The subject matter disclosed herein relates to a method and a system for controlling a common rail fuel system in a vehicle, such as a rail vehicle.
Vehicles, such as rail vehicles, include power sources, such as diesel engines. In some vehicles, fuel is provided to the diesel engine by a common rail fuel system. One type of common rail fuel system comprises a low-pressure fuel pump in fluid communication with a high-pressure fuel pump, and a fuel rail in fluid communication with the high-pressure fuel pump and further in fluid communication with at least one engine cylinder. The low-pressure fuel pump delivers fuel from a fuel supply to the high-pressure fuel pump through a conduit, wherein an inlet metering valve is disposed. The high-pressure fuel pump pressurizes fuel for delivery through the fuel rail. Fuel travels through the fuel rail to at least one fuel injector, and ultimately to at least one engine cylinder. Within the at least one engine cylinder, fuel is burned to provide power to the vehicle.
Further, the higher-pressure sub-system of the common rail fuel system includes a pressure limiting valve for relieving pressure. The pressure limiting valve may redirect fuel away from the fuel rail, to the fuel supply, during a high-pressure surge (excess pressure). During the high-pressure surge, the pressure limiting valve will open in order to decrease the rail pressure. The pressure limiting valve closes when the rail pressure returns to a lower pressure than the rail pressure that originally triggered the pressure limiting valve opening. In some conditions, the rail pressure may decrease to a sufficient level for operation, yet the pressure limiting valve may remain open. In such a condition, fuel is continuously redirected to the fuel supply, resulting in decreased fuel supply pressure to the engine and possibly decreased power provided to the vehicle. Additionally, a persistently low rail pressure may signal to an Engine control unit that an external leak is present. In this example, the Engine control unit will command the engine to be disabled in order to mitigate possible effects of the presumed external leak, such as engine performance degradation. However, in fact, the shutdown may be unnecessary as the pressure limiting valve is the cause of the low rail pressure, not an external leak.
Accordingly, to address the above issues, various embodiments for a common rail fuel system and various methods of controlling the common rail fuel system are described herein. For example, in one embodiment, a method for controlling a fuel system of an engine including a lower-pressure fuel sub-system and a higher-pressure fuel sub-system, with a pressure limiting valve in fluid communication with the higher-pressure sub-system for relieving excess pressure in the higher-pressure fuel sub-system by returning fuel to the lower-pressure fuel sub-system, comprising, in response to fuel rail pressure in the higher-pressure fuel sub-system falling below a desired operating pressure during engine operation, first adjusting the fuel system to temporarily further reduce fuel rail pressure in the higher-pressure fuel sub-system to reset the pressure limiting valve, and after first adjusting the fuel system to reduce fuel rail pressure in the higher-pressure fuel sub-system, further adjusting the fuel system to increase fuel rail pressure in the higher-pressure fuel sub-system, and then if the fuel rail pressure of the higher-pressure fuel sub-system persists below the desired operating pressure, disabling the engine. Thus, in carrying out the method, an attempt is made to return the rail pressure to a normal operating pressure instead of immediately disabling the engine, thereby reducing occurrences of unnecessary shutdowns.
This brief description is provided to introduce a selection of concepts in a simplified form that are further described herein. This brief description is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure. Also, the inventors herein have recognized any identified issues and corresponding solutions.
The present invention will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
The present application relates to vehicles, such as rail vehicles, that include an engine (such as a diesel engine) where fuel is provided to the engine through a common rail fuel system (CRS). One embodiment of a CRS including a pressure limiting valve (PLV) is shown in
In one embodiment, an engine control unit (ECU) is configured to carry out a method for controlling a CRS. If the engine experiences a high-pressure surge, for example if the rail pressure (RP) increases to greater than or equal to 190 MPa, a pressure limiting valve (PLV) will open and in some conditions can remain open even after the RP has decreased to a desired pressure. For example, the RP may decrease to 60-180 MPa, while the threshold required to close the PLV is 50 MPa. In such conditions, the example method enables the ECU to close an open PLV by temporarily decreasing the RP below the threshold required to close the PLV. In this manner, the ECU first implements the routine to close the PLV and then restarts fuel flow to attempt to return the RP to a normal operating pressure instead of immediately disabling the engine. Thus, occurrences of unnecessary shutdowns are reduced.
In one example case, the PLV is open even after the RP has decreased to a desired pressure, for example when the engine experiences a high-pressure surge and then decreases RP to 700 bar, and no unintended external leak exists. In this example, the RP and engine operation may return to a desired and normal state after the ECU reduces rail pressure to reset the PLV. In an alternative case, wherein an unintended external leak does exist and/or the PLV is not open, the RP may remain below the threshold required to close the PLV even after the ECU carries out the example method. In this alternative case, the ECU may then command that the engine is disabled until servicing in order to mitigate possible effects of the leak. In both examples, the RP level can be determined by monitoring a change in constant RP when both injection and pumping have ceased. Further, the ECU may be configured to determine whether the leak is in the lower-pressure sub-system of the CRS or in the higher-pressure sub-system of the CRS based on various operating parameters.
In the embodiment of
The region of the CRS upstream of the high-pressure fuel pump is substantially a lower-pressure subsystem of the CRS, while the region of the CRS downstream of the high-pressure fuel pump is substantially a higher-pressure sub-system of the CRS. A RP can be measured and monitored on each of the higher-pressure sub-system and the lower-pressure sub-system of the CRS by pressure sensors.
As depicted in
Under some conditions, the PLV can remain open even after the RP has decreased to a desired or expected operating pressure. In such conditions, fuel is continuously redirected away from the engine to the fuel supply, though pressure relief of the CRS is no longer needed. This can occur because the pressure required to open the valve is greater than the pressure required to close the valve, resulting in a hysteresis of the PLV (shown in the hysteresis curve of
In this example embodiment of a CRS, the ECU is configured to carry out a routine to determine if the RP is lower than a normal operating RP, such as the method shown in
The method of
Liquid fuel is pumped by the low-pressure fuel pump 102 from the fuel tank 108 to a high-pressure fuel pump 110 through a conduit 104. An IMV 106 is disposed in the conduit 104 and regulates fuel flow through the conduit 104. The IMV 106 may be a solenoid valve, opening and closing of which is regulated by the ECU 132. During operation of the vehicle, the IMV 106 is adjusted to meter fuel based on operating condition, and during at least some conditions may be at least partially open.
The high-pressure fuel pump 110 pressurizes fuel and delivers fuel to a fuel rail 118 through a conduit 114. A plurality of fuel injectors 120 are in fluid communication with the fuel rail 118. Each of the plurality of fuel injectors 120 delivers fuel to one of a plurality of engine cylinders 122 in an engine 124. Fuel is burned in the plurality of engine cylinders 122 to provide power to the vehicle through an alternator and traction motors, for example. Operation of the plurality of fuel injectors 120 is regulated by the ECU 132. In the embodiment of
Components of the CRS 100 which are upstream of the high-pressure fuel pump 110 are in a lower-pressure sub-system 140 of the CRS 100. Components of the CRS 100 which are downstream of the high-pressure fuel pump 110 are in a higher-pressure sub-system 142 of the CRS 100. RP of the lower-pressure sub-system 140 may be measured by a pressure sensor 130. The lower-pressure sub-system 140 may have a normal operating RP range during operation of the engine, e.g., a range from 0.45 MPa to 0.69 MPa during operation of the engine. RP of the higher-pressure sub-system 142 may be measured by a pressure sensor 126. The higher-pressure sub-system 142 may have a normal operating RP range during operation of the engine, e.g., a range from 70 MPa to 160 MPa bar during operation of the engine.
RP signals from each of the pressure sensor 130 and the pressure sensor 126 are communicated to the ECU 132. In this example embodiment, the pressure sensor 130 is disposed in the conduit 104 and the pressure sensor 126 is disposed in the conduit 114. In alternate embodiments, the pressure sensor 130 may be in fluid communication with to an outlet of the low-pressure fuel pump 102 and/or the pressure sensor 126 may be in fluid communication with an outlet of the high-pressure fuel pump 110.
A PLV 112 is in fluid communication with the conduit 114 and is in fluid communication with the high-pressure fuel pump 110 and fuel rail 118. In the example embodiment, the PLV 112 includes a needle 134, which blocks an inlet of the PLV 112. The needle 134 is held in place by a spring 136, applying a biasing force on the needle 134. In an alternate embodiment, the needle may be secured by other structures that provide a biasing force, such as a tension arm. The PLV 112 is provided in the CRS 100 to relieve high-pressure surges (excess pressure) that may occur in the higher-pressure sub-system 142. For example, as stated above, a desired and expected operating RP in the higher-pressure side may range from 70 to 160 MPa, which, in one embodiment, is a normal operating RP of the higher-pressure sub-system. As one example, a high-pressure surge can raise the RP to greater than or equal to 195 MPa.
During a high-pressure surge, an upward force of the pressurized fuel overcomes the biasing force of the spring 136 holding the needle 134. In this condition, the needle 134 is displaced and moved upward as the spring 136 is compressed, such that the PLV 112 opens. An RP required to displace the needle 134 may range from 195 to 205 MPa. With the PLV 112 open, liquid fuel is redirected from the conduit 114 to the fuel tank 108 through a conduit 116. The configuration and geometry of the needle 134 and the spring 136 are such that when the RP decreases a certain amount, e.g., to 35-65 MPa, the needle 134 is repositioned and closes the PLV 112.
A difference between a RP required to open the PLV 112 and a RP required to close the PLV 112 is represented by a hysteresis curve 400 of
To mitigate the effects of an external leak, the ECU 132 can command the engine to be disabled until serviced. However, in some instances, as described above, a decrease in RP is caused by the PLV 112 being open and a disabling of the engine is unnecessary. Thus, in response to the detection of low RP, the ECU may implement a routine, such as shown in
If the normal operating RP is recovered or a change in RP is less than a threshold over a predetermined time period after carrying out a PLV resetting sub-routine, the ECU 132 returns the vehicle to normal operating conditions without disabling engine operation. In comparison, if the normal operating RP is not recovered or a change in RP is greater than a threshold over a predetermined time period, the ECU 132 proceeds with engine disabling. The ECU 132 also determines whether the external leak is likely present in the lower-pressure sub-system 140 or the higher-pressure sub-system 142, or if the IMV is sticking, and logs a corresponding error/fault. Thus, by disabling the engine when the RP remains low after implementing the PLV resetting sub-routine, unnecessary disabling of the engine is reduced and engine performance is improved.
Prior to initiating a method 200 to analyze and control RP, initial enabling conditions are met, such as the RPM is greater than a RPM threshold. An example RPM threshold is 450 RPM for 30 seconds. As depicted in
In an alternate embodiment, HPRP error may be a model-based approach where the size of a leak is estimated based on a conservation of mass model of the CRS. In this alternate embodiment, fuel flow may be determined from an IMV duty cycle and fuel out may be determined from injection timing. Therefore, a modeled leak of additional fuel out may be estimated from the measured RP.
In a condition wherein HPRPerror is less than threshold1/time1, the ECU determines that no external leak is present and/or the PLV is not open. The ECU continues to monitor the RP and HPRPerror. In a condition wherein HPRPerror is greater than or equal to threshold1/time1, the ECU increments a low rail pressure counter (LRPC) in 206. In 208, the ECU determines if the LRPC has been incremented more than a threshold2 over a time2. An example of threshold2 and time2 are 5 occurrences of incrementing the LRPC over one hour. In a condition wherein the occurrences of incrementing the LRPC are greater than threshold2 over time2, as shown in 210, the ECU logs a Fault 1 and disables the engine.
In a condition wherein the occurrences of incrementing the LRPC are less than threshold2 over time2, as shown in 212, the ECU monitors the lower-pressure sub-system RP (LPRPconstant). In 214, it is determined whether LPRPconstant is less than or equal to a threshold3 over time3. An example of threshold3 and time3 are 0.28 MPa and 5 seconds, respectively. In a condition wherein the LPRPconstant is less than or equal to threshold3 over time3, a Fault 2 is logged, the engine is disabled, and an engine data recorder is triggered, as in 216. In a condition wherein the LRPRconstant is greater than a threshold3 over time3, as in 218, the ECU implements a needle resetting sub-routine, including a method 300 shown in
The method 300 is initiated following a “NO” to 214 from
At 308, the IMV is commanded to close in order to stop the flow of fuel from the low-pressure fuel pump to the high-pressure fuel pump, even though the low-pressure fuel pump continues to operate. Alternatively, operation of the low-pressure fuel pump may be stopped or reduced to decrease fuel flow. Additionally in 308, a first timer (timer1) is initiated.
The ECU then monitors the HPRPconstant, until the HPRPconstant is less than threshold6, at 310. An example of threshold6 is 35 MPa. If HPRPconstant is greater than threshold6 and the timer1 is greater than a predetermined time6 (in 312), then the ECU logs a Fault 1 and disables the engine, as in 314. An example of time6 is 3 seconds. If timer1 has not passed time6 the routine is delayed and cycles back to 310. If the HPRPconstant is less than threshold6, then the ECU commands fuel injection to stop at 316, substantially stopping fuel flow, and a second timer (timer2) is initialized and HPRPconstant is monitored at 318. In an alternate embodiment, stopping of fuel injection may occur at the same time as closing the IMV. Method 300 then ends and continues to 220 of method 200 at 320.
At 220 of
Alternatively to the sequence shown in 204-230 of method 200, at 232 it can also be determined if HPRPerror is less than a threshold5 over time5. In a condition wherein HPRPerror is less than a threshold5 over time5, the higher-pressure sub-system has an RP that is above a desired operating pressure. Examples of threshold5 and time5 are −30 MPa and 30 seconds, respectively. If the HPRPerror is less than the threshold5 over time5, then a Fault 3 is logged by the ECU and the engine data recorder is triggered at 234. If the HPRPerror is greater than the threshold5 over time5, the routine ends.
In methods 200 and 300, Fault 1 may include a malfunction of the PLV, IMV, or high pressure fuel pump and/or a leak in the higher-pressure sub-system and/or fuel injectors. Fault 2 may include a leak in the lower-pressure sub-system and/or a malfunction of the low pressure fuel pump. Fault 3 may include a malfunction of the IMV, more specifically, the IMV being stuck open. An operator can access the error/fault log in order to determine where repairs can be made to the CRS. In one embodiment, the error/fault log is viewed in real time. In an alternate embodiment, the error/fault log may be accessed at a later time.
The example routine for controlling the example embodiment of a CRS has the advantage that when the ECU detects a low HPRP, the ECU does not immediately shut down the engine and halt operation of the OHV. Instead, the ECU first implements a sub-routine to stop fuel flow and lower the RP to a level sufficient for closing the PLV. The ECU then assesses if the problem of a low HPRP is resolved and restarts fuel flow. Further, if the problem is not resolved the ECU commands the engine to shut down, and additionally determine if the leak is present in either of the lower-pressure sub-system or the higher-pressure sub-system. As such, unnecessary engine shut downs are avoided. Additionally, when an external leak is present, the location of the leak is identified in order to speed repairs to the CRS.
Another embodiment relates to a method for controlling a fuel system of an engine. The method comprises measuring an RP in a higher-pressure fuel sub-system portion of the fuel system. (The fuel system comprises the higher-pressure fuel sub-system, a lower-pressure fuel sub-system, and a PLV for relieving excess pressure in the higher-pressure fuel sub-system, e.g., by shunting fuel from the higher-pressure fuel sub-system back to the lower-pressure fuel sub-system.) If the RP falls below a desired operating pressure during engine operation, the RP is reduced to reset the PLV. Subsequently, the RP is increased, and remedial action is taken (e.g., the engine disabled and/or a warning generated) if the RP persists below the desired operating pressure.
Elements referred to as “high-pressure” and “low-pressure” and “higher-pressure” and “lower-pressure” are relative to one another; thus, the pressure of a low- or lower-pressure system would be lower than the pressure of a high- or higher-pressure system, and the pressure of the high- or higher-pressure system would be higher than the pressure of the low- or lower-pressure system.
Though exemplary embodiments of the present invention are described herein with respect to locomotives and other vehicles, it is also applicable to powered systems generally, including stationary power generation systems. Towards this end, when discussing a specified mission, this includes a task or requirement to be performed by the powered system. In the case of stationary applications, e.g., a stationary power generation station having one or more generators, or a network of power generation stations, a specified mission may refer to an amount of wattage or other parameter or requirement to be satisfied by the power generation station(s), alone or in concert, and/or estimated or known opportunities to store excess power from a power grid, electrical bus, or the like. In the case of a diesel-fueled power generation system (e.g., a diesel generator system providing energy to an electrical energy storage system), operating conditions may include one or more of generator speed, load, fueling value, timing, etc.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. While the dimensions and types of materials described herein are intended to illustrate the parameters of the invention, they are by no means limiting and are exemplary embodiments, unless otherwise specified. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Therefore, the scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
In the appended claims, any instances of the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” “third,” “upper,” “lower,” “bottom,” “top,” etc. are used merely as labels, and are not intended to impose numerical or positional requirements on their objects. As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
This written description uses examples to disclose the invention, including the best mode, and also to enable a person of ordinary skill in the relevant art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5241933 | Morikawa | Sep 1993 | A |
5708202 | Augustin et al. | Jan 1998 | A |
5715786 | Seiberth | Feb 1998 | A |
6024064 | Kato et al. | Feb 2000 | A |
6422265 | Beyer et al. | Jul 2002 | B1 |
6990855 | Tuken et al. | Jan 2006 | B2 |
7392792 | Puckett | Jul 2008 | B2 |
7987704 | Lucido et al. | Aug 2011 | B2 |
20080041331 | Puckett | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
19520300 | Dec 1996 | DE |
19547647 | Jun 1997 | DE |
19604552 | Aug 1997 | DE |
0976921 | Feb 2000 | EP |
1832737 | Sep 2007 | EP |
1832737 | Dec 2007 | EP |
Entry |
---|
Search Report and Written Opinion from corresponding PCT Application No. PCT/US2010/057589 dated Oct. 5, 2011. |
Number | Date | Country | |
---|---|---|---|
20120080010 A1 | Apr 2012 | US |