Method and structure for soldering a laser submount to a mounting face of a slider

Information

  • Patent Grant
  • 9202478
  • Patent Number
    9,202,478
  • Date Filed
    Tuesday, February 10, 2015
    10 years ago
  • Date Issued
    Tuesday, December 1, 2015
    9 years ago
Abstract
A head and a method to manufacture a head are disclosed. A slider is provided and has a mounting face that is opposite but substantially parallel to its air bearing surface. According to an example embodiment, a first plurality of layers may be deposited on the mounting face, including a tin layer, a first underlayer that comprises platinum, and an interface layer disposed between the first underlayer and the tin layer. The interface layer may comprise Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or W. A submount with an attached laser diode may include a gold layer and be positioned adjacent to the first plurality of layers. The tin layer may then be melted so that the gold layer is dissolved therein, upon solidification attaching the submount to the mounting face by a solder layer that preferably comprises at least 45% gold by weight dissolved in tin.
Description
BACKGROUND

Magnetic hard disk drives retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive includes one or more heads that can read and write information on a corresponding magnetic surface of a spinning disk. For convenience, all heads that can read are referred to as “read heads” or “heads” herein, regardless of other devices and functions the read head may also perform (e.g. writing, micro-actuation, flying height control, touch down detection, lapping control, localized disk media heating, etc). Each read head is a sub-component of a head gimbal assembly (HGA). The HGA also includes a suspension assembly for holding the head and providing a plurality of electrical connections thereto. The suspension assembly typically includes a fragile laminated flexure to carry the electrical signals to and from the head.


The head typically comprises a slider that includes an air bearing surface (ABS) that faces the magnetic disk surface, a trailing face, and a mounting face that is opposite the ABS and that faces away from the ABS. A magnetic sensor and a plurality of head bond pads are typically disposed on the trailing face of the slider. The mounting face of the slider is typically permanently bonded to a tongue portion of the fragile laminated flexure by an adhesive, in a position such that the plurality of head bond pads are aligned with corresponding bond pads on the laminated flexure.


Conventionally, the head writes tiny magnetic transitions on the magnetic disk surface by applying sufficient magnetic field to the desired microscopic disk surface location to overcome the coercivity of the disk surface material there, and thereby change the remnant field there. However, market demand for disk drives having ever higher data storage capacity has motivated investigation into the possible use of “energy assisted” magnetic recording (EAMR), in which writing is accomplished not only by local application of a magnetic field, but also by local application of laser light for localized heating of the disk surface. EAMR may enable the writing of smaller transitions, and thereby increase the areal density of data stored on the disk surface.


Most proposed EAMR technologies require the addition of a laser light source on the read head. For example, a laser diode may be attached to a laser submount, and the laser submount attached to the mounting face of the slider. Solder alloys have been used for such attachment, for example to enhance thermal and/or electrical conductivity. However, the melting temperature of such a solder alloy may be too high to be tolerated by affected components during the manufacturing process. For example, eutectic 80Au20Sn solder alloy (i.e. having 80% gold and 20% tin by weight) is known to have favorable mechanical properties, but its melting point may exceed the maximum temperature that is practically allowable in a particular manufacturing process. By contrast, 10Au90Sn solder alloy has a lower melting point, but includes the AuSn4 intermetallic that has unfavorable mechanical properties.


Accordingly, there is a need in the art for improved methods and structures to safely, reliably, and practically attach a laser light source for EAMR to a read head.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded perspective view of a disk drive capable of including an embodiment of the present invention.



FIG. 2 is a top perspective view of a head stack assembly (HSA), capable of including an embodiment of the present invention.



FIG. 3 depicts a head capable of use with an embodiment of the present invention, as viewed from a perspective angle towards the air bearing surface of the head.



FIG. 4A is a perspective view of a head-laser submount assembly (HLSA) capable of including an embodiment of the present invention, having a laser device exploded away from the mounting surface of the head.



FIG. 4B is a perspective view of the HLSA of FIG. 4A, except with the laser device attached to the mounting surface of the head.



FIG. 5A is a perspective view of the distal portion of a head gimbal assembly (HGA) capable of including an embodiment of the present invention, with a head (with mounted laser device) being exploded away from the suspension assembly.



FIG. 5B is a perspective view of the distal portion of the head gimbal assembly (HGA) of FIG. 5A, except with the head being attached to a tongue of the suspension assembly.



FIG. 6A depicts a head according to an embodiment of the present invention, as viewed from a perspective angle towards the mounting surface of the head.



FIG. 6B depicts a laser submount assembly according to an embodiment of the present invention.



FIG. 7 depicts a layer system for soldering a laser submount to a head according to an embodiment of the present invention, before and after the soldering process.



FIG. 8 depicts a conventional phase diagram of gold-tin solder alloy.



FIG. 9 depicts a head having a laser submount assembly soldered thereto according to an embodiment of the present invention.



FIG. 10 depicts a layer system for soldering a laser submount to a slider, according to another embodiment of the present invention, after the soldering process.





DESCRIPTION OF EXAMPLE EMBODIMENTS


FIG. 1 is a perspective view of a disk drive 1 capable of including an embodiment of the present invention. The disk drive 1 includes a head disk assembly (HDA) 10 and a printed circuit board (PCB) 14. The HDA 10 includes a disk drive base 16 and a disk drive cover 18, that together enclose other components of the HDA 10. At least one disk 20 is rotatably mounted to the disk drive base 16 by a spindle motor 26. The HDA 10 optionally includes one or more additional disks 20, also rotatably mounted to the disk drive base 16 by spindle motor 26, with the disks 20 then separated by one or more spacer rings 12.


The disks 20 may comprise an aluminum, glass, or ceramic substrate, with the substrate optionally being coated with a NiP under-layer, at least one thin-film magnetic layer, a diamond-like amorphous carbon protective layer, and a very thin lubricant layer, for example. The disks 20 are annular in shape, having an outer periphery 24 and an inner periphery 22, and may be clamped to a rotating hub of the spindle motor 26, by a clamp 11. The rotating hub of the spindle motor 26 rotates the disks 20 about a disk axis of rotation 28.


The HDA 10 also includes a head stack assembly (HSA) 30 that includes an actuator 32 that is pivotably mounted to the disk drive base 16 by a pivot bearing 44 that is inserted as a cartridge into a bore in the actuator 32. The pivot bearing 44 allows the actuator 32 to pivot about an actuator pivot axis 46. The actuator 32 may be fabricated from any suitable material having sufficient stiffness to weight, for example aluminum, magnesium, beryllium, or stainless steel. The pivot bearing 44 may be retained in the bore by a tolerance ring or may be otherwise retained (e.g. by an adhesive). The angular range of motion of the actuator 32 may be limited by a latch and crash stop mechanism 52. The actuator 32 includes at least one actuator arm 36 that extends away from the pivot bearing 44, and an actuator coil 50 that extends away from the pivot bearing 44 in a direction generally opposite the actuator arm 36.


The actuator coil 50 may fit in a yoke structure that optionally comprises a top plate 56 and a bottom plate 58, to form a voice coil motor (VCM). One or both of the top plate 56 and the bottom plate 58 may support a permanent magnet(s) of the VCM (e.g. permanent magnet 54). The top plate 56 and/or the bottom plate 58 preferably comprise a ferromagnetic metal so as to provide a return path for magnetic flux from the permanent magnet(s) through the yoke structure. The ferromagnetic metal yoke structure including the top plate 56 and the bottom plate 58 is preferably affixed to the disk drive base 16, for example by an adhesive, one or more fasteners, and/or magnetic attraction.


A plurality of head gimbal assemblies 42 may be attached to arms 36 of the actuator 32, for example by swaging. A flexible printed circuit (FPC) 62 (also known as a “flex cable”) may also be attached to the actuator 32. Each of the head gimbal assemblies 42 may include a read head 40 that is bonded to a laminated flexure having a flexure tail that is electrically connected to the FPC 62. The FPC 62 can communicate electrical signals, via these electrical connections and via a flex bracket 64, between the head gimbal assemblies 42 and an external electronic system that is disposed on the PCB 14.


The actuator 32, head gimbal assemblies 42, and FPC 62 all may be considered as components of the HSA 30. The HDA 10 may have additional components that are not shown in FIG. 1. For example, the HDA 10 may also include a conventional head loading ramp (not shown), that may be positioned adjacent the disks 20 to facilitate merging of the head gimbal assemblies 42 onto surfaces of the disks 20.



FIG. 2 is a top perspective view of a head stack assembly (HSA) 200, capable of including an embodiment of the present invention. The HSA 200 includes an actuator 232 pivotably attachable to a disk drive base by a pivot bearing 244 that is inserted as a cartridge into a bore in the actuator 232. The actuator 232 may be fabricated from a suitable metal such as aluminum, magnesium, beryllium, or stainless steel, or a relatively low mass density non-metallic or composite material having sufficient stiffness. The pivot bearing 244 may be retained in the bore by a tolerance ring or may be otherwise retained (e.g. by an adhesive). The actuator 232 includes a plurality of actuator arms 236 that extends away from the pivot bearing 244, and an actuator coil 250 that extends away from the pivot bearing 244 in a direction generally opposite the actuator arms 236.


In the embodiment of FIG. 2, a plurality of head gimbal assemblies (HGAs) 242 are shown to be attached to arms 236 of the actuator 232. Each HGA includes a read head 292 and a suspension assembly to which the read head 292 is attached. Specifically, each read head 292 is attached and electrically connected to a laminated flexure 282 of the suspension assembly of the HGA 242. The suspension assembly of each HGA 242 is shown to be attached to one of the actuator arms 236, for example by swaging. A flexible printed circuit (FPC) 262 is also shown to be attached to the actuator 232. Each laminated flexure 282 includes a plurality of conductive traces, and each laminated flexure 282 has a flexure tail that extends to the FPC 262, where the plurality of conductive traces is connected to the FPC 262 near a pre-amplifier chip 266.



FIG. 3 depicts a read head 304, as viewed from a perspective angle towards its air bearing surface 324. The read head 304 comprises a slider 326 which includes the air bearing surface 324, a trailing face 328 that is normal to the air bearing surface 324, and a mounting face (not visible from the view angle of FIG. 3, but which is opposite but substantially parallel to the air bearing surface 324). The air bearing surface 324 may be of any conventional design, and is not restricted to the design shown in FIG. 3. The head 304 also comprises a plurality of head bond pads 352 that are disposed on the trailing face 328 and that are electrically conductive. The head bond pads 352 may comprise gold and/or copper, for example.


In the embodiment of FIG. 3, a magnetic transducer 350 is disposed on the trailing face of the slider 326. The magnetic transducer 350 may include a magneto-resistive read sensor (e.g. a tunneling magneto-resistive read sensor) and a magneto-inductive write transducer, for example. The slider 326 may comprise a ceramic material such as AlTiC, for example.



FIG. 4A is a perspective view of a head—laser submount assembly (HLSA) 400 capable of including an embodiment of the present invention, having a laser device (e.g. a laser diode 410 with a laser submount 420) exploded away from the mounting face 314 of the slider 326 of the head 304. FIG. 4B is a perspective view of the HLSA of FIG. 4A, except with the laser submount 420 soldered to the mounting face 314 of the slider 326. Numerical labels in FIGS. 4A and 4B that are common with those used in FIG. 3 are intended to have the same meaning as that described with reference to FIG. 3, and so for conciseness the description of such numerical labels may not be repeated in the description of FIGS. 4A and 4B.


As shown in FIG. 4A, a first plurality of layers 460 has been deposited on the mounting face 314 of the slider 326. The first plurality of layers 460 may be used to help create a reliable solder bond between the laser submount 420 and the mounting face 314 of the slider 326. Examples of the composition of the first plurality of layers 460 before and after the soldering process will be described subsequently herein.


In the example of FIGS. 4A and 4B, the laser submount 420 includes a patterned metal layer 421 upon which a solder material 412 (e.g. eutectic 80Au20Sn) may be deposited for attachment of the laser diode 410 to a laser diode bonding region 411 of the patterned metal layer 421. The laser submount 420 optionally may also include a probing region 422 of the patterned metal layer 421 to facilitate contact by electrically conductive probing pins during the assembly process, for example to temporarily energize the laser diode 410 to use emitted laser light for alignment during the assembly process.



FIG. 5A is a perspective view of the distal portion of a head gimbal assembly (HGA) 500 according to an embodiment of the present invention, with a head 304 (and mounted laser diode 410 and laser submount 420) being exploded away from a suspension assembly 510 of the HGA 500. FIG. 5B is a perspective view of the distal portion of the HGA 500 of FIG. 5A, except with the head 304 being attached to a tongue 522 of the suspension assembly 510. Numerical labels in FIGS. 5A and 5B that are common with those used in FIG—. 3, 4A, or 4B are intended to have the same meaning as that described with reference to those figures, and so for conciseness the description of such numerical labels may not be repeated in the description of FIGS. 5A and 5B.


Now referring to the embodiment of FIGS. 5A and 5B, the suspension assembly 510 comprises a load beam 512 and a flexure 520. The flexure 520 includes a tongue 522 on which the read head 304 may be mounted. A first side of the tongue 522 may be in contact with the load beam 512, for example via a conventional dimple 514 that transfers a preload force (also known as a “gram load”) from the load beam 512 to the head 304 to preload the head 304 against the surface of a rotating disk during disk drive operation.


Still referring to the embodiment of FIGS. 5A and 5B, the flexure 520 is a laminar flexure that includes a patterned electrically conductive layer that has six conductive traces 524, two conductive traces 526, and a conductive trace 528. The conductive traces may comprise copper, for example. The magnetic transducer 350 is electrically accessed through a subset of the head bond pads 352. Each of the head bond pads 352 is preferably electrically connected to a respective one of the conductive traces 524 by a conductive ball (not shown), for example by gold ball bonding or other applicable conventional methods. Hence, in the embodiment of FIG. 5A, the magnetic transducer 350 is electrically connected to a subset of the conductive traces 524, but is not connected to the conductive traces 526 or 528.


As shown in FIGS. 5A and 5B, the laser diode 410 passes through the opening 516 in the suspension assembly 510, and the laser diode 410 is electrically connected to (by making electrical contact with) at least the conductive trace 528, but is not connected to the conductive traces 524. The laser diode 410 may be electrically connected to the conductive traces 526, via a conductive path on or through the laser submount 420 that contacts the conductive traces 526. The conductive traces 524, 526, and 528 extend along the flexure 520, via an elongated flexure tail to electrical connections with an actuator flexible printed circuit (e.g. FPC 262, as shown in FIG. 2).



FIG. 6A depicts a head 604 according to an embodiment of the present invention, as viewed from a perspective angle towards the mounting face 614 of the slider 626 of the head 604. FIG. 6B depicts a laser submount assembly 600 according to an embodiment of the present invention. A first plurality of layers 760 has been deposited on the mounting face 614 of the slider 626. The first plurality of layers 760 may be used to help create a reliable solder bond between the laser submount assembly 600 and the mounting face 614 of the slider 626. Examples of the composition of the first plurality of layers 760 before and after the soldering process will be described subsequently herein.


In the embodiment of FIG. 6B, the laser submount assembly 600 comprises a laser diode 610 that is attached to a laser submount 620, for example by an 80Au20Sn solder material (not shown in FIG. 6B) between the laser diode 610 and the laser submount 620. A second plurality of layers 780 may be deposited on a face of the the laser submount 620 that faces the mounting face 614 of the slider 626. The second plurality of layers 780 may be used to help create a reliable solder bond between the laser submount 620 and the mounting face 614 of the slider 626. Examples of the composition of the second plurality of layers 780 before and after the soldering process will be described subsequently herein.



FIG. 7 depicts a layer system 700 for soldering the laser submount 620 to the slider 626 (e.g. the mounting face 614 of the slider 626 of FIG. 6A), according to an embodiment of the present invention before and after the soldering process. Now referring to FIG. 7, prior to the soldering process, the first plurality of layers 760 includes a tin layer 762 and a first underlayer 764 that comprises platinum. In certain embodiments, the tin layer 762 defines a tin layer thickness 763 that is preferably but not necessarily in the range of 1.5 to 3.5 microns. In certain embodiments, the first underlayer 764 defines a first underlayer thickness that is preferably in the range of 50 nm to 250 nm.


In the embodiment of FIG. 7, the first plurality of layers 760 includes an interface layer 768 disposed between the first underlayer 764 and the tin layer 762. The interface layer 768 preferably comprises Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or W, and preferably defines an interface layer thickness in the range of 5 nm to 20 nm. In certain embodiments, such an interface layer 768 may enhance the shear strength of a resulting solder attachment.


In the embodiment of FIG. 7, prior to the soldering process the second plurality of layers 780 may include a first gold layer 782 and a second underlayer 784 that comprises platinum. In certain embodiments, the first gold layer 782 defines a first gold layer thickness 783 that is at least 0.31 times the tin layer thickness 763. Such an inequality may advantageously provide that a solder layer 750 that ultimately results from the soldering process will have a desired composition, as described subsequently herein. In certain embodiments, the first gold layer thickness 783 may consequently fall in the range of 0.5 to 1 micron. In certain embodiments, the second underlayer 784 may have a thickness that is preferably but not necessarily in the range of 100 nm to 300 nm.


In the embodiment of FIG. 7, the first plurality of layers 760 optionally includes a platinum capping layer 772, a second gold layer 774 and a third gold layer 776. The platinum capping layer 772 is shown in FIG. 7 to be in direct contact with the tin layer 762, with the tin layer 762 being disposed between the platinum capping layer 772 and the interface layer 768. In certain embodiments, the platinum capping layer 772 may define a capping layer thickness that is preferably in the range of 5 nm to 20 nm. In certain embodiments, such a platinum capping layer 772 acts as a diffusion barrier that may prevent an adjacent gold layer (e.g. the third gold layer 776 and/or the first gold layer 782) from dissolving into the tin layer 762, prior to the intentional melting of the tin layer 762 during the soldering process.


In the embodiment of FIG. 7, the second gold layer 774 is disposed between the tin layer 762 and the interface layer 768. In certain embodiments, the second gold layer 774 may have a thickness that is preferably in the range of 50 to 200 nm. Because the second gold layer 774 is not separated from the tin layer 762 by a diffusion barrier like the platinum capping layer 772, gold may diffuse from the second gold layer 774 into the tin layer 762 to advantageously lower the melting point of the tin layer 762. In the embodiment of FIG. 7, the third gold layer 776 is disposed on the platinum capping layer 772, for example to protect the platinum capping layer 772 from hydrocarbon contaminates. In certain embodiments, the third gold layer 776 has a thickness that is preferably in the range of 20 nm to 80 nm.


In the embodiment of FIG. 7, the first plurality of layers 760 may include a first metal adhesion layer 778. The first metal adhesion layer 778 is depicted in FIG. 7 to be between and in contact with the first underlayer 764 and the slider 626 (e.g. at the mounting face 614 shown in FIG. 6A). In certain embodiments, for example if the slider 626 comprises AlTiC, the first metal adhesion layer 778 may preferably comprise Ti. In alternative embodiments, the first metal adhesion layer 778 may optionally comprise Cr, Nb, Ta, Ni, or W or their alloys.


In the embodiment of FIG. 7, the second plurality of layers 780 may include a second metal adhesion layer 788. The second metal adhesion layer 788 is depicted in FIG. 7 to be disposed between and in contact with the second underlayer 784 and the submount 620. The second metal adhesion layer 788 may optionally comprise Ti, Cr, Nb, Ta, Ni, or W.


In FIG. 7, the arrow 790 represents the soldering process steps of positioning the laser submount 620 adjacent to the first plurality of layers 760 on the slider 626, and then heating the layer system 700 (including the first plurality of layers 760) to a process temperature (e.g. 250° C.), that is high enough to melt the tin layer 762. On the left of the arrow 790 is depicted the layer system 700 before the soldering process, and on the right of the arrow 790 is depicted the layer system 700 after the soldering process. In certain embodiments, positioning the laser submount 620 adjacent to the first plurality of layers 760 may comprise pressing the second plurality of layers 780 against the first plurality of layers 760.


When the tin layer 762 is melted, the platinum capping layer 772 can no longer prevent the first gold layer 782 (and the third gold layer 776 if present) from dissolving into the tin layer 762, and so the gold-tin solder layer 750 is thereby formed. The second gold layer 774 (if present) also dissolves into the tin layer 762. After dissolution of the gold into the gold-tin solder layer 750, the gold tin solder layer 750 preferably comprises an alloy of at least 45% gold by weight dissolved in tin. In certain embodiments, the gold tin solder layer 750 of FIG. 7 may define a solder layer thickness 753 that is optionally in the range of 0.5 microns to 5 microns, and preferably in the range 1 micron to 3 microns.


As can be seen from the conventional gold-tin alloy phase diagram of FIG. 8, such a gold-tin solder alloy of at least 45% gold by weight has a melting point that is higher than that of 10Au90Sn (217° C.) and tin (232° C.), and preferably higher than a process temperature used for the soldering (e.g. 250° C.). Therefore, the gold-tin solder layer 750 promptly freezes back to solid form, attaching the laser submount 620 to the slider 626 as shown in FIG. 9. Some of the numerical labels used in FIG. 9 have the same meaning as corresponding numbers in FIGS. 6A and 6B, and so for conciseness such numerical labels are not re-described here. In the embodiment of FIG. 9, the laser submount 620 includes a patterned metal layer 621 upon which a solder material (e.g. eutectic 80Au20Sn, not shown) may be deposited for attachment of the laser diode 610 to the laser submount 620.



FIG. 10 depicts a solder layer system 800 for soldering a laser submount 820 to a slider 826, according to another embodiment of the present invention, after the soldering process. The layer system 800 optionally includes a first underlayer 864 that comprises platinum. In certain embodiments, the first underlayer 864 defines a first underlayer thickness that is preferably in the range of 50 nm to 250 nm. In the embodiment of FIG. 10, the solder layer system 800 optionally further includes a second underlayer 884 that comprises platinum. The second underlayer 884 is disposed between the laser submount 820 and a gold-tin solder layer 850.


In the embodiment of FIG. 10, the solder layer system 800 includes an interface layer 868 disposed between the first underlayer 864 and the gold-tin solder layer 850. The interface layer 868 preferably comprises Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or W, and preferably defines an interface layer thickness in the range of 5 nm to 20 nm. In certain embodiments, such an interface layer 868 may enhance the shear strength of a resulting solder attachment.


In the embodiment of FIG. 10, the solder layer system 800 may include a first metal adhesion layer 878. The first metal adhesion layer 878 is depicted in FIG. 10 to be between and in contact with the first underlayer 864 and the slider 826. In certain embodiments, for example if the slider 826 comprises AlTiC, the first metal adhesion layer 878 may preferably comprise Ti. In alternative embodiments, the first metal adhesion layer 878 may optionally comprise Cr, Nb, Ta, Ni, or W.


In the embodiment of FIG. 10, the solder layer system 800 may include a second metal adhesion layer 888. The second metal adhesion layer 888 is depicted in FIG. 10 to be disposed between and in contact with the second underlayer 884 and the laser submount 820. The second metal adhesion layer 888 may optionally comprise Ti, Cr, Nb, Ta, Ni, or W.


In the embodiment of FIG. 10, the gold-tin solder layer 850 optionally includes a region 852 of AuSn composition adjacent to and in contact with the second underlayer 884, and a region 854 of AuSn2 composition adjacent to and in contact with the interface layer 868. In certain embodiments, the the gold-tin solder layer 850 preferably does not include a region of AuSn4 composition. Such a result can be obtained by careful selection of the thicknesses of gold and tin layers, as deposited on the parts to be soldered prior to the soldering process (e.g. on the laser submount 820 and on the slider 826 prior to the soldering process).


For example, now referring to FIG. 7, the overall composition of the gold-tin solder layer 750 can be controlled by careful choice of the thickness 783 of the first gold layer 782, the thicknesses of the second and third gold layers 774 and 776, and the thickness 763 of the tin layer 762. Specifically, so long as the sum of the thicknesses of the aforementioned gold layers is at least 0.31 times the tin layer thickness 763, then the gold tin solder layer 750 overall will comprises at least 45% gold by weight dissolved in tin.


Now referring again to the gold-tin alloy phase diagram of FIG. 8, the foregoing inequalities may advantageously reduce the likelihood that the solder layer 750 will include regions of AuSn4 intermetallic phase, which in certain embodiments can have undesirable brittle mechanical properties that might cause the solder layer 750 to form a less reliable attachment. Therefore, the methods and structures disclosed herein may practically improve the reliability of the attachment of a laser light source for EAMR to a read head.


In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. For example, the word “preferably,” and the phrase “preferably but not necessarily,” are used synonymously herein to consistently include the meaning of “not necessarily” or optionally. “Comprising,” “including,” and “having,” are intended to be open-ended terms.

Claims
  • 1. A head comprising: a slider having an air bearing surface, a trailing face that is normal to the air bearing surface, and a mounting face that is opposite but substantially parallel to the air bearing surface;a magnetic transducer disposed on the trailing face of the slider; anda submount attached to the mounting face by a first solder layer, the first solder layer comprising an alloy of at least 45% gold by weight dissolved in tin;a laser diode attached to the submount,wherein the mounting face of the slider includes a first underlayer that comprises platinum, and an interface layer disposed between and in direct contact with the first underlayer and the first solder layer, the interface layer comprising a metal selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W.
  • 2. The head of claim 1, wherein the submount includes a second underlayer that comprises platinum, the second underlayer disposed between the submount and the first solder layer.
  • 3. The head of claim 1, wherein the first solder layer includes a region of AuSn composition adjacent to and in contact with the second underlayer of the submount, and a region of AuSn2 composition adjacent to and in contact with the interface layer of the mounting face of the slider.
  • 4. The head of claim 1, wherein the mounting face of the slider further comprises a first metal adhesion layer between and in contact with the first underlayer and the mounting face of the slider, the first metal adhesion layer comprising Ti.
  • 5. The head of claim 2, wherein the submount further comprises a second metal adhesion layer between and in contact with the second underlayer and the submount, the second metal adhesion layer comprising a metal selected from the group consisting of Ti, Cr, Nb, Ta, Ni, and W.
  • 6. The head of claim 1, wherein the interface layer defines an interface layer thickness in the range of 5 nm to 20 nm, and the first underlayer defines a first underlayer thickness in the range of 50 nm to 250 nm.
  • 7. The head of claim 1, wherein the laser diode is attached to the submount by a second solder layer that comprises 80Au20Sn.
  • 8. The head of claim 1, wherein the first solder layer defines a solder layer thickness in the range 1 micron to 3 microns.
  • 9. A method to manufacture a head, the method comprising: providing a slider having an air bearing surface, a trailing face that is normal to the air bearing surface, and a mounting face that is opposite but substantially parallel to the air bearing surface;depositing a first plurality of layers on the mounting face of the slider, the first plurality of layers including a tin layer, a first underlayer that comprises platinum, and an interface layer disposed between the first underlayer and the tin layer, the interface layer comprising a metal selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W;positioning a laser submount adjacent to the first plurality of layers; and then heating the first plurality of layers to melt the tin layer.
  • 10. The method of claim 9, wherein the slider comprises AlTiC, and wherein the first plurality of layers further includes a first metal adhesion layer between and in contact with the mounting face of the AlTiC slider and the first underlayer, the first metal adhesion layer comprising titanium.
  • 11. The method of claim 9, wherein the first plurality of layers further includes a platinum capping layer in direct contact with the tin layer, the tin layer disposed between the platinum capping layer and the interface layer, the platinum capping layer defining a capping layer thickness in the range of 5 nm to 20 nm.
  • 12. The method of claim 9, wherein the tin layer defines a tin layer thickness in the range of 1.5 to 3.5 microns, the interface layer defines an interface layer thickness in the range of 5 nm to 20 nm, and the first underlayer defines a first underlayer thickness in the range of 50 nm to 250 nm.
  • 13. The method of claim 9, further comprising depositing a second plurality of layers on the laser submount before positioning the laser submount adjacent to the first plurality of layers, the second plurality of layers including a first gold layer and a second underlayer that comprises platinum.
  • 14. The method of claim 13, wherein the tin layer defines a tin layer thickness, and wherein the first gold layer defines a first gold layer thickness that is at least 0.31 times the tin layer thickness.
  • 15. The method of claim 14, wherein the first gold layer thickness is in the range of 0.5 to 1 micron, and the second underlayer defines a second underlayer thickness in the range of 100 nm to 300 nm.
  • 16. The method of claim 13, wherein the second plurality of layers further includes a second metal adhesion layer between and in contact with the laser submount and the second underlayer, the second metal adhesion layer comprising a metal selected from the group consisting of Ti, Cr, Nb, Ta, Ni, and W.
  • 17. The method of claim 13, wherein heating the first plurality of layers to melt the tin layer dissolves the first gold layer into the tin layer to form a solder layer of gold tin alloy that has at least 45% gold by weight.
  • 18. The method of claim 17, wherein the solder layer includes a region of AuSn composition adjacent to and in contact with the second underlayer, and a region of AuSn2 composition adjacent to and in contact with the interface layer.
  • 19. The method of claim 17, wherein the first plurality of layers further includes a second gold layer, and wherein heating the first plurality of layers to melt the tin layer also dissolves the second gold layer into the tin layer to form the solder layer of gold tin alloy that has at least 45% gold by weight.
  • 20. The method of claim 19, wherein the tin layer defines a tin layer thickness, wherein the first gold layer defines a first gold layer thickness, wherein the second gold layer defines a second gold layer thickness, and wherein a sum of the first gold layer thickness and the second gold layer thickness is at least 0.31 times the tin layer thickness.
  • 21. The method of claim 20, wherein the second gold layer is disposed between the tin layer and the interface layer, and defines a second gold layer thickness in the range of 50 to 200 nm.
  • 22. The method of claim 20, wherein the first plurality of layers further includes a platinum capping layer in direct contact with the tin layer, the tin layer being disposed between the platinum capping layer and the interface layer, the platinum capping layer defining a capping layer thickness in the range of 5 nm to 20 nm, and wherein the second gold layer is disposed on the platinum capping layer and defines a second gold layer thickness in the range of 20 nm to 80 nm.
  • 23. The method of claim 9, further comprising attaching a laser diode to the laser submount by a solder material that comprises 80Au20Sn, before positioning the laser submount adjacent to the first plurality of layers.
  • 24. The method of claim 13, wherein positioning the laser submount adjacent to the first plurality of layers comprises pressing the second plurality of layers against the first plurality of layers.
US Referenced Citations (148)
Number Name Date Kind
3663184 Wood et al. May 1972 A
4817854 Tihanyi et al. Apr 1989 A
5719070 Cook et al. Feb 1998 A
5990560 Coult et al. Nov 1999 A
6046882 Pattanaik et al. Apr 2000 A
6075673 Wilde et al. Jun 2000 A
6097575 Trang et al. Aug 2000 A
6125014 Riedlin, Jr. Sep 2000 A
6125015 Carlson et al. Sep 2000 A
6130863 Wang et al. Oct 2000 A
6137656 Levi et al. Oct 2000 A
6144528 Anaya-Dufresne et al. Nov 2000 A
6147838 Chang et al. Nov 2000 A
6151196 Carlson et al. Nov 2000 A
6178064 Chang et al. Jan 2001 B1
6181522 Carlson Jan 2001 B1
6181673 Wilde et al. Jan 2001 B1
6229672 Lee et al. May 2001 B1
6236543 Han et al. May 2001 B1
6246547 Bozorgi et al. Jun 2001 B1
6249404 Doundakov et al. Jun 2001 B1
6330131 Nepela et al. Dec 2001 B1
6339518 Chang et al. Jan 2002 B1
6349017 Schott Feb 2002 B1
6373660 Lam et al. Apr 2002 B1
6378195 Carlson Apr 2002 B1
6522504 Casey Feb 2003 B1
6538850 Hadian et al. Mar 2003 B1
6548317 Taniguchi et al. Apr 2003 B2
6583953 Han et al. Jun 2003 B1
6646832 Anaya-Dufresne et al. Nov 2003 B2
6661612 Peng Dec 2003 B1
6665146 Hawwa et al. Dec 2003 B2
6690545 Chang et al. Feb 2004 B1
6704173 Lam et al. Mar 2004 B1
6708389 Carlson et al. Mar 2004 B1
6717773 Hawwa et al. Apr 2004 B2
6721142 Meyer et al. Apr 2004 B1
6744599 Peng et al. Jun 2004 B1
6762123 Curro et al. Jul 2004 B2
6771468 Levi et al. Aug 2004 B1
6796018 Thornton Sep 2004 B1
6801402 Subrahmanyam et al. Oct 2004 B1
6856489 Hawwa et al. Feb 2005 B2
6873496 Sun et al. Mar 2005 B1
6912103 Peng et al. Jun 2005 B1
6937439 Chang et al. Aug 2005 B1
6956718 Kulkarni et al. Oct 2005 B1
6972930 Tang et al. Dec 2005 B1
7006330 Subrahmanyam et al. Feb 2006 B1
7006331 Subrahmanyam et al. Feb 2006 B1
7010847 Hadian et al. Mar 2006 B1
7019945 Peng et al. Mar 2006 B1
7027264 Subrahmanyam et al. Apr 2006 B1
7085104 Hadian et al. Aug 2006 B1
7099117 Subrahmanyam et al. Aug 2006 B1
7168608 Mei Jan 2007 B2
7174622 Meyer et al. Feb 2007 B2
7245014 Kurita et al. Jul 2007 B2
7276386 Miyata et al. Oct 2007 B2
7289299 Sun et al. Oct 2007 B1
7307816 Thornton et al. Dec 2007 B1
7315435 Pan Jan 2008 B1
7315436 Sanchez Jan 2008 B1
7372142 Ferrara et al. May 2008 B2
7414814 Pan Aug 2008 B1
7436631 Fanslau, Jr. et al. Oct 2008 B1
7463454 Mastromatteo et al. Dec 2008 B2
7474508 Li et al. Jan 2009 B1
7477486 Sun et al. Jan 2009 B1
7593190 Thornton et al. Sep 2009 B1
7595963 Chen et al. Sep 2009 B1
7601625 Noritake et al. Oct 2009 B2
7616405 Hu et al. Nov 2009 B2
7626264 Yokoyama Dec 2009 B2
7729089 Hogan Jun 2010 B1
7995310 Pan Aug 2011 B1
8018685 Shimazawa et al. Sep 2011 B2
8081400 Hu Dec 2011 B1
8087973 Sladek et al. Jan 2012 B1
8089730 Pan et al. Jan 2012 B1
8164858 Moravec et al. Apr 2012 B1
8199437 Sun et al. Jun 2012 B1
8208224 Teo et al. Jun 2012 B1
8218268 Pan Jul 2012 B1
8240545 Wang et al. Aug 2012 B1
8254212 Snyder et al. Aug 2012 B2
8256272 Roajanasiri et al. Sep 2012 B1
8295012 Tian et al. Oct 2012 B1
8295013 Pan et al. Oct 2012 B1
8295014 Teo et al. Oct 2012 B1
8320084 Shum et al. Nov 2012 B1
8325446 Liu et al. Dec 2012 B1
8325447 Pan Dec 2012 B1
8339742 Sladek et al. Dec 2012 B1
8339747 Hales et al. Dec 2012 B1
8339748 Shum et al. Dec 2012 B2
8343363 Pakpum et al. Jan 2013 B1
8345519 Pan Jan 2013 B1
8418353 Moravec et al. Apr 2013 B1
8441896 Wang et al. May 2013 B2
8446694 Tian et al. May 2013 B1
8456643 Prabhakaran et al. Jun 2013 B2
8456776 Pan Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8462462 Moravec et al. Jun 2013 B1
8477459 Pan Jul 2013 B1
8485579 Roajanasiri et al. Jul 2013 B2
8488279 Pan et al. Jul 2013 B1
8488281 Pan Jul 2013 B1
8490211 Leary Jul 2013 B1
8514522 Pan et al. Aug 2013 B1
8532157 Cole et al. Sep 2013 B2
8533936 Puttichaem et al. Sep 2013 B1
8545164 Choumwong et al. Oct 2013 B2
8553365 Shapiro et al. Oct 2013 B1
8587901 Puttichaem et al. Nov 2013 B1
8593764 Tian et al. Nov 2013 B1
8599653 Mallary et al. Dec 2013 B1
8605389 Pan et al. Dec 2013 B1
8611050 Moravec et al. Dec 2013 B1
8611052 Pan et al. Dec 2013 B1
8623197 Kobsiriphat et al. Jan 2014 B1
8624184 Souza et al. Jan 2014 B1
8665566 Pan et al. Mar 2014 B1
8665567 Shum et al. Mar 2014 B2
8665677 Panitchakan et al. Mar 2014 B1
8665690 Moravec et al. Mar 2014 B1
8693144 Pan et al. Apr 2014 B1
8756795 Moravec et al. Jun 2014 B1
8758083 Rudy et al. Jun 2014 B1
8760812 Chen et al. Jun 2014 B1
8770463 Puttichaem et al. Jul 2014 B1
8773664 Wang et al. Jul 2014 B1
8792212 Pan et al. Jul 2014 B1
8792213 Vijay et al. Jul 2014 B1
8797691 Tian et al. Aug 2014 B1
9070387 Demtchouk Jun 2015 B1
20060157441 Arya et al. Jul 2006 A1
20060158784 Arya et al. Jul 2006 A1
20110205860 Chou et al. Aug 2011 A1
20120163138 Gage et al. Jun 2012 A1
20130016591 Tomikawa et al. Jan 2013 A1
20130244541 Yaemglin et al. Sep 2013 A1
20130270232 Shimazawa et al. Oct 2013 A1
20130277863 Zhong et al. Oct 2013 A1
20130279311 Hurley et al. Oct 2013 A1
20130293982 Huber Nov 2013 A1
Foreign Referenced Citations (1)
Number Date Country
05190973 Jul 1993 JP
Non-Patent Literature Citations (2)
Entry
Schulte, et al. “Characterization of a novel fluxless surface preparation process for die interconnect bonding”, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, (May 29-Jun. 1, 2012), pp. 26-30.
Zhou et al., “Au/Sn Alloy and Its Applications in Electronics Packaging,” Coining, Inc., http://www.coininginc.com/files/admin/english—gold—tin—paper—pdf, downloaded on Feb. 4, 2015, pp. 1-7.