method solves multiple independently sampled N-scenario sub-problems. The number of independent N-scenario problems solved is given by M. Each of the M sub-problems, when solved, results in a candidate solution to the original capacity allocation problem (e.g., a candidate capacity investment decision). The SAA method selects the one solution from the M candidate solutions as the final solution to the original stochastic optimization problem. This final solution selected by the SAA method typically is not optimal, but its ‘closeness’ to optimality can be statistically quantified in order to evaluate its quality. As the sample size N increases, computational complexity of the SAA problem increases but the solution quality of the SAA problem improves. Trade-offs can be made between the size of N and M to determine the appropriate level of computational tractability and solution quality.
The SAA method has been successfully applied to solve large-scale stochastic planning problems. The present inventors have applied SAA to solve an industry-size stochastic explosion problem for System p server computers manufactured by the Assignee. The results showed that the value of the stochastic solution that accounts for product configuration uncertainty is far superior to the solution produced when uncertain quantities are replaced with their expected (i.e., average) values.
Simulation of Demand Scenarios
For use by the SAA method, the final set of range forecasts created in Module 1 will be stored in a form that enables the generation of scenarios of future demand. In the simplest case, the errors in forecast attach rates stored as a vector a, or some transformed values of them stored as a vector g(a), will have errors that follow a multivariate probability distribution that will be defined by the form of its univariate marginal distributions, any parameters (location, scale, shape) needed to specify these distributions, and further parameters defining its dependence structure. For example, it might be a multivariate normal distribution specified by its mean vector μ and covariance matrix Σ.
Considered below is the simplest case, in which point forecasts of attach rates stored as a vector a, or some transformed values of them stored as a vector g(a), will have errors that follow a multivariate normal distribution with mean vector μ and covariance matrix Σ. Generation of random variates from a standard multivariate normal distribution, with zero mean vector and identity covariance matrix, is straightforward. Given a random variate z from a standard multivariate normal distribution, the vector μ+Lz, where L is a matrix square root of Σ, i.e. LLT=Σ, has a multivariate normal distribution with mean vector μ and covariance matrix Σ. Thus, given a vector a of point forecasts, and a random variate z generated from the standard multivariate normal distribution, the vector g−1(g(a)+μ+Lz) is a random scenario of future attach rates. This procedure can be repeated many times, with the random variate z generated independently each time (but a remaining unchanged) to build up a population of scenarios.
Depending on the form of the forecast error distributions, the generation procedure may need to be more complex than this. However, the forecasting module will try to find transformations of attach rates so that they can be effectively modeled by the multivariate normal or some other distribution from which random variates can be rapidly generated.
Next is described how an exemplary application can be used to solve the above instances of the Stochastic Explosion and Stochastic Implosion problems.
The exemplary application can be used to perform both the explosion and the implosion phase of the SAA algorithm. The exemplary model is very general and has been used to optimize networks for allocating service personnel to service engagements, flows of wafers in semiconductor fabrication facilities, distribution of consumer packaged goods from the manufacturer through distribution center to the retail outlet, Assignee's internal Server Group supply chain, and many other applications.
The exemplary model allows one to describe a constrained production network. The exemplary algorithms optimize the allocation of the constrained resources to the demands in the network. Specifically, the exemplary implementation provides two alternative algorithms to solve this class of problems:
A heuristic algorithm based on demand priorities.
A linear programming (LP) approach based on economic data.
Because data for the capacity optimization problem is fundamentally economic in nature (costs and profits), the LP approach is the exemplary implementation algorithm most appropriate for this context. The LP approach takes a problem (expressed as a network of operations, materials, capacities and demands along with various data attributes), formulates it as an LP problem (expressed as a set of variables, constraints and an objective function), solves the LP problem, and then translates the LP solution into a solution to the exemplary problem.
The exemplary implementation is implemented in an approachable way that allows one to understand and deploy the technology. The exemplary Application Programming Interface (API) is a well documented C programming interface that provides the solution designer the capability to describe the exemplary model and solution technique.
The exemplary application is deployed as a production system in various capabilities at the Assignee, including an application for unconstrained supply planning (MRP explosion) and constraint-based supply planning (implosion) at the Assignee's Systems and Technology Group (STG). This application is a key component of STG's end-to-end supply-demand planning process that is executed twice a month for 10 fulfillment centers and 28 manufacturing plants worldwide. Each run involves approximately 5,000 flexible and 15,000 traditional bill-of-material relationships by plant. Typical execution times for a production run with a 32-week planning horizon vary between 5 and 15 minutes on a regular workstation. The main purpose is to determine the unconstrained component demands which are passed to suppliers for assessment, and, after suppliers respond with capacity limits, to match component capacity against product demand to determine product shortfalls and critical constraints.
The present invention uses the exemplary implementation for solving the Stochastic Explosion Problem and the Stochastic Implosion Problem in the algorithm of
The exemplary implementation's application code for solving the stochastic implosion problem has the following inputs:
The outputs include a specification of the extent to which each demand was met or missed, the capacity utilization, and the total profit. The exemplary implementation's application code acquires the inputs indicated above, constructs the appropriate model in exemplary implementation's, invokes the exemplary implementation's built-in optimizing implosion capability, extracts the implosion solution, and provides the outputs indicated above.
This procedure is invoked once for each stochastic scenario to be considered. In this case of the stochastic explosion problem, a two-stage stochastic linear programming problem is to be solved where the determination of capacity levels is the decision in the hedging stage and the meeting of demands is the decision in the recourse stage.
The exemplary implementation's model may be applied in the following ways:
The exemplary implementation's application code can be applied in the following ways:
While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
Thus, for example, although an automotive scenario was used for purpose of discussion, other applications are clearly possible.
For another example, if a desired output of the invention is a materials requirements plan, a subset of the variables (Xjt) can be re-interpreted to represent material, non-capital and storable resources. Additionally, mathematical constraints can be appended to the sub-problem (equations (9)-(11)) that represent inventory flow constraints that control the ‘movement’ of inventory of these material resources from one period to another. As another example, if the desired output of the invention is a skills requirements plan, a subset of the variables (Xjt) can be re-interpreted to represent skill types. Additionally, if the desired output of the invention is a human resources deployment plan, then a subset of the variables (Xjt) can be re-defined to represent individuals. If desired, additional parameters can be defined to specify the skill types that each individual possesses, and constraint (equation (11)) can be modified to reflect the constraint that only individuals possessing the demanded skills can satisfy the demand for product/services.
Exemplary Hardware Implementation
The CPUs 511 are interconnected via a system bus 512 to a random access memory (RAM) 514, read-only memory (ROM) 516, input/output (I/O) adapter 518 (for connecting peripheral devices such as disk units 521 and tape drives 540 to the bus 512), user interface adapter 522 (for connecting a keyboard 524, mouse 526, speaker 528, microphone 532, and/or other user interface device to the bus 512), a communication adapter 534 for connecting an information handling system to a data processing network, the Internet, an Intranet, a personal area network (PAN), etc., and a display adapter 536 for connecting the bus 512 to a display device 538 and/or printer 539 (e.g., a digital printer or the like).
In addition to the hardware/software environment described above, a different aspect of the invention includes a computer-implemented method for performing the above method. As an example, this method may be implemented in the particular environment discussed above.
Such a method may be implemented, for example, by operating a computer, as embodied by a digital data processing apparatus, to execute a sequence of machine-readable instructions. These instructions may reside in various types of signal-bearing media.
Thus, this aspect of the present invention is directed to a programmed product, comprising signal-bearing media tangibly embodying a program of machine-readable instructions executable by a digital data processor incorporating the CPU 511 and hardware above, to perform the method of the invention.
This signal-bearing media may include, for example, a RAM contained within the CPU 511, as represented by the fast-access storage for example. Alternatively, the instructions may be contained in another signal-bearing media, such as a magnetic data storage diskette 600 (
Whether contained in the diskette 600, the computer/CPU 511, or elsewhere, the instructions may be stored on a variety of machine-readable data storage media, such as DASD storage (e.g., a conventional “hard drive” or a RAID array), magnetic tape, electronic read-only memory (e.g., ROM, EPROM, or EEPROM), an optical storage device (e.g. CD-ROM, WORM, DVD, digital optical tape, etc.), paper “punch” cards, or other suitable signal-bearing media including transmission media such as digital and analog and communication links and wireless. In an illustrative embodiment of the invention, the machine-readable instructions may comprise software object code
Further, it is noted that, Applicants' intent is to encompass equivalents of all claim elements, even if amended later during prosecution.
Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:
Number | Name | Date | Kind |
---|---|---|---|
5970465 | Dietrich | Oct 1999 | A |
6405308 | Gupta et al. | Jun 2002 | B1 |
6711550 | Lewis et al. | Mar 2004 | B1 |
7539297 | Whitman, Jr. | May 2009 | B2 |
7801834 | Frohnhoefer et al. | Sep 2010 | B2 |
7809604 | Bensoussan | Oct 2010 | B1 |
7809831 | Matsumitsu et al. | Oct 2010 | B2 |
20030229550 | DiPrima | Dec 2003 | A1 |
20050065838 | Kalagnanm | Mar 2005 | A1 |
20050135600 | Whitman, Jr. | Jun 2005 | A1 |
20070106798 | Masumitsu et al. | May 2007 | A1 |
20070203856 | Frohnhoefer et al. | Aug 2007 | A1 |
20090099975 | Torre | Apr 2009 | A1 |
20090144126 | Hosking | Jun 2009 | A1 |
20090164262 | Ettl et al. | Jun 2009 | A1 |
Entry |
---|
Verweij, Bram et al. “The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study.” Journal of Computational Optimization and Applications, vol. 24, Issues 2-3, Feb.-Mar. 2003. |
Grubbstrom, Robert W. and Zhipeng Wang. “A stochastic model and multi-level/multi-stage capacity-constrained production-inventory systems.” International Journal of Production Economics 81-82 (2003), pp. 483-494. |
Chang, Mei-Shiang et al. “A scenario planning approach for the flood emergency logistics preparation problem under uncertainty.” Transportation Research Part E 43 (2007), pp. 737-754. |
Mavris, Dimitri N. et al. “A stochastic approach for multi-disciplinary aircraft analysis and design.” Presented at the 36th Aerospace Sciences Meeting & Exhibit, Jan. 12-15, 1998, in Reno NV. |
Internet Archive Wayback Machine archive of “Experience Using the IBM Supply Chain Simulator.” Archived on Oct. 31, 2002. Available from <http://web.archive.org/web/20021031044811/http://www.research.ibm.com/ees/paper1.html>. |
Number | Date | Country | |
---|---|---|---|
20090164262 A1 | Jun 2009 | US |