The present invention relates generally to photovoltaic materials and manufacturing method. More particularly, the present invention provides a method and structure for manufacture of thin film photovoltaic cells. Merely by way of example, the present method and materials include absorber materials made of copper indium disulfide species, copper tin sulfide, iron disulfide, or others for single junction cells or multi junction cells.
From the beginning of time, mankind has been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important energy source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, the supply of petrochemical fuel is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more people use petroleum products in growing amounts, it is rapidly becoming a scarce resource, which will eventually become depleted over time.
More recently, environmentally clean and renewable sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the flow of water produced by dams such as the Hoover Dam in Nevada. The electric power generated is used to power a large portion of the city of Los Angeles in California. Clean and renewable sources of energy also include wind, waves, biomass, and the like. That is, windmills convert wind energy into more useful forms of energy such as electricity. Still other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.
Solar energy technology generally converts electromagnetic radiation from the sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a point, many limitations remain to be resolved before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which are derived from semiconductor material ingots. These crystalline materials can be used to fabricate optoelectronic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are often costly and difficult to make on a large scale. Additionally, devices made from such crystalline materials often have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical power. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. Often, thin films are difficult to mechanically integrate with each other. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.
From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.
According to embodiments of the present invention, a method and a structure for forming thin film semiconductor materials for photovoltaic applications are provided. More particularly, the present invention provides a method and structure for forming thin film semiconductor materials used for manufacturing photovoltaic cells. Merely by way of example, the present method and materials include absorber materials made of copper indium disulfide species, copper tin sulfide, iron disulfide, or others for single junction cells or multi junction cells.
In a specific embodiment, a method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate including a surface region. A first electrode layer is formed overlying the surface region. The method includes forming a copper layer overlying the first electrode layer and forming an indium layer overlying the copper layer to form a multi-layered structure. In a specific embodiment, the method includes subjecting at least the multi-layered structure to a thermal treatment process in an environment containing sulfur bearing species and forming a bulk copper indium disulfide material from at least the treatment process of the multi-layered structure. In a specific embodiment, the method forms a bulk copper indium disulfide material from at least the treatment process of the multi-layered structure. The bulk copper indium disulfide material having a surface region characterized by a copper poor surface region comprising a copper to indium atomic ratio of less than about 0.95:1. In a specific embodiment, the copper poor surface region has n-type impurity characteristics. In a specific embodiment, the bulk copper indium disulfide material excluding the copper poor surface region forms an absorber region and the copper poor surface region forming at least a portion of a window region for the photovoltaic cell. In a specific embodiment, the method includes forming a high resistivity transparent material overlying the copper poor surface region having the n-type impurity characteristics. The high resistivity transparent layer uses a semiconductor material having an intrinsic semiconductor characteristic in a specific embodiment. A second electrode layer is formed overlying the high resistivity transparent layer.
In an alternative embodiment, a thin film photovoltaic device is provided. The thin film photovoltaic device includes a substrate comprising a surface region. The thin film photovoltaic device includes a first electrode layer overlying the surface region. A chalcopyrite material including a chalcopyrite material surface region overlies the first electrode layer. In a specific embodiment, the chalcopyrite material includes a copper indium disulfide material and a copper poor copper indium disulfide surface region. The copper poor copper indium disulfide surface region has an atomic ratio of Cu:In of about 0.99 and less and has an n type impurity characteristics. In a specific embodiment, the copper poor copper indium disulfide surface region provides for a window layer for the photovoltaic device. The thin film photovoltaic device also includes a second electrode layer overlying the window layer.
In a yet alternative embodiment, a thin film photovoltaic device is provided. The thin film photovoltaic device includes a substrate including a surface region. A first electrode layer overlies the surface region. The thin film photovoltaic device includes an absorber region overlying the first electrode layer. In a specific embodiment, the absorber region includes a bulk copper indium disulfide material. The thin film photovoltaic device includes a window region comprising a surface region of the bulk copper indium disulfide material. The surface region of the bulk copper indium disulfide material is characterized by a copper poor surface region having a copper to indium atomic ratio of less than about 0.95:1. In a specific embodiment, the copper poor surface region having n-type impurity characteristics. The thin film photovoltaic device may include a high resistivity transparent material overlying the copper poor surface region having the n-type impurity characteristics. The high resistivity transparent layer includes a semiconductor material having an intrinsic semiconductor characteristic. The thin film photovoltaic device includes a second electrode layer overlying the high resistivity transparent layer. The second electrode layer includes a zinc oxide material having p-type impurity characteristics in a specific embodiment.
Many benefits are achieved by ways of present invention. For example, the present invention uses starting materials that are commercially available to form a thin film of semiconductor bearing material overlying a suitable substrate member. The thin film of semiconductor bearing material can be further processed to form a semiconductor thin film material of desired characteristics, such as atomic stoichiometry, impurity concentration, carrier concentration, doping, and others. In a specific embodiment, the thin film semiconductor material can be provided using a copper indium disulfide material. In a specific embodiment, the copper indium disulfide material is characterized by a bandgap of about 1.55 eV. Additionally, embodiments according to the present invention use environmentally friendly materials that are relatively less toxic than other thin-film photovoltaic materials. In a preferred embodiment, the present method and resulting structure is substantially free from a parasitic junction on an absorber layer based upon a copper poor chalcopyrite material. In a specific embodiment, the present method uses the copper poor chalcopyrite material, which has an n type impurity characteristics, as a window layer for the photovoltaic cell. Also in a preferred embodiment, the open circuit voltage of the chalcopyrite material such as copper indium disulfide ranges from about 0.8 volts and greater and preferably 0.9 volts and greater or 1.0 volts and greater up to 1.2 volts. Depending on the embodiment, one or more of the benefits can be achieved. These and other benefits will be described in more detailed throughout the present specification and particularly below.
Merely by way of example, the present method and materials include absorber materials made of copper indium disulfide species, copper tin sulfide, iron disulfide, or others for single junction cells or multi junction cells.
According to embodiments of the present invention, a method and a structure for forming semiconductor materials for photovoltaic applications are provided. More particularly, the present invention provides a method for manufacturing thin film photovoltaic devices. Merely by way of example, the method has been used to provide a copper indium disulfide thin film material for high efficiency solar cell application. But it would be recognized that the present invention has a much broader range of applicability, for example, embodiments of the present invention may be used to form other semiconducting thin films or multi layers comprising iron sulfide, cadmium sulfide, zinc selenide, and others, and metal oxides such as zinc oxide, iron oxide, copper oxide, and others.
In a preferred embodiment, the method includes forming a barrier layer 125 overlying the first electrode layer to form an interface region between the first electrode layer and the copper layer. In a specific embodiment, the interface region is maintained substantially free from metal disulfide layer having a semiconductor characteristic that is different from the copper indium disulfide material during later processing steps. Depending upon the embodiment, the barrier layer has suitable conductive characteristics and can be reflective to allow electromagnetic radiation to reflect back or can also be transparent or the like. In a specific embodiment, the barrier layer is selected from platinum, titanium, chromium, or silver. Of course, there can be other variations, modifications, and alternatives.
According to embodiments of the present invention,
In a specific embodiment, the sulfur can be provided as a layer overlying the indium and copper layers or copper and indium layers. In a specific embodiment, the sulfur material is provided as a thin layer or patterned layer. Depending upon the embodiment, the sulfur can be provided as a slurry, powder, solid material, gas, paste, or other suitable form. Of course, there can be other variations, modifications, and alternatives.
Referring to the
Subsequently, a window layer 310 is formed overlying the p-type copper indium disulfide material 320. The window layer 310 can be selected from a group materials consisting of a cadmium sulfide (CdS), a zinc sulfide (ZnS), zinc selenium (ZnSe), zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), or others and may be doped with impurities for conductivity, e.g., n+-type. The window layer 310 is intended to serve another part of a PN junction associated with a photovoltaic cell. Therefore, the window layer 310, during or after its formation, is heavily doped to form an n+-type semiconductor layer. In one example, indium species are used as the doping material to cause formation of the n+-type characteristic associated with the window layer 310. In another example, the doping process is performed using suitable conditions. In a specific embodiment, ZnO window layer that is doped with aluminum can range from about 200 to 500 nanometers. Of course, there can be other variations, modifications, and alternative
In a preferred embodiment, the present method maintains an interface region between the first electrode layer overlying the surface region and the copper indium disulfide material substantially free from a metal disulfide layer having different semiconductor characteristics from the copper indium disulfide material. Depending upon the type of first electrode material, the metal disulfide layer is selected from molybdenum disulfide layer or the like. In a specific embodiment, the interface region is characterized by a surface morphology substantially preventing any formation of the metal disulfide layer, which is characterized by a thickness of about 5 to 10 nanometers. In a preferred embodiment, the present method includes a thermal process during at least the maintaining process or a portion of the maintaining process of at least 300 Degrees Celsius and greater to prevent any formation of the metal disulfide layer, which can be the molybdenum disulfide or like layer. Of course, there can be other variations, modifications, and alternatives.
In a specific embodiment, the present invention provides a method for forming a thin film photovoltaic device, which is outlined below.
The above sequence of steps provides a method according to an embodiment of the present invention. In a specific embodiment, the present invention provides a method and resulting photovoltaic structure using a copper poor surface region for the window layer and free from parasitic junction regions in the absorber layer. Other alternatives can also be provided where steps are added, one or more steps are removed, or one or more steps are provided in a different sequence without departing from the scope of the claims herein. Details of the present method and structure can be found throughout the present specification and more particularly below.
In a specific embodiment, the photovoltaic device includes a chalcopyrite material, which acts as an absorber 905 for the photovoltaic device. As shown, the chalcopyrite material can include, among others, copper indium disulfide material, copper indium aluminum disulfide, copper indium gallium disulfide, combinations of these, and others. In a specific embodiment, the chalcopyrite material is copper rich, or alternatively copper poor and characterized by one or more portions having a copper to indium atomic ratio of 0.99:1 and less or 0.95:1 and less. In a preferred embodiment, the copper indium disulfide material has one or more copper poor regions, which are preferably compensated using an ionic species. Of course, there can be other variations, modifications, and alternatives. In a specific embodiment, the chalcopyrite has a thin layer of copper sulfide 907, which has been previously described, as may remain as a residue or fixed material when the bulk material is copper rich. Of course, there can be other variations, modifications, and alternatives.
Referring to
Depending on the embodiment, the copper poor surface region may have defects such as one or more pin holes in a thickness of the copper poor surface region. In a specific embodiment, the method includes forming an optional high resistivity transparent (HRT) layer 1003 overlying the copper poor surface region, which has n-type impurity characteristics. The HRT layer can use an intrinsic semiconductor material that forms a second transparent conductive oxide 1005 in a specific embodiment. For example, for an aluminum doped zinc oxide material as the second transparent conductive oxide, the HRT layer can use an intrinsic zinc oxide material. In an alternative embodiment, the HRT layer may be an intrinsic semiconductor material that forms a window layer for the photovoltaic cell. For example, for a CIGS based photovoltaic device using an n-type cadmium sulfide material as a window, the HRT layer may use an intrinsic cadmium sulfide material, but can be other materials. Of course one skilled in the art would recognize other variations, modifications, and alternatives. In an implementation of the present invention, the HRT layer used intrinsic zinc oxide material or intrinsic tin oxide material having a doping level between about 1×1011 and about 1×1013 cm−3. The HRT layer can have a thickness between about 100 nm and 1000 nm and a resistance between 1 ohm/square and 0.0001 ohm/square. As merely an example, the second transparent conductive oxide material and the corresponding HRT layer can include tin doped indium oxide, indium oxide, fluorine doped tin oxide, tin oxide, AZO, and others. In a specific embodiment, the highly resistive material protects against pin holes, and other potential defects, and the like. Of course, there can be other variations, modifications, and alternatives.
Although the above has been illustrated according to specific embodiments, there can be other modifications, alternatives, and variations. Embodiments of the present invention can be applied in a method for forming high efficiency photovoltaic cells described in U.S. patent application Ser. No. 12/475,858 filed by inventor Howard W. H. Lee on Jun. 1, 2009 and be applied in a method and structure for forming thin film tandem photovoltaic cell described in U.S. patent application Ser. No. 12/562,086 filed by inventor Howard W. H. Lee on Sep. 17, 2009, commonly assigned and incorporated by reference herein for all purposes. Additionally, although the above has been described in terms of copper indium disulfide, other like materials such as copper indium gallium disulfide, copper indium aluminum disulfide, combinations thereof, and others can be used. Other materials may include CuGaS2, CuInSe2 (CIS), Cu(InGa)Se2 (CIGS), Cu(InAl)Se2, Cu(In,Ga)SSe, combinations of these, and the like. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 61/116,625, filed Nov. 20, 2008, entitled “METHOD AND STRUCTURE FOR THIN FILM PHOTOVOLTAIC CELL USING SIMILAR MATERIAL JUNCTION” by inventor Howard W. H. Lee, commonly assigned and incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3520732 | Nakayama et al. | Jul 1970 | A |
3828722 | Reuter et al. | Aug 1974 | A |
3975211 | Shirland | Aug 1976 | A |
4062038 | Cuomo et al. | Dec 1977 | A |
4263336 | Thompson et al. | Apr 1981 | A |
4332974 | Fraas | Jun 1982 | A |
4335266 | Mickelsen et al. | Jun 1982 | A |
4441113 | Madan | Apr 1984 | A |
4442310 | Carlson et al. | Apr 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4465575 | Love et al. | Aug 1984 | A |
4471155 | Mohr et al. | Sep 1984 | A |
4499658 | Lewis | Feb 1985 | A |
4507181 | Nath et al. | Mar 1985 | A |
4517403 | Morel et al. | May 1985 | A |
4518855 | Malak | May 1985 | A |
4532372 | Nath et al. | Jul 1985 | A |
4542255 | Tanner et al. | Sep 1985 | A |
4581108 | Kapur et al. | Apr 1986 | A |
4589194 | Roy | May 1986 | A |
4598306 | Nath et al. | Jul 1986 | A |
4599154 | Bender et al. | Jul 1986 | A |
4611091 | Choudary et al. | Sep 1986 | A |
4623601 | Lewis et al. | Nov 1986 | A |
4625070 | Berman et al. | Nov 1986 | A |
4638111 | Gay | Jan 1987 | A |
4661370 | Tarrant | Apr 1987 | A |
4663495 | Berman et al. | May 1987 | A |
4705912 | Nakashima et al. | Nov 1987 | A |
4724011 | Turner et al. | Feb 1988 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4751149 | Vijayakumar et al. | Jun 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4793283 | Sarkozy | Dec 1988 | A |
4798660 | Ermer et al. | Jan 1989 | A |
4816082 | Guha et al. | Mar 1989 | A |
4816420 | Bozler et al. | Mar 1989 | A |
4837182 | Bozler et al. | Jun 1989 | A |
4865999 | Xi et al. | Sep 1989 | A |
4873118 | Elias et al. | Oct 1989 | A |
4915745 | Pollock et al. | Apr 1990 | A |
4950615 | Basol et al. | Aug 1990 | A |
4968354 | Nishiura et al. | Nov 1990 | A |
4996108 | Divigalpitiya et al. | Feb 1991 | A |
5008062 | Anderson et al. | Apr 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5028274 | Basol et al. | Jul 1991 | A |
5039353 | Schmitt | Aug 1991 | A |
5045409 | Eberspacher et al. | Sep 1991 | A |
5069727 | Kouzuma et al. | Dec 1991 | A |
5078803 | Pier et al. | Jan 1992 | A |
5125984 | Kruehler et al. | Jun 1992 | A |
5133809 | Sichanugrist et al. | Jul 1992 | A |
5137835 | Karg | Aug 1992 | A |
5154777 | Blackmon et al. | Oct 1992 | A |
5180686 | Banerjee et al. | Jan 1993 | A |
5211824 | Knapp | May 1993 | A |
5217564 | Bozler et al. | Jun 1993 | A |
5231047 | Ovshinsky et al. | Jul 1993 | A |
5248345 | Sichanugrist et al. | Sep 1993 | A |
5259883 | Yamabe et al. | Nov 1993 | A |
5261968 | Jordan | Nov 1993 | A |
5298086 | Guha et al. | Mar 1994 | A |
5336623 | Sichanugrist et al. | Aug 1994 | A |
5346853 | Guha et al. | Sep 1994 | A |
5397401 | Toma et al. | Mar 1995 | A |
5445847 | Wada | Aug 1995 | A |
5474939 | Pollock et al. | Dec 1995 | A |
5501744 | Albright et al. | Mar 1996 | A |
5512107 | Van den Berg | Apr 1996 | A |
5528397 | Zavracy et al. | Jun 1996 | A |
5536333 | Foote et al. | Jul 1996 | A |
5578103 | Araujo et al. | Nov 1996 | A |
5578503 | Karg et al. | Nov 1996 | A |
5622634 | Noma et al. | Apr 1997 | A |
5626688 | Probst et al. | May 1997 | A |
5665175 | Safir | Sep 1997 | A |
5676766 | Probst et al. | Oct 1997 | A |
5726065 | Szlufcik et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5858819 | Miyasaka | Jan 1999 | A |
5868869 | Albright et al. | Feb 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981868 | Kushiya et al. | Nov 1999 | A |
5985691 | Basol et al. | Nov 1999 | A |
6040521 | Kushiya et al. | Mar 2000 | A |
6048442 | Kushiya et al. | Apr 2000 | A |
6092669 | Kushiya et al. | Jul 2000 | A |
6107562 | Hashimoto et al. | Aug 2000 | A |
6127202 | Kapur et al. | Oct 2000 | A |
6160215 | Curtin | Dec 2000 | A |
6166319 | Matsuyama | Dec 2000 | A |
6172297 | Hezel et al. | Jan 2001 | B1 |
6258620 | Morel et al. | Jul 2001 | B1 |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6307148 | Takeuchi et al. | Oct 2001 | B1 |
6328871 | Ding et al. | Dec 2001 | B1 |
RE37512 | Szlufcik et al. | Jan 2002 | E |
6361718 | Shinmo et al. | Mar 2002 | B1 |
6372538 | Wendt et al. | Apr 2002 | B1 |
6423565 | Barth et al. | Jul 2002 | B1 |
6632113 | Noma et al. | Oct 2003 | B1 |
6635307 | Huang et al. | Oct 2003 | B2 |
6653701 | Yamazaki et al. | Nov 2003 | B1 |
6667492 | Kendall | Dec 2003 | B1 |
6690041 | Armstrong et al. | Feb 2004 | B2 |
6692820 | Forrest et al. | Feb 2004 | B2 |
6784492 | Morishita | Aug 2004 | B1 |
6852920 | Sager et al. | Feb 2005 | B2 |
6878871 | Scher et al. | Apr 2005 | B2 |
6974976 | Hollars | Dec 2005 | B2 |
7122398 | Pichler | Oct 2006 | B1 |
7179677 | Ramanathan et al. | Feb 2007 | B2 |
7194197 | Wendt et al. | Mar 2007 | B1 |
7220321 | Barth et al. | May 2007 | B2 |
7235736 | Buller et al. | Jun 2007 | B1 |
7252923 | Kobayashi | Aug 2007 | B2 |
7265037 | Yang et al. | Sep 2007 | B2 |
7319190 | Tuttle | Jan 2008 | B2 |
7364808 | Sato et al. | Apr 2008 | B2 |
7441413 | Bae et al. | Oct 2008 | B2 |
7442413 | Zwaap et al. | Oct 2008 | B2 |
7544884 | Hollars | Jun 2009 | B2 |
7736755 | Igarashi et al. | Jun 2010 | B2 |
7741560 | Yonezawa | Jun 2010 | B2 |
7855089 | Farris, III et al. | Dec 2010 | B2 |
7863074 | Wieting | Jan 2011 | B2 |
7910399 | Wieting | Mar 2011 | B1 |
7955891 | Wieting | Jun 2011 | B2 |
7960204 | Lee | Jun 2011 | B2 |
7993954 | Wieting | Aug 2011 | B2 |
7993955 | Wieting | Aug 2011 | B2 |
7998762 | Lee et al. | Aug 2011 | B1 |
8003430 | Lee | Aug 2011 | B1 |
8008110 | Lee | Aug 2011 | B1 |
8008111 | Lee | Aug 2011 | B1 |
8008112 | Lee | Aug 2011 | B1 |
8017860 | Lee | Sep 2011 | B2 |
8026122 | Lee | Sep 2011 | B1 |
8142521 | Wieting | Mar 2012 | B2 |
8168463 | Wieting | May 2012 | B2 |
8178370 | Lee et al. | May 2012 | B2 |
8183066 | Lee et al. | May 2012 | B2 |
20020002992 | Kariya et al. | Jan 2002 | A1 |
20020004302 | Fukumoto et al. | Jan 2002 | A1 |
20020061361 | Nakahara et al. | May 2002 | A1 |
20020063065 | Sonoda et al. | May 2002 | A1 |
20030075717 | Kondo et al. | Apr 2003 | A1 |
20030089899 | Lieber et al. | May 2003 | A1 |
20030188777 | Gaudiana et al. | Oct 2003 | A1 |
20030230338 | Menezes | Dec 2003 | A1 |
20040063320 | Hollars | Apr 2004 | A1 |
20040084080 | Sager et al. | May 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040110393 | Munzer et al. | Jun 2004 | A1 |
20040187917 | Pichler | Sep 2004 | A1 |
20040245912 | Thurk et al. | Dec 2004 | A1 |
20040252488 | Thurk | Dec 2004 | A1 |
20040256001 | Mitra et al. | Dec 2004 | A1 |
20050074915 | Tuttle et al. | Apr 2005 | A1 |
20050098205 | Roscheisen et al. | May 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050164432 | Lieber et al. | Jul 2005 | A1 |
20050194036 | Basol | Sep 2005 | A1 |
20050287717 | Heald et al. | Dec 2005 | A1 |
20060034065 | Thurk | Feb 2006 | A1 |
20060040103 | Whiteford et al. | Feb 2006 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060096536 | Tuttle | May 2006 | A1 |
20060096537 | Tuttle | May 2006 | A1 |
20060096635 | Tuttle | May 2006 | A1 |
20060102230 | Tuttle | May 2006 | A1 |
20060112983 | Parce et al. | Jun 2006 | A1 |
20060130890 | Hantschel et al. | Jun 2006 | A1 |
20060160261 | Sheats et al. | Jul 2006 | A1 |
20060174932 | Usui et al. | Aug 2006 | A1 |
20060219288 | Tuttle | Oct 2006 | A1 |
20060219547 | Tuttle | Oct 2006 | A1 |
20060220059 | Satoh et al. | Oct 2006 | A1 |
20060249202 | Yoo et al. | Nov 2006 | A1 |
20060267054 | Martin et al. | Nov 2006 | A1 |
20070006914 | Lee | Jan 2007 | A1 |
20070089782 | Scheuten et al. | Apr 2007 | A1 |
20070116892 | Zwaap | May 2007 | A1 |
20070116893 | Zwaap | May 2007 | A1 |
20070151596 | Nasuno et al. | Jul 2007 | A1 |
20070163643 | Van Duren et al. | Jul 2007 | A1 |
20070169810 | Van Duren et al. | Jul 2007 | A1 |
20070193623 | Krasnov | Aug 2007 | A1 |
20070209700 | Yonezawa et al. | Sep 2007 | A1 |
20070264488 | Lee | Nov 2007 | A1 |
20070283998 | Kuriyagawa et al. | Dec 2007 | A1 |
20070289624 | Kuriyagawa et al. | Dec 2007 | A1 |
20080029154 | Milshtein et al. | Feb 2008 | A1 |
20080032044 | Kuriyagawa et al. | Feb 2008 | A1 |
20080041446 | Wu et al. | Feb 2008 | A1 |
20080057616 | Robinson et al. | Mar 2008 | A1 |
20080092945 | Munteanu et al. | Apr 2008 | A1 |
20080092953 | Lee | Apr 2008 | A1 |
20080092954 | Choi | Apr 2008 | A1 |
20080105294 | Kushiya et al. | May 2008 | A1 |
20080110491 | Buller et al. | May 2008 | A1 |
20080110495 | Onodera et al. | May 2008 | A1 |
20080121264 | Chen et al. | May 2008 | A1 |
20080121277 | Robinson et al. | May 2008 | A1 |
20080204696 | Kamijima | Aug 2008 | A1 |
20080210303 | Lu et al. | Sep 2008 | A1 |
20080280030 | Van Duren et al. | Nov 2008 | A1 |
20090021157 | Kim et al. | Jan 2009 | A1 |
20090087940 | Kushiya | Apr 2009 | A1 |
20090087942 | Meyers | Apr 2009 | A1 |
20090145746 | Hollars | Jun 2009 | A1 |
20090217969 | Matsushima et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090235983 | Girt et al. | Sep 2009 | A1 |
20090235987 | Akhtar et al. | Sep 2009 | A1 |
20090293945 | Peter | Dec 2009 | A1 |
20100081230 | Lee | Apr 2010 | A1 |
20100087016 | Britt et al. | Apr 2010 | A1 |
20100087026 | Winkeler et al. | Apr 2010 | A1 |
20100096007 | Mattmann et al. | Apr 2010 | A1 |
20100101648 | Morooka et al. | Apr 2010 | A1 |
20100101649 | Huignard et al. | Apr 2010 | A1 |
20100197051 | Schlezinger et al. | Aug 2010 | A1 |
20100210064 | Hakuma et al. | Aug 2010 | A1 |
20100233386 | Krause et al. | Sep 2010 | A1 |
20100267190 | Hakuma et al. | Oct 2010 | A1 |
20110070682 | Wieting | Mar 2011 | A1 |
20110070683 | Wieting | Mar 2011 | A1 |
20110070684 | Wieting | Mar 2011 | A1 |
20110070685 | Wieting | Mar 2011 | A1 |
20110070686 | Wieting | Mar 2011 | A1 |
20110070687 | Wieting | Mar 2011 | A1 |
20110070688 | Wieting | Mar 2011 | A1 |
20110070689 | Wieting | Mar 2011 | A1 |
20110070690 | Wieting | Mar 2011 | A1 |
20110073181 | Wieting | Mar 2011 | A1 |
20110277837 | Lee | Nov 2011 | A1 |
20110287575 | Lee | Nov 2011 | A1 |
20110287576 | Lee | Nov 2011 | A1 |
20120094432 | Wieting | Apr 2012 | A1 |
20120122304 | Wieting | May 2012 | A1 |
Number | Date | Country |
---|---|---|
19987865198 | Feb 1999 | AU |
200140599 | Aug 2001 | AU |
3314197 | Nov 1983 | DE |
10104726 | Aug 2002 | DE |
102005062977 | Sep 2007 | DE |
2646560 | Nov 1990 | FR |
2124826 | Feb 1984 | GB |
2000173969 | Jun 2000 | JP |
2000219512 | Aug 2000 | JP |
2002167695 | Jun 2002 | JP |
2002270871 | Sep 2002 | JP |
2002299670 | Oct 2002 | JP |
2004332043 | Nov 2004 | JP |
2005311292 | Nov 2005 | JP |
WO 0157932 | Aug 2001 | WO |
WO 2005011002 | Feb 2005 | WO |
WO 2006126598 | Nov 2006 | WO |
WO 2007022221 | Feb 2007 | WO |
WO 2007077171 | Jul 2007 | WO |
WO 2008025326 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100122726 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61116625 | Nov 2008 | US |