Certain embodiments of the invention may be found in a method and system for a mobile piconet base station. Aspects of the invention may comprise switching and/or routing capabilities in mobile handset that may enable wireless devices to communicate with each other and/or with a wireless network via the mobile handset. The mobile handset operates as a base station for wireless devices within a personal area or piconet. For voice communication, for example, communication between a wireless device within the piconet and a cellular network or a voice-over-IP (VoIP) network may be established via the mobile handset. The selection between the cellular or VoIP network may be based on rate price and/or on features available in each of the networks, for example. Communication between the wireless devices and the base station mobile handset may occur via a Bluetooth connection and/or another type of wireless technology, for example. The wireless devices may be low-cost, small form factor mobile handsets, for example.
The base stations 110a, . . . , 110g may comprise suitable logic, circuitry, and/or code that may enable communication with a mobile terminal, such as the mobile handset base station 104, for example, via at least one of a plurality of cellular technologies. The base stations 110a, . . . , 110g may enable processing and/or generation of signals necessary to establish, maintain, and/or terminate communication with a mobile terminal, such as the mobile handset base station 104, for example. The base stations 110a, . . . , 110g may utilize cellular technologies such as global system for mobile communications (GSM), general packet radio service (GPRS), and/or enhanced data rates for GSM evolution (EDGE) technologies, for example. In this regard, each of the base stations in the network cells may utilize a corresponding GSM carrier frequency with a 200 kHz bandwidth, for example, to communicate with a mobile terminal in the network. The base stations 110a, . . . , 110g may also utilize cellular technologies such as wideband CDMA (WCDMA), universal mobile telecommunications system (UMTS), and/or high speed downlink packet access (HSDPA) technologies, for example.
The communication antennas 108a, . . . , 108g may comprise suitable logic, circuitry, and/or code that may enable transmission and/or reception of signals to and/or from mobile terminals, such as the mobile handset base station 104, for example. The communication antennas 108a, . . . , 108g may be communicatively coupled to the base stations 1110a, . . . , 110g, respectively. The communication antenna 108a may provide cellular communication coverage to mobile terminals in the geographic area or region that corresponds to the network cell 102a. Similarly, communication antennas 108b, . . . , 108g may provide cellular communication coverage to mobile terminals in the geographic areas or regions that correspond to the network cells 102b, . . . , 102g, respectively. In some instances, there may be an overlap in the cellular communication coverage provided to a mobile terminal by adjacent or close network cells.
The mobile handset base station 104 may comprise suitable logic, circuitry, and/or code that may enable communication with the cellular network 100 over a plurality of radio access technologies, such as GSM and/or WCDMA technologies. The GSM technologies supported by the mobile handset base station 104 may be GSM, GPRS, and/or EDGE technologies, for example. The WCDMA technologies supported by the mobile handset base station 104 may be WCDMA, UMTS, and/or HSDPA technologies, for example. The mobile handset base station 104 may comprise cellular integrated circuits for receiving, processing, and/or transmitting cellular channels. The mobile handset base station 104 may enable communication via a plurality of uplink and downlink cellular channels, for example. The mobile terminal 102 may enable processing and/or generation of signals necessary to establish and/or maintain communication with network cells.
The mobile handset base station 104 may also comprise suitable logic, circuitry, and/or code that may enable communication with closely located wireless devices over a plurality of radio access technologies, such as Bluetooth, for example. The mobile handset base station 104 may also enable switching and/or routing operations to enable communication between at least a portion of the closely located wireless devices. Moreover, the mobile handset base station 104 may also enable switching and/or routing operations to enable communication between the cellular network 100 and at least a portion of the closely located wireless devices.
In operation, the mobile handset base station 104 may be located in an initial position 106a, also labeled location A, and may receive cellular communication coverage from network cell 102b. In this regard, the mobile handset base station 104 may communicate with the BS 110b via the communication antenna 108b utilizing at least one of a plurality of cellular technologies. Over time, the user of the mobile handset base station 104 may move from location A to other locations, for example. This is illustrated by moving from position A to a second position 106b, also labeled location B, followed by a move to a third position 106c, also labeled location C, and followed by a move to a final position 106, also labeled location D. Cellular communication coverage may be provided to the mobile handset base station 104 as it moves from locations B through D by the network cells 102d, 102e, and 102f, respectively.
In each of the exemplary locations illustrated in
The exemplary locations illustrated in
In another example, location D may correspond to the user's home and the mobile handset base station 104 may operate in a different mode in location D. In the home, the mobile handset base station 104 may enable voice communication while it may also enable routing and/or switching operations for other wireless devices in the home to communicate with the cellular network 100 via the mobile handset base station 104. In this regard, the mobile handset base station 104 may be utilized to replace cordless phones in the home while also enabling family members to use small and/or cost effective phones that communicate via the mobile handset base station 104.
As illustrated by
The wired network 206 may comprise suitable hardware, logic, circuitry, and/or code that may be enabled to provide wired networking operations. The wired network 206 may be accessed from the WLAN infrastructure network 200 via the portal 208. The portal 208 may comprise suitable hardware, logic, circuitry, and/or code that may be enabled to integrate the WLAN infrastructure network 200 with non-IEEE 802.11 networks. Moreover, the portal 208 may also enable the functional operations of a bridge, such as range extension and/or translation between different frame formats, in order to integrate the WLAN infrastructure network 100 with IEEE 802.11-based networks.
The APs 212a and 212b may comprise suitable hardware, logic, circuitry, and/or code that may enable support of range extension of the WLAN infrastructure network 200 by providing the integration points necessary for network connectivity between the BSSs. The STA 210a and the STA 210b correspond to WLAN-enabled terminals that may comprise suitable hardware, logic, circuitry, and/or code that may be enabled to provide connectivity to the WLAN infrastructure network 200 via the APs. In this regard, the mobile handset base station 104 may also correspond to a WLAN-enabled terminal that may comprise suitable logic, circuitry, and/or code that may be enabled to provide connectivity to the WLAN infrastructure network 200 via the APs. The STA 210a shown is a laptop computer and may correspond to a mobile station or terminal within the BSS and the STA 210b shown is a desktop computer and may correspond to a fixed or stationary terminal within the BSS. Each BSS may comprise a plurality of mobile or fixed stations and may not be limited to the exemplary implementation shown in
In addition to enabling communication with the WLAN infrastructure network 200, the mobile handset base station 104 may also provide routing and/or switching operations that enable communication among closely located wireless devices within the region covered by the piconet 220. Moreover, the mobile handset base station 104 may also provide routing and/or switching operations that enable communication between the closely located wireless devices and the WLAN infrastructure network 200. As shown in
In operation, the mobile handset base station 104 may be covered by the BSS 202a and may establish communication with the WLAN infrastructure network 200 via the AP 212b, for example. The wireless connection between the mobile handset base station 104 and the WLAN infrastructure network 200 may be utilized for voice and/or data communication. For voice communication, for example, the connection between the mobile handset base station 104 and the WLAN infrastructure network 200 may be utilized for voice-over-IP (VoIP) communications. The mobile handset base station 104, in addition to enabling a user to establish voice and/or data communication with the WLAN infrastructure network 200, may also enable users of closely located wireless devices within the piconet 220 to establish data and/or voice communication with the WLAN infrastructure network 200.
The region of coverage of the network cell 120, the basic service station 202b, and the piconet 220 may overlap, enabling the user of the mobile handset base station 104 to communicate with either a cellular network or with a WLAN network. In this regard, the mobile handset base station 104 may be enabled to communicate with both networks concurrently, for example. Moreover, a user of closely located wireless devices within the piconet 220, that may not be enabled to communicate directly with either the cellular network or the WLAN network, may communicate with either or both networks via the routing and/or switching operations provided by the mobile handset base station 104. The mobile handset base station 104 may operate as a base station that enables the closely located wireless devices within the piconet 220 to establish communication links with the cellular and/or WLAN network. For example, the closely located wireless devices may utilize a small form factor design that makes it attractive and convenient for users but that does not enable long range communication with, for example, the location of the communication antenna 122 and the AP 212. However, the mobile handset base station 104 may be a larger device and, for example, may have a larger battery and/or may utilize stronger transmission amplifiers, that may provide sufficient transmission power to establish and/or maintain long range communication with either or both the communication antenna 122 and the AP 212b. In this regard, the closely located wireless devices may communicate with the cellular network 100 and/or with the WLAN infrastructure network 200 via the routing and/or switching operations provided by mobile handset base station 104.
The processor 302 may comprise suitable logic, circuitry, and/or code that may enable controlling and/or managing operations of the mobile handset base station 300. In this regard, user applications may be executed on the processor 302, for example. The memory 304 may comprise suitable logic, circuitry, and/or code that may enable storing information associated with the operation of the mobile handset base station 300 and/or information associated with data received by the mobile handset base station 300. For example, information that may be utilized for routing and/or switching operations may be stored in the memory 304. Moreover, audio files, video files, and/or data files that may be accessed either by a network or by a closely located wireless device may be stored in the memory 304.
The switching and/or routing block 306 may comprise suitable logic, circuitry, and/or code that may enable transmission and/or reception of data and/or voice via the mobile handset base station 300. In this regard, the switching and/or routing block 306 may be utilized when establishing communication between or among closely located wireless devices within the piconet supported by the mobile handset base station 300 or when establishing communication between at least one of the closely located wireless devices within the piconet and at least one network.
The piconet radio 308 may comprise suitable logic, circuitry, and/or code that may enable transmitting and/or receiving signals to and/or from closely located wireless devices within the piconet supported by the mobile handset base station 300. In this regard, the piconet radio 308 may utilize at least one of the antennas 314a, . . . , 314n for transmitting and/or receiving signals. The piconet radio 308 may enable processing of received signals and/or signals to be transmitted. For example, the piconet radio 308 may convert received analog signals into digital signals and/or convert digital signals into analog signals for transmission. The piconet radio 308 may enable downconverting received signals and/or upconverting signals for transmission. An example of a piconet radio 308 may be a Bluetooth radio. Notwithstanding, a piconet radio 308 need not be limited to a Bluetooth radio and other wireless technologies may also be utilized.
The network radio 310 may comprise suitable logic, circuitry, and/or code that may enable transmission and/or reception of signals to and/or from networks supported by the mobile handset base station 300, respectively. In this regard, the network radio 310 may utilize at least one of the antennas 314a, . . . , 314n for transmitting and/or receiving signals. The network radio 310 may enable processing of received signals and/or signals to be transmitted. For example, the network radio 310 may convert received analog signals into digital signals and/or may convert digital signals into analog signals for transmission. The network radio 308 may enable downconversion of received signals and/or upconversion of signals for transmission. Examples of a network radio 310 may a cellular radio or a WLAN radio. A cellular radio may support at least one of cellular technologies such as global system for mobile communications (GSM), general packet radio service (GPRS), enhanced data rates for GSM evolution (EDGE), wideband CDMA (WCDMA), universal mobile telecommunications system (UMTS), and/or high speed downlink packet access (HSDPA) technologies. Notwithstanding, a network radio 310 need not be limited to a cellular radio or a WLAN radio.
The baseband processor 312 may comprise suitable logic, circuitry, and/or code that may enable processing of baseband signals that have been received from a piconet radio 308 or a network radio 310. Moreover, the baseband processor 312 may also enable processing of baseband signals for transmission via a piconet radio 308 or a network radio 310. The baseband processor 312 may perform, for example, digital signal processing operations. The baseband processor 312 may also provide control operations that may be utilized to modify the operations of a piconet radio 308 or a network radio 310.
In operation, a communication connection, such as a Bluetooth connection, for example, may be established between the mobile handset base station 300 and a closely located wireless device via a piconet radio 308. A communication connection, such as a cellular or WLAN connection, for example, may also be established between the mobile handset base station 300 and a network via a network radio. The baseband processor 312 may process data received and/or to be transmitted via the radios. The closely located wireless device and the network may communicate via the mobile handset base station 300 by utilizing the switching and/or routing operations available in the switching and/or routing block 306. Data from the piconet radio 308 may be processed and the proper routing and/or switching information may be provided for communication to the network via the network radio 310. Similarly, data from the network radio 310 may be processed and the proper routing and/or switching information may be provided for communication to the closely located wireless device via the piconet radio 308. The memory 304 may be utilized to obtain routing and/or switching information, for example. The memory 304 may also be utilized to store audio, video, and/or data received from the closely located wireless device and/or the network. The processor 302 may control the operations of the various components of the mobile handset base station 300.
In another embodiment of the invention, a communication connection, such as a Bluetooth connection, for example, may be established between the mobile handset base station 300 and at least two closely located wireless device via a piconet radio 308. The baseband processor 312 may process data received and/or to be transmitted via the radio. The closely located wireless devices may communicate via the mobile handset base station 300 by utilizing the switching and/or routing operations available in the switching and/or routing block 306. Data received from one device by the piconet radio 308 may be processed and the proper routing and/or switching information may be provided for communication to a different device. The memory 304 may be utilized to obtain routing and/or switching information, for example. The memory 304 may also be utilized to store audio, video, and/or data received from the closely located wireless device and/or the network. The processor 302 may control the operations of the various components of the mobile handset base station 300.
The mobile handset base station 404 may communicate with a cellular network via the communication tower 402. In this regard, the closely located wireless devices may also communicate with the cellular network via the mobile handset base station 404. The mobile handsets 408a, . . . , 408n may comprise suitable logic, circuitry, and/or code that may enable communication via the mobile handset base station 406. The mobile handsets 408a, . . . , 408n may be smaller, may have fewer features, and/or may utilize less power than the mobile handset base station 406. In this regard, the smaller size and/or lower cost may enable handset manufacturers to make the mobile handsets 408a, . . . , 408n more attractive, stylish, and/or convenient to users while comprising a keypad that enables the mobile handsets 408a, . . . , 408n to operate like a regular phone. The mobile handsets 408a, . . . , 408n may communicate with other closely located wireless devices via the mobile handset base station 406.
The PDA 410, the keyboard 412, and/or the printer 414 may comprise suitable logic, circuitry, and/or code that may enable communication via the mobile handset base station 406. The keyboard 412 and/or the printer 414 may enable communication of data via the mobile handset base station 406. The PDA 410 may enable communication of data, voice, and/or video via the mobile handset base station 406. The PDA 410, the keyboard 412, and/or the printer 414 may communicate with other closely located wireless devices via the mobile handset base station 406.
The position of the mobile handset base station 406, that is, position B, is such that it is located within the cellular coverage provided by the communication tower 402 in position C and WLAN coverage provided by the access point 403 in position D. In this regard, the mobile handset base station 406 may communicate with either a cellular network or a WLAN network, for example. The WLAN network may be enabled to provide voice-over-IP (VoIP) communication, for example. The position of the mobile handset 408a, that is, position A, is such that it is located within the geographic area or region of coverage of the mobile handset base station 406, located in position A, and illustrated by the piconet 404.
In operation, the mobile handset 408a may be utilized to establish a phone call. The mobile handset 408a may not be enabled to communicate directly with a network to enable the phone call to be established. The mobile handset 408a may instead establish communication with the mobile handset base station 406 via a type of radio communication supported by both the mobile handset 408a and the mobile handset base station 406. In the exemplary embodiment described in
The mobile handset base station 406 may then establish the phone call by establishing communication between the mobile handset 408a and either a cellular network via the communication antenna 402 in position C or with a WLAN supporting VoIP via the access point 403 in position D. In this regard the mobile handset base station 406 may utilize routing and/or switching operations to establish the connection. The mobile handset base station 406 may decide whether to select the cellular network and the corresponding cellular network provider or the WLAN network based on rate information, user information, and/or other related information. For example, the mobile handset base station 406 may utilize current rates for either network, remaining minutes available to the user associated with the mobile handset base station 406, and/or special rates or discounts available to the user of the mobile handset base station 406 to determine whether to select the cellular network or the WLAN network for establishing the phone call originated by the mobile handset 408a. The information utilized by the mobile handset base station 406 may be stored in memory, such as the memory 304 in
The mode of operation described in
In operation, the first mobile handset 408a in position A may be utilized to establish a phone call or voice communication with the second mobile handset 408a in position E. As a result of its small size and reduced features available, the first mobile handset 408a may not be enabled to communicate directly with the second mobile handset 408a to enable the phone call to be established. The first mobile handset 408a may instead establish communication with the mobile handset base station 406 via a type of radio communication supported by both the first mobile handset 408a and the mobile handset base station 406. In the exemplary embodiment of the invention disclosed in
The mobile handset base station 406 may then establish the phone call by establishing communication between the first mobile handset 408a and the second mobile handset 408n. The mobile handset base station 406 may establish communication with the second mobile handset 408n via a type of radio communication supported by both the second mobile handset 408n and the mobile handset base station 406. In the exemplary embodiment described in
The mode of operation described in
In operation, the mobile handset 408a in position A may be utilized to establish a phone call or voice communication and/or data communication with the PDA 410 in position F. As a result of its small size and reduced features available, the mobile handset 408a may not be enabled to communicate directly with the PDA 410 to enable the phone call to be established. The mobile handset 410 may instead establish communication with the mobile handset base station 406 via a type of radio communication supported by both the mobile handset 408a and the mobile handset base station 406. In the exemplary embodiment of the invention disclosed in
The mobile handset base station 406 may then establish the phone call by establishing communication between the mobile handset 408a and the PDA 410. The mobile handset base station 406 may establish communication with the PDA 410 via a type of radio communication supported by both the PDA 410 and the mobile handset base station 406. In the exemplary embodiment described in
The mode of operation described in
In operation, the mobile handset 408a and/or the PDA 410, that is, the closely located wireless devices in the piconet 404, may be utilized to establish a phone call. The mobile handset 408a and/or the PDA 410 may not be enabled to communicate directly with a network to enable the phone call to be established. The wireless devices may instead establish communication with the mobile handset base station 406 via a type of radio communication supported by both the mobile handset 408a and wireless devices. In the exemplary embodiment described in
In operation, the mobile handset base station 406 may receive an incoming phone call from the cellular network associated with the communication tower 422. The mobile handset base station 406 may then establish communication with the audio or music player 502 via a type of radio communication supported by both the audio player 502 and the mobile handset base station 406. In the exemplary embodiment described in
In step 606, when the wireless device is requesting communication with a network, such as a cellular network or a WLAN network, for example, via the mobile handset base station, the process may proceed to step 608. In step 608, the mobile handset base station may determine the appropriate network for communicating with the wireless device in the piconet. For example, for voice communication, such as a phone call, the mobile handset base station may determine whether a cellular call or a VoIP call via a WLAN may be more cost effective and may select the network based on calling rates. In step 610, the mobile handset base station may complete the connection by establishing communication with the appropriate network. In this regard, the mobile handset base station may utilize routing and/or switching operations to establish the connection between the wireless device in the piconet and the appropriate network. In step 612, when the wireless device need not communicate with another wireless device in the piconet, the process may proceed to end step 614. When the wireless device does need to communicate with another wireless device in the piconet, the process may proceed to step 616.
Returning to step 606, when the wireless device is requesting communication with another wireless device in the piconet via the mobile handset base station, the process may proceed to step 616. The other or target wireless device may be a mobile handset, for example. In step 616, the mobile handset base station may determine the appropriate target wireless device for establishing communication. Information regarding the available wireless devices in the piconet may be stored in the mobile handset base station. In step 618, the mobile handset base station may determine the appropriate wireless technology that may be utilized to communicate with the target wireless device. In this regard, there may be more than one wireless technology that may be utilized for communicating with the target wireless device and the mobile handset base station may determine the appropriate connection type based on factors such as connection strength, throughput, and/or capacity, for example. An example of a wireless technology or connection type may be a Bluetooth connection. In step 620, the mobile handset base station may complete the connection by establishing communication with the appropriate target wireless device. In this regard, the mobile handset base station may utilize routing and/or switching operations to establish the connection between the initiating wireless device and the appropriate target wireless device. After step 620, the process may proceed to end step 614.
As technologies continue to improve, additional features and/or connectivity may be provided via a smart phone, such as a mobile handset base station for example, while conventional mobile phones may utilize technological advances to make possible fashionable and/or small designs that are attractive as accessories to younger users. The approach described herein may enable providing the expanding list of features and applications that are becoming available in smart phone designs in a manner that is convenient, practical, and/or attractive to a user of a conventional mobile phone.
Accordingly, the present invention may be realized in hardware, software, or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
The present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.