The present invention relates generally to the field of video processing systems, and, more specifically, to a method and system for 3-D enhanced advertising for TV broadcast of 2-D video.
During the process of video and image editing, one alters portions or all of a video image, e.g. by moving an image from one portion of a screen to another, rotating the image, expanding the image or shrinking the image. Other common image manipulations include warping an image (i.e. deforming the image in three dimensions), magnifying parts of an image, performing cylindrical, spherical, hyperbolic, or parabolic transformations to the image (e.g. causing a two-dimensional image to appear to bend or wrap around a cylindrical, spherical, hyperbolic or parabolic surface), melting images, etc. Parabolic transformations may be used to provide a three dimensional (3-D) effect.
Frequently, the image to be manipulated is in the form of a pixel array. In other words, the image is stored as an array of data values, each value corresponding to the color and brightness of a small area of the image. When performing the above-mentioned video image manipulations, one typically performs calculations to transform every pixel of the image. For example, for each pixel of the image, one performs calculations to determine a new location for that pixel on a video screen. Large images can contain millions of pixels. Further, for the case of image streams (e.g. as in the case of video images), dozens of frames per second must be transformed. Thus, many millions of pixels may have to be analyzed and modified for each transformation in a very short amount of time. Such transformations require either enormous CPU resources or special hardware to be able to transform large numbers of pixels in a short amount of time.
Although some 3-D video standards are already developed and have, for example, been included in the Motion Picture Experts Group 4 (MPEG4) video standard, these standards require specialized transmission systems, players, etc., which may not be installed into common commercial video broadcasting systems for a long time.
In addition, the amount of data transmitted in real 3-D video broadcasting on a regular basis is so large that it can be overwhelming for present-day delivery systems and for systems anticipated in the near future.
A method and system for 3-D enhanced advertising for TV broadcast of 2-D video is disclosed. In one embodiment, a method for providing enhanced advertising of a 2-D video broadcast, comprises receiving the 2-D video broadcast containing a 2-D advertisement having an image. The image is identified within the advertisement. A matching 3-D object in an image library is used; wherein the library comprises one or more 3-D objects. The matching 3-D object is used to generate an advertisement, wherein the advertisement has a 3-D highlighted rendering of the image.
Other features of the present invention will be apparent from the accompanying drawings and from the detailed description, which follows.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
A method and system for 3-D enhanced advertising for TV broadcast of 2-D video, is described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that other embodiments may be utilized and that logical, software, re-ordering of steps, and other changes may be made without departing from the scope of the present invention.
Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm as described here, is generally conceived to be a self-consistent sequence of acts leading to a desired result. The acts are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The present invention can be implemented by an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer, selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method. For example, any of the methods according to the present invention can be implemented in hard-wired circuitry, by programming a general purpose processor or by any combination of hardware and software. One of skill in the art will immediately appreciate that the invention can be practiced with computer system configurations other than those described below, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. The required structure for a variety of these systems will appear from the description below.
The methods of the invention may be implemented using computer software. If written in a programming language conforming to a recognized standard, sequences of instructions designed to implement the methods can be compiled for execution on a variety of hardware platforms and for interface to a variety of operating systems. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. Furthermore, it is common in the art to speak of software, in one form or another (e.g., program, procedure, application . . . ), as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the software by a computer causes the processor of the computer to perform an action or produce a result.
On screen 101 an advertisement for Coca Cola, for example, is running, with Coke bottle 110 visible. Even though this is a virtual 3-D world, because the video source is a 2-D source, virtual screen 101, is essentially flat or slightly cylindrical, and displays a simple object. Although one of ordinary skill in the art may use color information, etc., to derive a Z component for such a flat object, the results could be rather strange in some cases, because color can change with the lighting when advertisements are video taped. Typically, such advertisements may have enhanced special lighting effects, which in such cases can result in very strange deformations of the object.
A data storage device 227 such as a magnetic disk or optical disc and its corresponding drive may also be coupled to computer architecture 200 for storing information and instructions. Computer architecture 200 can also be coupled to a second I/O bus 250 via an I/O interface 230. A plurality of I/O devices may be coupled to I/O bus 250, including a display device 243, an input device (e.g., an alphanumeric input device 242 and/or a cursor control device 241). Display device 243 may be a television, computer monitor, or liquid crystal display. The input device may also include a keyboard, mouse, trackball, or remote controller.
The communication device 240 is for accessing other computers via a network. The communication device 240 may comprise a modem, a network interface card, or other well known interface device, such as those used for coupling to Ethernet, token ring, or other types of networks, including the internet.
In addition, a web link may be incorporated into the Coke bottle to display additional information to allow the viewer to surf to a local shopping outlet. As the ad is playing, this link may, for example, also be used to identify object 310 in the ad and to refer to a look-up table to see if there is a 3-D object corresponding to object 310 in a library that is local in the viewer's set-top box, or computer having an architecture 200. That library may be broadcast to all set-top boxes on the broadcasting system on a regular basis and updated, or it may be loaded over the Internet or any other type of network connection including all known caching and buffering techniques.
3-D object 320 has a matching ID to coke bottle 310. In a visualized form, object 320 may be pushed with arrow 330 into flat geometric surface 301 so as to deform it.
Still overlaid on the correct location is the image of actual Coke bottle 310, so the video image is preserved, and by overlaying shades and specular lighting, the visual enhancement of the object can heightened.
As a result, it is possible to create a visual impression that makes the advertised object appear to be practically jumping out of the screen at the viewer.
Flow continues to processing block 520, where architecture 200 identifies the images within the 2-D video advertisement broadcast. At processing block 530, architecture 200 look-up a 3-D object in a library that matches the image 310. The library may contain one or more 3-D objects and be stored in storage 227.
At processing block 540 architecture 200 uses the matching 3-D object to generate an advertisement. The advertisement may have a 3-D highlighted rendering of the original 2-D image. One of ordinary skill in the art may be able to render such an image, as described in co pending application Ser. No. 09/344,442 filed on Jun. 25, 1999, now U.S. Pat. No. 6,342,884, entitled “Method and Apparatus for Using a General Three-Dimensional (3D) Graphics Pipeline for Cost Effective Digital Image and Video Editing, Transformation, and Representation” by Yakou Kamen and Leon Shirmar. The 3-D image rendered may contain specular lighting and shading. The resulting advertisement may be displayed by architecture 200 by a display 243, such as a television or monitor. The process ends at block 599.
Thus, a method and system for the method and system for 3-D enhanced advertising for TV broadcast of 2-D video have been described. Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This patent claims priority based on U.S. Provisional Patent Application Ser. No. 60/203,496, filed on May 11, 2000, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4621259 | Schepers et al. | Nov 1986 | A |
5243418 | Kuno et al. | Sep 1993 | A |
5264933 | Rosser et al. | Nov 1993 | A |
5414773 | Handelman | May 1995 | A |
5479268 | Young et al. | Dec 1995 | A |
5526034 | Hoarty et al. | Jun 1996 | A |
5532754 | Young et al. | Jul 1996 | A |
5550576 | Klosterman | Aug 1996 | A |
5550578 | Hoarty et al. | Aug 1996 | A |
5684525 | Klosterman | Nov 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5737028 | Bertram et al. | Apr 1998 | A |
5751282 | Girard et al. | May 1998 | A |
5808613 | Marrin et al. | Sep 1998 | A |
5818441 | Throckmorton et al. | Oct 1998 | A |
5828945 | Klosterman | Oct 1998 | A |
5841563 | Effenberger | Nov 1998 | A |
5861905 | Brummett | Jan 1999 | A |
5900915 | Morrison | May 1999 | A |
5903673 | Wang et al. | May 1999 | A |
5923362 | Klosterman | Jul 1999 | A |
5926168 | Fan | Jul 1999 | A |
5929849 | Kikinis | Jul 1999 | A |
5940073 | Klosterman et al. | Aug 1999 | A |
5956456 | Bang et al. | Sep 1999 | A |
5999167 | Marsh et al. | Dec 1999 | A |
5999187 | Dehmlow et al. | Dec 1999 | A |
6002403 | Sugiyama et al. | Dec 1999 | A |
6029195 | Herz | Feb 2000 | A |
6034678 | Hoarty et al. | Mar 2000 | A |
6035412 | Tamer et al. | Mar 2000 | A |
6061055 | Marks | May 2000 | A |
6072983 | Klosterman | Jun 2000 | A |
6075575 | Schein et al. | Jun 2000 | A |
6078348 | Klosterman et al. | Jun 2000 | A |
6081271 | Bardon et al. | Jun 2000 | A |
6100883 | Hoarty | Aug 2000 | A |
6167188 | Young et al. | Dec 2000 | A |
6205485 | Kikinis | Mar 2001 | B1 |
6205582 | Hoarty | Mar 2001 | B1 |
6233389 | Barton et al. | May 2001 | B1 |
6243039 | Elliot | Jun 2001 | B1 |
6271831 | Escobosa et al. | Aug 2001 | B1 |
6421067 | Kamen et al. | Jul 2002 | B1 |
6446261 | Rosser | Sep 2002 | B1 |
6556196 | Blanz et al. | Apr 2003 | B1 |
20050166224 | Ficco | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
410093880 | Apr 1998 | JP |
WO 0001149 | Jan 2000 | WO |
Number | Date | Country | |
---|---|---|---|
60203496 | May 2000 | US |