This application is a national stage application of international application no. PCT/US2007/085508 filed on Nov. 26, 2007 and priority thereto is hereby claimed.
The present invention relates, in general, to electronics, and more particularly, to methods of forming semiconductor devices and structure.
In the past, various different configurations were used to produce fluorescent lighting systems. Some of the configurations used transformers or multiple transformers to form a voltage for initially exciting and for operating for the fluorescent lights of the fluorescent lighting system. Some configurations also utilized two capacitors for each florescent light within the fluorescent lighting system. One example of such a fluorescent lighting system was disclosed in U.S. Pat. No. 7,205,724 that issued on Apr. 17, 2007 to Ahn et al. The large number of capacitors increased the cost of the fluorescent lighting system.
Accordingly, it is desirable to have a fluorescent lighting system that has a lower cost.
For simplicity and clarity of the illustration, elements in the figures are not necessarily to scale, and the same reference numbers in different figures denote the same elements. Additionally, descriptions and details of well-known steps and elements are omitted for simplicity of the description.
First plurality of fluorescent lights 17 includes a first fluorescent light 20 and a second fluorescent light 21, and second plurality of fluorescent lights 29 includes a first fluorescent light 32 and a second fluorescent light 33. Lights 20 and 21 are connected to receive the voltage from voltage source 15 through a capacitor 22 that is connected between source 15 and a common node 18 of lights 20 and 21. A first terminal of each of lights 20 and 21 is commonly connected to common node 18. A first terminal of capacitor 22 is connected to node 18 and a second terminal is connected to terminal 12. A second terminal of light 20 is connected to voltage source 15 through a capacitor 25. The second terminal of light 20 is connected to a common node 24 and to a first terminal of capacitor 25. A second terminal of capacitor 25 is connected to terminal 13. A second terminal of light 21 is connected to voltage source 15 through another capacitor 37. The second terminal of light 21 is connected to a common node 36 and to a first terminal of capacitor 37. A second terminal of capacitor 37 is connected terminal 13. Similarly, a first terminal of lights 32 and 33 is commonly connected to a common node 30 of second plurality of lights 29. Lights 32 and 33 are connected to receive the voltage from voltage source 15 through a capacitor 34 that has a first terminal connected to common node 30 and a second terminal connected to terminal 12. A second terminal of light 32 is connected to voltage source 15 through capacitor 25 and a second terminal of light 33 is connected to voltage source 15 through capacitor 37. The second terminal of light 32 is connected to common node 24 and the second terminal of light 33 is connected to common node 36.
When transformer 11 begins to form a voltage for voltage source 15, capacitors 22, 25, 34, and 37 are discharged. The entire voltage between terminals 12 and 13 is applied across lights 20, 21, 32, and 33. As the lights become excited, current flows through capacitors and charges the capacitors. For example, as light 20 becomes active, current flows through capacitor 22, light 20, and capacitor 25 and through light 20. The current charges capacitors 22 and 25 to the voltage of source 15. Assuming the capacitors have substantially equal values, one-half of the voltage from source 15 is dropped across capacitor 22 and one-half is dropped across capacitor 25. Similarly, when light 21 becomes excited, current flows from source 15 through capacitor 22, through light 21, and through capacitor 37. Thus, one-half of the voltage from source 15 is dropped across capacitor 22 and another half is dropped across capacitor 37. When light 32 becomes excited, current flows through capacitor 34, through light 32, and through capacitor 25. After the voltage has activated light 32, the voltage from source 15 is dropped substantially equally across capacitors 34 and 25. After the voltage is large enough to activate light 33, current flows through capacitor 34, light 33, and capacitor 37 thereby charging capacitors 34 and 37 to approximately one-half of the voltage of source 15. As will be appreciated by those skilled in the art, some lights may become excited before others, therefore, the voltage from source 15 has to be large enough to ensure that all of lights 20, 21, 32, and 33 are activated.
Operationally, system 50 functions similarly to system 10. As the voltage from source 55 reaches a value that is sufficient to activate one of the lights, such as light 60, current begins to flow through capacitor 63, light 60, and capacitor 66 and the current charges each of capacitors 63 and 66 to approximately one-half the value of source 55. Similarly, as the voltage of source 55 excites light 61, current flows through capacitor 63, light 61, and capacitor 79 and the current charges each of capacitors 63 and 79 to approximately one-half the voltage of source 55. Exciting light 62 causes current to flow through capacitors 63 and 91 thereby charging each of capacitors 63 and 91 to approximately one-half the voltage of source 55. In a similar manner, activating light 73 charges capacitors 76 and 66, activating light 74 charges capacitors 76 and 79, and activating light 75 charges capacitors 76 and 91. Also, activating light 85 charges capacitors 88 and 66, activating light 86 charges capacitors 88 and 79, and activating light 87 charges capacitors 88 and 91.
In view of all of the above, it is evident that a novel device and method is disclosed. Included, among other features, is configuring the fluorescent lighting system to connect a plurality of fluorescent lights to a common node that is connected to receive a voltage from a voltage source through a capacitor. Connecting a plurality of lights to a common capacitor reduces the number of capacitors required to operate the fluorescent light system. As illustrated in
While the subject matter of the invention is described with specific preferred embodiments, it is evident that many alternatives and variations will be apparent to those skilled in the semiconductor arts.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/085508 | 11/26/2007 | WO | 00 | 4/23/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/070153 | 6/4/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6781325 | Lee | Aug 2004 | B2 |
7042171 | Lin | May 2006 | B1 |
7205724 | Ahn et al. | Apr 2007 | B2 |
7733031 | Nerone | Jun 2010 | B2 |
20060001386 | Kim et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100259189 A1 | Oct 2010 | US |