The present invention relates generally to photovoltaic techniques. More particularly, the present invention provides a method and structure for tiling solar devices to a transparent cover plate. Merely by example, embodiments of the present invention are applied to laminate two or more industrial-sized solar panels based on thin-film photovoltaic materials including copper indium diselenide species (CIS), copper indium gallium diselenide species (CIGS), and/or others.
From the beginning of time, mankind has been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important energy source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, the supply of petrochemical fuel is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more people use petroleum products in growing amounts, it is rapidly becoming a scarce resource, which will eventually become depleted over time.
More recently, environmentally clean and renewable sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the flow of water produced by dams such as the Hoover Dam in Nevada. The electric power generated is used to power a large portion of the city of Los Angeles in California. Clean and renewable sources of energy also include wind, waves, biomass, and the like. That is, windmills convert wind energy into more useful forms of energy such as electricity. Still other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.
Solar energy technology generally converts electromagnetic radiation from the sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a point, many limitations remain to be resolved before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which are derived from semiconductor material ingots. These crystalline materials can be used to fabricate optoelectronic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are often costly and difficult to make on a large scale. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical power. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. Often, thin films are difficult to mechanically integrate with each other. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.
The present invention relates generally to photovoltaic techniques. More particularly, the present invention provides a method and structure for tiling two or more solar devices to a transparent cover plate. Merely by example, the present invention is applied to laminate two or more thin-film solar devices having sizes of about 165 cm or greater.
According to an embodiment, the present invention provides a method for integrating photovoltaic module. The method includes providing a cover plate having a first surface and a second surface opposed to the first surface. The method further includes supplying two or more solar devices respectively formed on substrates. Each of the two or more photovoltaic devices includes a plurality of photovoltaic cells electrically coupled to each other. Each cell is characterized by a thin-film photovoltaic layer sandwiched between a first electrode material and a second electrode material. The first electrode material overlies the substrate and the second electrode material overlies the thin-film photovoltaic layer. Additionally, the method includes disposing the two or more solar devices side by side to laminate with the cover plate by means of a first organic material filled between the second electrode material and the second surface. Each of the two or more solar devices has a peripheral edge region being sealed by a second organic material. Furthermore, the method includes electrically coupling the two or more solar devices to each other.
In an alternative embodiment, the present invention provides a structure for tiling thin-film solar devices. The structure includes a cover plate with at least a dimension of about 165 cm and greater in one direction including a front surface and a rear surface opposed to the front surface. Additionally, the structure includes two or more solar devices laminated side by side to the rear surface and electrically coupled to each other by a ribbon connector. Each of the two or more solar devices includes a plurality of thin-film photovoltaic cells overlying a substrate. Each of the thin-film photovoltaic cells has a stripe shaped pattern in parallel to each other.
It is to be appreciated that the present invention provides numerous benefits over conventional techniques. Among other things, the method and structure provided in the present invention are compatible but scaled to very large industrial panels from conventional modules, which allow cost effective implementation of new generation integrated thin-film photovoltaic modules into large scale commercial applications. The integrated solar module laminates two or more thin-film photovoltaic devices to a common cover plate. This effective enhances the power capacity of the solar module by extending either circuit current delivered from the entire module or the voltage level for coupling with outside electric contacts. Physically, each of the two or more thin-film solar devices can have a dimension of 65 cm times 165 cm and be disposed side by side onto a hardened glass plate having a dimension of 165 cm or greater in one direction. The encapsulation of the integrated module is compatible with stand alone module, so that additional cost saving in packaging process and material can be achieved by implementation of current invention. Additionally, scale up the stand alone thin-film solar device and their integration provide high quality with reduced cost but enhanced overall efficiency over 11%. There are other benefits as well.
Referring to
As shown in
Additionally, the two or more solar devices 301 and 303 are inter-coupled electrically while being laminated together to the cover plate 100 to form an integrated thin-film photovoltaic module. The electric coupling between any two neighboring solar devices attached to the cover plate can be electrical in parallel or in series, allowing the integrated thin-film photovoltaic module to support higher electric current capacity or voltage power level. In an embodiment, these electric coupling is achieved by means of a common conductor 400 disposed along an edge of the integrated thin-film photovoltaic module and a plurality of ribbon conductor 402 to connect from the two or more solar devices 301 and 303 to the common conductor 400. In particular, one ribbon conductor 402 may couple to the upper-electrode of a solar device while another ribbon conductor 403 may couple to the lower-electrode of the same solar device. In another embodiment, one ribbon conductor may connect from the upper-electrode of a first solar device 301 to pass a hole through it including the substrate to couple with the lower-electrode of a second solar device 303 next to device 301. Respectively, another ribbon conductor coupled to the upper-electrode of the first solar device 301 or the lower-electrode of the second device 303 may be linkable to an external electric contact for collecting the current from the entire integrated thin-film module.
Referring to
In a specific embodiment, a particular class of thin-film solar devices has an absorber layer formed of a group I-III-VI semiconductor, also referred to as a chalkopyrite semiconductor. Such a semiconductor is generally of the copper indium diselenide (“CIS”) type, wherein this expression is to be understood such that indium can be partly or fully replaced by gallium and/or aluminum, and selenium can be partly or fully replaced by sulphur. The CIS type layer can further comprise a low concentration, trace, or a doping concentration of one or more further elements or compounds, in particular alkali such as sodium, potassium, rubidium, cesium, and/or francium, or alkali compounds. The concentration of such further constituents is typically 5 wt % or less, preferably 3 wt % or less. The CIS layer 2020 can be formed by sputter deposition of a sequence of layers comprising the metal constituents of the CIS layer, followed by a programmed thermal annealing processing with an environment containing Selenium vapor species and/or additionally sulfide species. A preferred process has been described in U.S. Patent Application No. 61/178,459 titled “Method and System for Selenization in Fabricating CIGS/CIS Solar Cells” filed on May 14, 2009, commonly assigned to Stion Corporation, incorporated for all purpose by reference.
On top of the CIS type layer commonly a buffer layer or window 2025 is arranged. The buffer layer can include CdS. A Cd-free inorganic layer such as Zn(O,S) possibly also including hydroxide may be used, but the buffer layer can also be omitted. It is also possible to arrange a layer of intrinsic ZnO, i.e. a ZnO layer that having a bulk resistivity higher than 1 Ohm.cm, preferably higher than 100 Ohm.cm, such as between 1 and 10×103 Ohm.cm. Preferably the layer is between 10 nm and 150 nm thick. The solar device 2000 further comprises an upper-electrode 2032 overlying the buffer layer 2025. In an example, the upper electrode layer is n-type ZnO layer appropriately doped to provide relatively low resistivity, for example, better than about 2.0×10−3 Ohm.cm, and preferably better than 1.0×10−3 Ohm.cm. The thickness of the layer 2032 ranges from 0.5 to 2 microns. In an embodiment, the thin-film solar device 2000 described above is a same class of the two or more solar devices 301 that are laminated to the cover plate for forming an integrated photovoltaic module.
It is to be appreciated that the present invention provides numerous benefits over conventional techniques. Among other things, the method and structure provided in the present invention are compatible, but scaled to very large industrial panels from conventional modules, which allow cost effective implementation of new generation integrated thin-film photovoltaic modules into large scale commercial applications. The integrated solar module laminates two or more thin-film photovoltaic devices to a common cover plate. This effective enhances the power capacity of the solar module by extending either circuit current delivered from the entire module or the voltage level for coupling with outside electric contacts. Physically, each of the two or more thin-film solar devices can have a dimension of 65 cm times 165 cm and be disposed side by side onto a hardened glass plate having a dimension of 165 cm or greater in one direction. The encapsulation of the integrated module is compatible with stand alone module, so that additional cost saving in packaging process and material can be achieved by implementation of current invention. Additionally, scale up the stand alone thin-film solar device and their integration provide high quality with reduced cost but enhanced overall efficiency over 11%.
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggest to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 61/297,661, filed Jan. 22, 2010, entitled “Method and Structure for Tiling Industrial Thin-Film Solar Devices” by inventor Robert D. Wieting, commonly assigned and incorporated by reference herein for all purposes
Number | Name | Date | Kind |
---|---|---|---|
3520732 | Nakayama et al. | Jul 1970 | A |
3828722 | Reuter et al. | Aug 1974 | A |
3975211 | Shirland | Aug 1976 | A |
4062038 | Cuomo et al. | Dec 1977 | A |
4204933 | Barlow et al. | May 1980 | A |
4213781 | Noreika et al. | Jul 1980 | A |
4239553 | Barnett et al. | Dec 1980 | A |
4263336 | Thompson et al. | Apr 1981 | A |
4287382 | French | Sep 1981 | A |
4332974 | Fraas | Jun 1982 | A |
4335266 | Mickelsen et al. | Jun 1982 | A |
4347436 | Fukuda et al. | Aug 1982 | A |
4441113 | Madan | Apr 1984 | A |
4442310 | Carlson et al. | Apr 1984 | A |
4461922 | Gay et al. | Jul 1984 | A |
4465575 | Love et al. | Aug 1984 | A |
4471155 | Mohr et al. | Sep 1984 | A |
4499658 | Lewis | Feb 1985 | A |
4502225 | Lin | Mar 1985 | A |
4507181 | Nath et al. | Mar 1985 | A |
4517403 | Morel et al. | May 1985 | A |
4518855 | Malak | May 1985 | A |
4542255 | Tanner et al. | Sep 1985 | A |
4581108 | Kapur et al. | Apr 1986 | A |
4589194 | Roy | May 1986 | A |
4598306 | Nath et al. | Jul 1986 | A |
4599154 | Bender et al. | Jul 1986 | A |
4611091 | Choudary et al. | Sep 1986 | A |
4612411 | Wieting et al. | Sep 1986 | A |
4623601 | Lewis et al. | Nov 1986 | A |
4625070 | Berman et al. | Nov 1986 | A |
4638111 | Gay | Jan 1987 | A |
4661370 | Tarrant | Apr 1987 | A |
4663495 | Berman et al. | May 1987 | A |
4705912 | Nakashima et al. | Nov 1987 | A |
4724011 | Turner et al. | Feb 1988 | A |
4727047 | Bozler et al. | Feb 1988 | A |
4751149 | Vijayakumar et al. | Jun 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4793283 | Sarkozy | Dec 1988 | A |
4798660 | Ermer et al. | Jan 1989 | A |
4816082 | Guha et al. | Mar 1989 | A |
4816420 | Bozler et al. | Mar 1989 | A |
4865999 | Xi et al. | Sep 1989 | A |
4873118 | Elias et al. | Oct 1989 | A |
4915745 | Pollock et al. | Apr 1990 | A |
4950615 | Basol et al. | Aug 1990 | A |
4968354 | Nishiura et al. | Nov 1990 | A |
4996108 | Divigalpitiya et al. | Feb 1991 | A |
5008062 | Anderson et al. | Apr 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5028274 | Basol et al. | Jul 1991 | A |
5039353 | Schmitt | Aug 1991 | A |
5045409 | Eberspacher et al. | Sep 1991 | A |
5069727 | Kouzuma et al. | Dec 1991 | A |
5078803 | Pier et al. | Jan 1992 | A |
5125984 | Kruehler et al. | Jun 1992 | A |
5133809 | Sichanugrist et al. | Jul 1992 | A |
5137835 | Karg | Aug 1992 | A |
5154777 | Blackmon et al. | Oct 1992 | A |
5180686 | Banerjee et al. | Jan 1993 | A |
5211824 | Knapp | May 1993 | A |
5217564 | Bozler et al. | Jun 1993 | A |
5231047 | Ovshinsky et al. | Jul 1993 | A |
5248345 | Sichanugrist et al. | Sep 1993 | A |
5259883 | Yamabe et al. | Nov 1993 | A |
5261968 | Jordan | Nov 1993 | A |
5298086 | Guha et al. | Mar 1994 | A |
5336381 | Dalzell, Jr. et al. | Aug 1994 | A |
5336623 | Sichanugrist et al. | Aug 1994 | A |
5346853 | Guha et al. | Sep 1994 | A |
5397401 | Toma et al. | Mar 1995 | A |
5399504 | Ohsawa | Mar 1995 | A |
5421909 | Ishikawa et al. | Jun 1995 | A |
5436204 | Albin et al. | Jul 1995 | A |
5445847 | Wada | Aug 1995 | A |
5474939 | Pollock et al. | Dec 1995 | A |
5482571 | Yamada et al. | Jan 1996 | A |
5501744 | Albright et al. | Mar 1996 | A |
5512107 | van den Berg | Apr 1996 | A |
5528397 | Zavracky et al. | Jun 1996 | A |
5536333 | Foote et al. | Jul 1996 | A |
5578103 | Araujo et al. | Nov 1996 | A |
5578503 | Karg et al. | Nov 1996 | A |
5589006 | Itoyama et al. | Dec 1996 | A |
5622634 | Noma et al. | Apr 1997 | A |
5626688 | Probst et al. | May 1997 | A |
5665175 | Safir | Sep 1997 | A |
5676766 | Probst et al. | Oct 1997 | A |
5698496 | Fastnacht et al. | Dec 1997 | A |
5726065 | Szlufcik et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5855974 | Wu et al. | Jan 1999 | A |
5858819 | Miyasaka | Jan 1999 | A |
5868869 | Albright et al. | Feb 1999 | A |
5925228 | Panitz et al. | Jul 1999 | A |
5948176 | Ramanathan et al. | Sep 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981868 | Kushiya et al. | Nov 1999 | A |
5985691 | Basol et al. | Nov 1999 | A |
6001744 | Doi | Dec 1999 | A |
6040521 | Kushiya et al. | Mar 2000 | A |
6048442 | Kushiya et al. | Apr 2000 | A |
6077722 | Jansen et al. | Jun 2000 | A |
6092669 | Kushiya et al. | Jul 2000 | A |
6107562 | Hashimoto et al. | Aug 2000 | A |
6127202 | Kapur et al. | Oct 2000 | A |
6134049 | Spiller et al. | Oct 2000 | A |
6160215 | Curtin | Dec 2000 | A |
6166319 | Matsuyama | Dec 2000 | A |
6169246 | Wu et al. | Jan 2001 | B1 |
6172297 | Hezel et al. | Jan 2001 | B1 |
6258620 | Morel et al. | Jul 2001 | B1 |
6288325 | Jansen et al. | Sep 2001 | B1 |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6307148 | Takeuchi et al. | Oct 2001 | B1 |
6310281 | Wendt et al. | Oct 2001 | B1 |
6323417 | Gillespie et al. | Nov 2001 | B1 |
6328871 | Ding et al. | Dec 2001 | B1 |
RE37512 | Szlufcik et al. | Jan 2002 | E |
6335479 | Yamada et al. | Jan 2002 | B1 |
6361718 | Shinmo et al. | Mar 2002 | B1 |
6372538 | Wendt et al. | Apr 2002 | B1 |
6380480 | Norimatsu et al. | Apr 2002 | B1 |
6423565 | Barth et al. | Jul 2002 | B1 |
6537845 | McCandless et al. | Mar 2003 | B1 |
6632113 | Noma et al. | Oct 2003 | B1 |
6635307 | Huang et al. | Oct 2003 | B2 |
6653701 | Yamazaki et al. | Nov 2003 | B1 |
6667492 | Kendall | Dec 2003 | B1 |
6690041 | Armstrong et al. | Feb 2004 | B2 |
6692820 | Forrest et al. | Feb 2004 | B2 |
6784492 | Morishita | Aug 2004 | B1 |
6852920 | Sager et al. | Feb 2005 | B2 |
6878871 | Scher et al. | Apr 2005 | B2 |
6974976 | Hollars | Dec 2005 | B2 |
7122398 | Pichler | Oct 2006 | B1 |
7179677 | Ramanathan et al. | Feb 2007 | B2 |
7194197 | Wendt et al. | Mar 2007 | B1 |
7220321 | Barth et al. | May 2007 | B2 |
7235736 | Buller et al. | Jun 2007 | B1 |
7252923 | Kobayashi | Aug 2007 | B2 |
7265037 | Yang et al. | Sep 2007 | B2 |
7303788 | Kataoka et al. | Dec 2007 | B2 |
7319190 | Tuttle | Jan 2008 | B2 |
7364808 | Sato et al. | Apr 2008 | B2 |
7441413 | Bae et al. | Oct 2008 | B2 |
7442413 | Zwaap et al. | Oct 2008 | B2 |
7544884 | Hollars | Jun 2009 | B2 |
7576017 | Tuttle | Aug 2009 | B2 |
7736755 | Igarashi et al. | Jun 2010 | B2 |
7741560 | Yonezawa | Jun 2010 | B2 |
7846750 | Boyer | Dec 2010 | B2 |
7855089 | Farris, III et al. | Dec 2010 | B2 |
7863074 | Wieting | Jan 2011 | B2 |
7863518 | Terakawa et al. | Jan 2011 | B2 |
7875945 | Krasnov et al. | Jan 2011 | B2 |
7910399 | Wieting | Mar 2011 | B1 |
7955891 | Wieting | Jun 2011 | B2 |
7960204 | Lee | Jun 2011 | B2 |
7993954 | Wieting | Aug 2011 | B2 |
7993955 | Wieting | Aug 2011 | B2 |
7998762 | Lee et al. | Aug 2011 | B1 |
8003430 | Lee | Aug 2011 | B1 |
8008110 | Lee | Aug 2011 | B1 |
8008111 | Lee | Aug 2011 | B1 |
8008112 | Lee | Aug 2011 | B1 |
8017860 | Lee | Sep 2011 | B2 |
8026122 | Lee | Sep 2011 | B1 |
8142521 | Wieting | Mar 2012 | B2 |
8168463 | Wieting | May 2012 | B2 |
8178370 | Lee et al. | May 2012 | B2 |
8183066 | Lee et al. | May 2012 | B2 |
8217261 | Wieting | Jul 2012 | B2 |
8263494 | Patterson | Sep 2012 | B2 |
8287942 | Huang et al. | Oct 2012 | B1 |
20020002992 | Kariya et al. | Jan 2002 | A1 |
20020004302 | Fukumoto | Jan 2002 | A1 |
20020061361 | Nakahara | May 2002 | A1 |
20020063065 | Sonoda et al. | May 2002 | A1 |
20030075717 | Kondo et al. | Apr 2003 | A1 |
20030089899 | Lieber et al. | May 2003 | A1 |
20030188777 | Gaudiana et al. | Oct 2003 | A1 |
20030230338 | Menezes | Dec 2003 | A1 |
20040063320 | Hollars | Apr 2004 | A1 |
20040084080 | Sager et al. | May 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040110393 | Munzer et al. | Jun 2004 | A1 |
20040161539 | Miyakawa | Aug 2004 | A1 |
20040187917 | Pichler | Sep 2004 | A1 |
20040191949 | Iwata et al. | Sep 2004 | A1 |
20040191950 | Nakamura et al. | Sep 2004 | A1 |
20040245912 | Thurk et al. | Dec 2004 | A1 |
20040252488 | Thurk | Dec 2004 | A1 |
20040256001 | Mitra et al. | Dec 2004 | A1 |
20050074915 | Tuttle et al. | Apr 2005 | A1 |
20050098205 | Roscheisen et al. | May 2005 | A1 |
20050109392 | Hollars | May 2005 | A1 |
20050164432 | Lieber et al. | Jul 2005 | A1 |
20050194036 | Basol | Sep 2005 | A1 |
20050223570 | Yonezawa et al. | Oct 2005 | A1 |
20050287717 | Heald et al. | Dec 2005 | A1 |
20060034065 | Thurk | Feb 2006 | A1 |
20060040103 | Whiteford et al. | Feb 2006 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060096536 | Tuttle | May 2006 | A1 |
20060096537 | Tuttle | May 2006 | A1 |
20060096635 | Tuttle | May 2006 | A1 |
20060102230 | Tuttle | May 2006 | A1 |
20060112983 | Parce et al. | Jun 2006 | A1 |
20060130890 | Hantschel et al. | Jun 2006 | A1 |
20060160261 | Sheats et al. | Jul 2006 | A1 |
20060173113 | Yabuta et al. | Aug 2006 | A1 |
20060174932 | Usui et al. | Aug 2006 | A1 |
20060219288 | Tuttle | Oct 2006 | A1 |
20060219547 | Tuttle | Oct 2006 | A1 |
20060220059 | Satoh et al. | Oct 2006 | A1 |
20060249202 | Yoo et al. | Nov 2006 | A1 |
20060267054 | Martin et al. | Nov 2006 | A1 |
20070004078 | Alberts | Jan 2007 | A1 |
20070006914 | Lee | Jan 2007 | A1 |
20070089782 | Scheuten et al. | Apr 2007 | A1 |
20070116892 | Zwaap et al. | May 2007 | A1 |
20070116893 | Zwaap | May 2007 | A1 |
20070151596 | Nasuno et al. | Jul 2007 | A1 |
20070163643 | Van Duren et al. | Jul 2007 | A1 |
20070169810 | Van Duern et al. | Jul 2007 | A1 |
20070193623 | Krasnov | Aug 2007 | A1 |
20070209700 | Yonezawa et al. | Sep 2007 | A1 |
20070243657 | Basol et al. | Oct 2007 | A1 |
20070264488 | Lee | Nov 2007 | A1 |
20070283998 | Kuriyagawa et al. | Dec 2007 | A1 |
20070289624 | Kuriyagawa et al. | Dec 2007 | A1 |
20080029154 | Milshtein et al. | Feb 2008 | A1 |
20080032044 | Kuriyagawa et al. | Feb 2008 | A1 |
20080041446 | Wu et al. | Feb 2008 | A1 |
20080057616 | Robinson et al. | Mar 2008 | A1 |
20080092945 | Munteanu et al. | Apr 2008 | A1 |
20080092953 | Lee | Apr 2008 | A1 |
20080092954 | Choi | Apr 2008 | A1 |
20080105294 | Kushiya et al. | May 2008 | A1 |
20080110491 | Buller et al. | May 2008 | A1 |
20080110495 | Onodera et al. | May 2008 | A1 |
20080115827 | Woods et al. | May 2008 | A1 |
20080121264 | Chen et al. | May 2008 | A1 |
20080121277 | Robinson et al. | May 2008 | A1 |
20080204696 | Kamijima | Aug 2008 | A1 |
20080210303 | Lu et al. | Sep 2008 | A1 |
20080216886 | Iwakura | Sep 2008 | A1 |
20080280030 | Van Duren et al. | Nov 2008 | A1 |
20080283389 | Aoki | Nov 2008 | A1 |
20090021157 | Kim et al. | Jan 2009 | A1 |
20090058295 | Auday et al. | Mar 2009 | A1 |
20090084438 | den Boer et al. | Apr 2009 | A1 |
20090087940 | Kushiya | Apr 2009 | A1 |
20090087942 | Meyers | Apr 2009 | A1 |
20090145746 | Hollars | Jun 2009 | A1 |
20090217969 | Matsushima et al. | Sep 2009 | A1 |
20090234987 | Lee et al. | Sep 2009 | A1 |
20090235983 | Girt et al. | Sep 2009 | A1 |
20090235987 | Akhtar et al. | Sep 2009 | A1 |
20090293945 | Peter | Dec 2009 | A1 |
20100081230 | Lee | Apr 2010 | A1 |
20100087016 | Britt et al. | Apr 2010 | A1 |
20100087026 | Winkeler et al. | Apr 2010 | A1 |
20100087027 | Wieting | Apr 2010 | A1 |
20100096007 | Mattmann et al. | Apr 2010 | A1 |
20100101648 | Morooka et al. | Apr 2010 | A1 |
20100101649 | Huignard et al. | Apr 2010 | A1 |
20100122726 | Lee | May 2010 | A1 |
20100197051 | Schlezinger et al. | Aug 2010 | A1 |
20100210064 | Hakuma et al. | Aug 2010 | A1 |
20100224247 | Bartholomeusz et al. | Sep 2010 | A1 |
20100233386 | Krause et al. | Sep 2010 | A1 |
20100258179 | Wieting | Oct 2010 | A1 |
20100267189 | Yu et al. | Oct 2010 | A1 |
20100267190 | Hakuma et al. | Oct 2010 | A1 |
20100297798 | Adriani et al. | Nov 2010 | A1 |
20110018103 | Wieting | Jan 2011 | A1 |
20110020980 | Wieting | Jan 2011 | A1 |
20110070682 | Wieting | Mar 2011 | A1 |
20110070683 | Wieting | Mar 2011 | A1 |
20110070684 | Wieting | Mar 2011 | A1 |
20110070685 | Wieting | Mar 2011 | A1 |
20110070686 | Wieting | Mar 2011 | A1 |
20110070687 | Wieting | Mar 2011 | A1 |
20110070688 | Wieting | Mar 2011 | A1 |
20110070689 | Wieting | Mar 2011 | A1 |
20110070690 | Wieting | Mar 2011 | A1 |
20110071659 | Farris, III et al. | Mar 2011 | A1 |
20110073181 | Wieting | Mar 2011 | A1 |
20110212565 | Wieting | Sep 2011 | A1 |
20110259395 | Wieting et al. | Oct 2011 | A1 |
20110259413 | Wieting et al. | Oct 2011 | A1 |
20110269260 | Buquing | Nov 2011 | A1 |
20110277836 | Lee | Nov 2011 | A1 |
20120003789 | Doering et al. | Jan 2012 | A1 |
20120018828 | Shao | Jan 2012 | A1 |
20120021552 | Alexander et al. | Jan 2012 | A1 |
20120094432 | Wieting | Apr 2012 | A1 |
20120122304 | Wieting | May 2012 | A1 |
20120186975 | Lee et al. | Jul 2012 | A1 |
20120270341 | Lee et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
199878651 | Feb 1999 | AU |
200140599 | Aug 2001 | AU |
3314197 | Nov 1983 | DE |
10104726 | Aug 2002 | DE |
102005062977 | Sep 2007 | DE |
2646560 | Nov 1990 | FR |
2124826 | Feb 1984 | GB |
2000173969 | Jun 2000 | JP |
2000219512 | Aug 2000 | JP |
2002167695 | Jun 2002 | JP |
2002270871 | Sep 2002 | JP |
2002299670 | Oct 2002 | JP |
2004332043 | Nov 2004 | JP |
2005311292 | Nov 2005 | JP |
0157932 | Aug 2001 | WO |
2005011002 | Feb 2005 | WO |
2006126598 | Nov 2006 | WO |
2007022221 | Feb 2007 | WO |
2007077171 | Jul 2007 | WO |
2008025326 | Mar 2008 | WO |
Entry |
---|
Baumann, A., et al., Photovoltaic Technology Review, presentation Dec. 6, 2004, 18 pages. |
Chopra et al., “Thin-Film Solar Cells: An Overview”, 2004, Progress in Photovoltaics: Research and Applications, 2004, vol. 12, pp. 69-92. |
Guillen C., “CulnS2 Thin Films Grown Sequentially from Binary Sulfides as Compared to Layers Evaporated Directly from the Elements”, Semiconductor Science and Technology, vol. 21, No. 5, May 2006, pp. 709-712. |
Huang et al., Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks, Applied Physics, Lett. 70 (18), May 5, 1997, pp. 2335-2337. |
Huang et al., Preparation of ZnxCd1-xS Nanocomposites in Polymer Matrices and their Photophysical Properties, Langmuir 1998, 14, pp. 4342-4344. |
International Solar Electric Technology, Inc. (ISET) “Thin Film CIGS”, Retrieved from http://www.isetinc.com/cigs.html on Oct. 1, 2008, 4 pages. |
Kapur et al., “Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks”, DOE Solar Program Review Meeting 2004, DOE/GO-102005-2067, p. 135-136. |
Kapur et al., “Non-Vacuum Printing Process for CIGS Solar Cells on Rigid and Flexible Substrates”, 29th IEEE Photovoltaic Specialists Conf., New Orleans, LA, IEEE, 2002, pp. 688-691. |
Kapur et al., “Non-Vacuum Processing of CIGS Solar Cells on Flexible Polymer Substrates”, Proceedings of the Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2P-D3-43, 2003. |
Kapur et al., “Non-Vacuum Processing of Culn1-xGaxSe2 Solar Cells on Rigid and Flexible Substrates using Nanoparticle Precursor Inks”, Thin Solid Films, 2003, vol. 431-432, pp. 53-57. |
Kapur et al., “Fabrication of Light Weight Flexible CIGS Solar Cells for Space Power Applications”, Materials Research Society, Proceedings vol. 668, (2001) pp. H3.5.1-H3.5.6. |
Kapur et al., “Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells”, Materials Research Society Proceedings, vol. 668, (2001) pp. H2.6.1-H2.6.7. |
Mehta et al., “A graded diameter and oriented nanorod-thin film structure for solar cell application: a device proposal”, Solar Energy Materials & Solar Cells, 2005, vol. 85, pp. 107-113. |
Salvador, “Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis,” Journal of Applied Physics, vol. 55, No. 8, pp. 2977-2985, Apr. 15, 1984. |
Srikant V., et al., “On the Optical Band Gap of Zinc Oxide”, Journal of Applied Physics, vol. 83, No. 10, May 15, 1998, pp. 5447-5451. |
Yang et al., “Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix”, Journal Material Chem., 1997, vol. 7, No. 1, pp. 131-133. |
Yang et al., “Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite”, Synthetic Metals 1997, vol. 91, pp. 347-349. |
Yang et al., “Fabrication and Characteristics of ZnS Nanocrystals/Polymer Composite Doped with Tetraphenylbenzidine Single Layer Structure Light-emitting Diode”, Applied Physics Letters, vol. 69, No. 3, Jul. 15, 1996, pp. 377-379. |
Ellmer et al., Copper Indium Disulfide Solar Cell Absorbers Prepared in a One-Step Process by Reactive Magnetron Sputtering from Copper and Indium Targets; Elsevier Science B.V; Thin Solid Films 413 (2002) pp. 92-97. |
Gordillo et al. “Electrical and morphological properties of low resistivity Mo thin films prepared by magnetron sputtering,” 9Brazilian Journal of Physics 36:982-985 (Sep. 2006). |
Grecu et al. “Spectroscopic Characterization of Chemical Bath Deposited Cadmium Sulphide Layers”, Journal of Optoelectronics and Advanced Matenals 6:127-132 (Mar. 2004). |
Onuma et al., Preparation and Characterization of CuInS Thin Films Solar Cells with Large Grain, Elsevier Science B.V; Solar Energy Materials & Solar Cells 69 (2001) pp. 261-269. |
Palm et al. “Second generation CIS solar modules,” Solar Energy 77:757-765 (Dec. 2004). |
Scofield “Sodium diffusion, selenization, and microstructural effects associated with various molybdenum back contact layers for CIS-based solar cells” , Proceedings of the 24th IEEE Photovoltaic Specialists Conference, pp. 164-167 (1995). |
Number | Date | Country | |
---|---|---|---|
20110203634 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
61297661 | Jan 2010 | US |