Method and system for adapting a radiation therapy treatment plan based on a biological model

Abstract
A system and method of adapting a radiation therapy treatment plan. The method includes the acts of preparing a treatment plan for a patient, acquiring images of the patient, performing deformable registration of the images, acquiring data relating to a radiation dose delivered to the patient, applying a biological model relating the radiation dose delivered and a patient effect, and adapting the radiation therapy treatment plan based on the deformable registration and the biological model.
Description
BACKGROUND

Over the past decades improvements in computers and networking, radiation therapy treatment planning software, and medical imaging modalities (CT, MRI, US, and PET) have been incorporated into radiation therapy practice. These improvements have led to the development of image guided radiation therapy (“IGRT”). IGRT is radiation therapy that uses cross-sectional images of the patient's internal anatomy to better target the radiation dose in the tumor while reducing the radiation exposure to healthy organs. The radiation dose delivered to the tumor is controlled with intensity modulated radiation therapy (“IMRT”), which involves changing the size, shape, and intensity of the radiation beam to conform to the size, shape, and location of the patient's tumor. IGRT and IMRT lead to improved control of the tumor while simultaneously reducing the potential for acute side effects due to irradiation of healthy tissue surrounding the tumor.


IMRT is becoming the standard of care in several countries. However, in many situations, IMRT is not used to treat a patient due to time, resources, and billing constraints. Daily images of the patient can be used to guarantee that the high gradients generated by IMRT plans are located on the correct position for patient treatment. Also these images can provide necessary information to adapt the plan online or offline if needed.


It is commonly known in the field of radiation therapy that there are many sources of uncertainty and change that can occur during a course of a patient's treatment. Some of these sources represent random errors, such as small differences in a patient's setup position each day. Other sources are attributable to physiological changes, which might occur if a patient's tumor regresses or the patient loses weight during therapy. A third possible category regards motion. Motion can potentially overlap with either of the other categories, as some motion might be more random and unpredictable, such as a patient coughing or passing gas, whereas other motion can be more regular, such as breathing motion, sometimes.


SUMMARY

In radiation therapy, uncertainties can affect the quality of a patient's treatment. For example, when delivering a treatment dose to a target region, it is standard practice to also treat a high-dose “margin” region about the target. This helps ensure that the target receives the desired dose, even if its location changes during the course of the treatment, or even during a single fraction. The less definite a target's location, the larger the margins that typically need to be used.


Adaptive radiation therapy generally refers to the concept of using feedback during the course of radiation therapy treatment to improve future treatments. Feedback can be used in off-line adaptive therapy processes and on-line adaptive therapy processes. Off-line adaptive therapy processes occur while the patient is not being treated, such as in between treatment fractions. In one version of this, during each fraction, a new CT image of the patient is acquired before or after each of the fractions. After the images are acquired from the first few treatment fractions, the images are evaluated to determine an effective envelope of the multi-day locations of target structures. A new plan can then be developed to better reflect the range of motion of the target structure, rather than using canonical assumptions of motion. A more complex version of off-line adaptive therapy is to recalculate the delivered dose after each fraction and accumulate these doses, potentially utilizing deformation techniques, during this accumulation to account for internal motion. The accumulated dose can then be compared to the planned dose, and if any discrepancies are noted, subsequent fractions can be modified to account for the changes.


On-line adaptive therapy processes typically occur while the patient is in the treatment room, and potentially, but not necessarily, during a treatment delivery. For example, some radiation therapy treatment systems are equipped with imaging systems, such as on-line CT or x-ray systems. These systems can be used prior to treatment to validate or adjust the patient's setup for the treatment delivery. The imaging systems may also be used to adapt the treatment during the actual treatment delivery. For example, an imaging system potentially can be used concurrently with treatment to modify the treatment delivery to reflect changes in patient anatomy.


One aspect of the present invention is to disclose new opportunities for the application of adaptive therapy techniques, and additional aspects are to present novel methods for adaptive therapy. In particular, adaptive therapy has typically focused on feedback to modify a patient's treatment, but the present invention focuses on adaptive therapy processes being used in a quality assurance context. This is particularly true in the context of whole-system verification.


For example, a detector can be used to collect information indicating how much treatment beam has passed through the patient, from which the magnitude of the treatment output can be determined as well as any radiation pattern that was used for the delivery. The benefit of this delivery verification process is that it enables the operator to detect errors in the machine delivery, such as an incorrect leaf pattern or machine output.


However, validating that the machine is functioning properly does not itself ensure proper delivery of a treatment plan, as one also needs to validate that the external inputs used to program the machine are effective and consistent. Thus, one aspect of the invention includes the broader concept of an adaptive-type feedback loop for improved quality assurance of the entire treatment process. In this aspect, the invention includes the steps of positioning the patient for treatment and using a method for image-guidance to determine the patient's position, repositioning the patient as necessary for treatment based upon the image-guidance, and beginning treatment. Then, either during or after treatment, recalculating the patient dose and incorporating the patient image information that had been collected before or during treatment. After completion of these steps, quality assurance data is collected to analyze the extent to which the delivery was not only performed as planned, but to validate that the planned delivery is reasonable in the context of the newly available data. In this regard, the concept of feedback is no longer being used to indicate changes to the treatment based on changes in the patient or delivery, but to validate the original delivery itself.


As an example, it is possible that a treatment plan might be developed for a patient, but that the image used for planning became corrupted, such as by applying an incorrect density calibration. In this case, the treatment plan will be based upon incorrect information, and might not deliver the correct dose to the patient. Yet, many quality assurance techniques will not detect this error because they will verify that the machine is operating as instructed, rather than checking whether the instructions to the machine are based on correct input information. Likewise, some adaptive therapy techniques could be applied to this delivery, but if the calibration problem of this example persisted, then the adapted treatments would suffer from similar flaws.


There are a number of processes that can be used to expand the use of feedback for quality assurance purposes. For example, in one embodiment, this process would include the delivery verification techniques described above. The validation of machine performance that these methods provide is a valuable component of a total-system quality assurance toolset. Moreover, the delivery verification processes can be expanded to analyze other system errors, such as deliveries based on images with a truncated field-of-view.


In one embodiment, the invention provides a method of adapting a treatment plan. The method includes the acts of preparing a treatment plan for a patient, acquiring images of the patient, performing deformable registration of the images, acquiring data relating to a radiation dose delivered to the patient, applying a biological model to relate the radiation dose delivered and a patient effect, and adapting the treatment plan based on the deformable registration and the biological model.


In another embodiment, the invention provides a method of delivering radiation therapy to a patient. The method includes the acts of acquiring an on-line image of at least a portion of the patient while the patient is in a first position, calculating a predictive radiation dose to be delivered to the patient, and applying a biological model to determine a biological effect of the predictive radiation dose on the patient in the first position.


In yet another embodiment, the invention provides a computer program embodied by a computer readable medium capable of being executed by a computer, the computer program for use in a treatment system. The computer program comprises a treatment plan module operable to generate a treatment plan for a patient, an image acquisition module operable to acquire images of at least a portion of the patient, a deformation module operable to generate a deformable registration between at least two of the images, and a modeling module operable to relate a radiation dose delivered to the patient and an effect of the radiation dose on the patient and to adapt the treatment plan based on the deformable registration and the biological model.





Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.


BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a radiation therapy treatment system.



FIG. 2 is a perspective view of a multi-leaf collimator that can be used in the radiation therapy treatment system illustrated in FIG. 1.



FIG. 3 is a schematic illustration of the radiation therapy treatment system of FIG. 1.



FIG. 4 is a schematic diagram of a software program used in the radiation therapy treatment system.



FIG. 5 is a flow chart of a method of evaluating a radiation dose delivered to a patient according to one embodiment of the present invention.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


Although directional references, such as upper, lower, downward, upward, rearward, bottom, front, rear, etc., may be made herein in describing the drawings, these references are made relative to the drawings (as normally viewed) for convenience. These directions are not intended to be taken literally or limit the present invention in any form. In addition, terms such as “first”, “second”, and “third” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance.


In addition, it should be understood that embodiments of the invention include both hardware, software, and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that, in at least one embodiment, the electronic based aspects of the invention may be implemented in software. As such, it should be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components may be utilized to implement the invention. Furthermore, and as described in subsequent paragraphs, the specific mechanical configurations illustrated in the drawings are intended to exemplify embodiments of the invention and that other alternative mechanical configurations are possible.



FIG. 1 illustrates a radiation therapy treatment system 10 that can provide radiation therapy to a patient 14. The radiation therapy treatment can include photon-based radiation therapy, brachytherapy, electron beam therapy, proton, neutron, or particle therapy, or other types of treatment therapy. The radiation therapy treatment system 10 includes a gantry 18. The gantry 18 can support a radiation module 22, which can include a radiation source 24 and a linear accelerator 26 operable to generate a beam 30 of radiation. Though the gantry 18 shown in the drawings is a ring gantry, i.e., it extends through a full 360° arc to create a complete ring or circle, other types of mounting arrangements may also be employed. For example, a C-type, partial ring gantry, or robotic arm could be used. Any other framework capable of positioning the radiation module 22 at various rotational and/or axial positions relative to the patient 14 may also be employed. In addition, the radiation source 24 may travel in path that does not follow the shape of the gantry 18. For example, the radiation source 24 may travel in a non-circular path even though the illustrated gantry 18 is generally circular-shaped.


The radiation module 22 can also include a modulation device 34 operable to modify or modulate the radiation beam 30. The modulation device 34 provides the modulation of the radiation beam 30 and directs the radiation beam 30 toward the patient 14. Specifically, the radiation beam 34 is directed toward a portion of the patient. Broadly speaking, the portion may include the entire body, but is generally smaller than the entire body and can be defined by a two-dimensional area and/or a three-dimensional volume. A portion desired to receive the radiation, which may be referred to as a target 38 or target region, is an example of a region of interest. The target 38 may also include a margin around or partially around the target. Another type of region of interest is a region at risk. If a portion includes a region at risk, the radiation beam is preferably diverted from the region at risk. The patient 14 may have more than one target region that needs to receive radiation therapy. Such modulation is sometimes referred to as intensity modulated radiation therapy (“IMRT”).


The modulation device 34 can include a collimation device 42 as illustrated in FIG. 2. The collimation device 42 includes a set of jaws 46 that define and adjust the size of an aperture 50 through which the radiation beam 30 may pass. The jaws 46 include an upper jaw 54 and a lower jaw 58. The upper jaw 54 and the lower jaw 58 are moveable to adjust the size of the aperture 50.


In one embodiment, and illustrated in FIG. 2, the modulation device 34 can comprise a multi-leaf collimator 62, which includes a plurality of interlaced leaves 66 operable to move from position to position, to provide intensity modulation. It is also noted that the leaves 66 can be moved to a position anywhere between a minimally and maximally-open position. The plurality of interlaced leaves 66 modulate the strength, size, and shape of the radiation beam 30 before the radiation beam 30 reaches the target 38 on the patient 14. Each of the leaves 66 is independently controlled by an actuator 70, such as a motor or an air valve so that the leaf 66 can open and close quickly to permit or block the passage of radiation. The actuators 70 can be controlled by a computer 74 and/or controller.


The radiation therapy treatment system 10 can also include a detector 78, e.g., a kilovoltage or a megavoltage detector, operable to receive the radiation beam 30. The linear accelerator 26 and the detector 78 can also operate as a computed tomography (CT) system to generate CT images of the patient 14. The linear accelerator 26 emits the radiation beam 30 toward the target 38 in the patient 14. The target 38 absorbs some of the radiation. The detector 78 detects or measures the amount of radiation absorbed by the target 38. The detector 78 collects the absorption data from different angles as the linear accelerator 26 rotates around and emits radiation toward the patient 14. The collected absorption data is transmitted to the computer 74 to process the absorption data and to generate images of the patient's body tissues and organs. The images can also illustrate bone, soft tissues, and blood vessels.


The CT images can be acquired with a radiation beam 30 that has a fan-shaped geometry, a multi-slice geometry or a cone-beam geometry. In addition, the CT images can be acquired with the linear accelerator 26 delivering megavoltage energies or kilovoltage energies. It is also noted that the acquired CT images can be registered with previously acquired CT images (from the radiation therapy treatment system 10 or other image acquisition devices, such as other CT scanners, MRI systems, and PET systems). For example, the previously acquired CT images for the patient 14 can include identified targets 38 made through a contouring process. The newly acquired CT images for the patient 14 can be registered with the previously acquired CT images to assist in identifying the targets 38 in the new CT images. The registration process can use rigid or deformable registration tools.


In some embodiments, the radiation therapy treatment system 10 can include an x-ray source and a CT image detector. The x-ray source and the CT image detector operate in a similar manner as the linear accelerator 26 and the detector 78 as described above to acquire image data. The image data is transmitted to the computer 74 where it is processed to generate images of the patient's body tissues and organs.


The radiation therapy treatment system 10 can also include a patient support, such as a couch 82 (illustrated in FIG. 1), which supports the patient 14. The couch 82 moves along at least one axis 84 in the x, y, or z directions. In other embodiments of the invention, the patient support can be a device that is adapted to support any portion of the patient's body. The patient support is not limited to having to support the entire patient's body. The system 10 also can include a drive system 86 operable to manipulate the position of the couch 82. The drive system 86 can be controlled by the computer 74.


The computer 74, illustrated in FIGS. 2 and 3, includes an operating system for running various software programs and/or a communications application. In particular, the computer 74 can include a software program(s) 90 that operates to communicate with the radiation therapy treatment system 10. The software program(s) 90 is operable to receive data from external software programs and hardware and it is noted that data may be input to the software program(s) 90.


The computer 74 can include any suitable input/output device adapted to be accessed by medical personnel. The computer 74 can include typical hardware such as a processor, I/O interfaces, and storage devices or memory. The computer 74 can also include input devices such as a keyboard and a mouse. The computer 74 can further include standard output devices, such as a monitor. In addition, the computer 74 can include peripherals, such as a printer and a scanner.


The computer 74 can be networked with other computers 74 and radiation therapy treatment systems 10. The other computers 74 may include additional and/or different computer programs and software and are not required to be identical to the computer 74, described herein. The computers 74 and radiation therapy treatment system 10 can communicate with a network 94. The computers 74 and radiation therapy treatment systems 10 can also communicate with a database(s) 98 and a server(s) 102. It is noted that the software program(s) 90 could also reside on the server(s) 102.


The network 94 can be built according to any networking technology or topology or combinations of technologies and topologies and can include multiple sub-networks. Connections between the computers and systems shown in FIG. 3 can be made through local area networks (“LANs”), wide area networks (“WANs”), public switched telephone networks (“PSTNs”), wireless networks, Intranets, the Internet, or any other suitable networks. In a hospital or medical care facility, communication between the computers and systems shown in FIG. 3 can be made through the Health Level Seven (“HL7”) protocol or other protocols with any version and/or other required protocol. HL7 is a standard protocol which specifies the implementation of interfaces between two computer applications (sender and receiver) from different vendors for electronic data exchange in health care environments. HL7 can allow health care institutions to exchange key sets of data from different application systems. Specifically, HL7 can define the data to be exchanged, the timing of the interchange, and the communication of errors to the application. The formats are generally generic in nature and can be configured to meet the needs of the applications involved.


Communication between the computers and systems shown in FIG. 3 can also occur through the Digital Imaging and Communications in Medicine (“DICOM”) protocol with any version and/or other required protocol. DICOM is an international communications standard developed by NEMA that defines the format used to transfer medical image-related data between different pieces of medical equipment. DICOM RT refers to the standards that are specific to radiation therapy data.


The two-way arrows in FIG. 3 generally represent two-way communication and information transfer between the network 94 and any one of the computers 74 and the systems 10 shown in FIG. 3. However, for some medical and computerized equipment, only one-way communication and information transfer may be necessary.



FIG. 4 is a schematic illustration of the software program 90. The software program 90 includes a plurality of modules that communicate with one another to perform functions of the radiation therapy treatment process.


The software program 90 includes a treatment plan module 106 operable to generate a treatment plan for the patient 14 based on data input to the system 10 by medical personnel. The data includes one or more images (e.g., planning images and/or pre-treatment images) of at least a portion of the patient 14. The treatment plan module 106 separates the treatment into a plurality of fractions and determines the radiation dose for each fraction or treatment based on the prescription input by medical personnel. The treatment plan module 106 also determines the radiation dose for the target 38 based on various contours drawn around the target 38. Multiple targets 38 may be present and included in the same treatment plan.


The software program 90 also includes a patient positioning module 110 operable to position and align the patient 14 with respect to the isocenter of the gantry 18 for a particular treatment fraction. While the patient is on the couch 82, the patient positioning module 110 acquires an image of the patient 14 and compares the current position of the patient 14 to the position of the patient in a planning or previously acquired image. If the patient's position needs to be adjusted, the patient positioning module 110 provides instructions to the drive system 86 to move the couch 82 or the patient 14 can be manually moved to the new position.


In one aspect, the patient positioning module 110 can receive data from lasers positioned in the treatment room to provide patient position data with respect to the isocenter of the gantry 18. Based on the data from the lasers, the patient positioning module 110 provides instructions to the drive system 86, which moves the couch 82 to achieve proper alignment of the patient 14 with respect to the gantry 18. It is noted that devices and systems, other than lasers, can be used to provide data to the patient positioning module 110 to assist in the alignment process.


The patient positioning module 110 also is operable to detect and/or monitor patient motion during treatment. The patient positioning module 110 may communicate with and/or incorporate a motion detection system 114, such as x-ray, in-room CT, laser positioning devices, camera systems, spirometers, ultrasound, tensile measurements, chest bands, and the like. The patient motion can be irregular or unexpected, and does not need to follow a smooth or reproducible path.


The software program 90 also includes an image module 118 operable to acquire images of at least a portion of the patient 14. The image module 118 can instruct the on-board image device, such as a CT imaging device to acquire images of the patient 14 before treatment commences, during treatment, and after treatment according to desired protocols. In one aspect, the image module 118 acquires an image of the patient 14 while the patient 14 is substantially in a treatment position. Other off-line imaging devices or systems may be used to acquire pre-treatment images of the patient 14, such as non-quantitative CT, MRI, PET, SPECT, ultrasound, transmission imaging, fluoroscopy, RF-based localization, and the like. The acquired pre-treatment image(s) can be used for registration of the patient 14 and/or to generate a deformation map to identify the differences between one or more of the planning images and one or more of the pre-treatment, during-treatment, or after-treatment images.


The acquired images also can be used for registration of the patient 14 and/or to determine or predict a radiation dose to be delivered to the patient 14. The acquired images also can be used to determine a radiation dose that the patient 14 received during prior treatments or fractions. The image module 118 also is operable to acquire images of at least a portion of the patient 14 while the patient is receiving treatment to determine a radiation dose that the patient 14 is receiving in real-time.


The software program 90 also includes a deformation module 122 operable to receive data, such as image data from the image module 118 and the treatment plan module 106 and other patient and system data from the treatment plan module 106 to generate a deformation map of the images. The deformation module 122 can use deformation techniques to determine an accumulation of radiation dose for all delivered treatments.


The deformation module 122 can generate a deformation map to identify the differences between one or more images, e.g., planning images pre-treatment images, during-treatment images, and post-treatment images. For example, a deformation map can be utilized to relate a plurality of images where one image is a planning image that is useful for dose calculation, and another image, such as an on-line image, has qualitative value but has less direct utility for dose calculation. This relationship could then be used to “remap” the more quantitative image to the qualitative shape of the on-line or less quantitative image. The resulting remapped image would be more appropriate than either of the other two images for dose calculation or quantitative applications as it would have the quantitative benefits of the first image, but with the updated anatomical information as contained in the second image. This is useful in a variety of cases, such as where the first image (e.g., a planning image) is a CT image and where the second image lacks quantitative image values (e.g., MRI, PET, SPECT, ultrasound, or non-quantitative CT, etc. images).


The deformation module 122 can correct for geometrical distortion, imperfections, and/or incompleteness in lieu of, or in addition to, quantitative limitations. For example, a current MRI image that represents anatomy well but includes geometric distortion might be remapped to a CT image that is not distorted. Or, multiple images can be used to simultaneously correct for distortion while representing anatomical changes.


The deformation map can be used to calculate radiation dose on patient images acquired after the planning image. It is also useful to accumulate the doses for multiple delivered fractions. The doses can be added based upon the location of the doses in physical space, but another method is to incorporate deformation methods into the process so as to add doses based upon the structures that received the dose, even if the structures have changed location. The deformation module 122 can calculate the doses of radiation that the patient 14 has received from previously delivered fractions.


A deformation map can be generated for purposes of defining a contour around a target 38. The software program 90 can include a contour module 126 operable to generate one or more contours on an image. Generally, medical personnel manually define a contour around a target(s) 38 on a planning image. This process is time consuming. Newly-acquired images (e.g., pre-treatment images) do not have the defined contour(s). It is desirable to generate contours on the new image based upon the old image. A deformation map can be used to assist in the contouring process and can create time savings for the medical personnel while providing quality assurance measures.


The contour can be generated automatically or semi-automatically for a new image (e.g., a pre-treatment image). This process begins with a planning or other baseline patient image that has an initial contour set. When performing either quality assurance or adaptive therapy, it is common to have a new image, for which contours are not yet available. Rather than require medical personnel to manually contour the new image, it can be both faster and more consistent to perform a deformable image registration, and then use the deformation results as the basis for modifying the original contour set to reflect the new patient anatomy. It is generally known that manual contours can suffer from irreproducibilities, whereas automatically-generated contours can potentially be more consistent in applying the principles of an initial contour to the generation of subsequent contours.


A similar family of template-based contouring algorithms has been developed to generate contours for newly-available images, based upon previously-available sets of images and contours. These template-based algorithms might contour a new patient image based upon a previous patient image and contour, or potentially based upon a canonical or atlas patient image and contour. This can be performed for adaptive therapy as a means to accumulate doses in daily images, each with automatic daily contours. It is an aspect of this invention to apply deformation-based contouring or template-based contouring to radiation therapy quality assurance and adaptive therapy. In this aspect, the invention applies these techniques to the particular wealth of image data and types of images that arise during image-guided radiation therapy. Specifically, this includes deformation and template-based contouring of multiple images of the same patient in which contour sets might only exist for one of the images. These multiple images of the patient may arise from use of an on-line or in-room patient imaging system, with images potentially taken on different days, or these images might derive from a “4D” imaging system such as a CT scanner, in which each image represents a phase of motion, such as a breathing phase. It should also be noted that the on-line or in-room imaging system might be the same, a similar, or a different modality from the reference image. For example, the reference image might be a CT image, whereas the on-line image could be CT image, a cone-beam CT image, a megavoltage CT image, a MRI image, an ultrasound image, or an image generated by a different system or device. By porting these contouring techniques to the applications of quality assurance and adaptive therapy, it is possible to both save a considerable amount of time from the contouring of images, and this method can also improve the consistency of contours across multiple images of the same patient (taken at different times or representing different phases).


Another benefit of this process is that the contours generated provide a validation of the deformation process. If the generated contours closely reflect contours that one would manually draw, then it is a good indication that the deformation process is reasonable; whereas if the automatic contours are less relevant, it indicates to the medical personnel that perhaps the deformation is inappropriate, but also provides the medical personnel an opportunity to verify the manual contours to check for mistakes or inconsistencies. Another aspect of this invention is that the deformation-based contours can be used as a rough-draft of the contours for the adaptive process, and manually edited to reflect the desired contours for the on-line images. When doing this, the deformation process can then be re-run, constraining the deformation map to match the initial contours to the manually-edited automatic contours, and this helps direct consistent results through the rest of the image.


While the deformation process above was described in the context of registering one image to another image, it can also work with deformably registering a set of two or more images with another set of one or more images. For example, if there are two pairs of images, each pair comprising an MRI and a CT image, then the deformation map can register the two MRI images together in regions where the MRI has more information, and the CT images together where the CT has more information. These deformations can then be combined. Or deformation maps between the images could be used together, such as for using the CT deformation maps to correct for geometric distortion, imperfections, and/or incompleteness in the MRI images and deformations, and then, having corrected that distortion, imperfections, and/or incompleteness using the MRI deformation maps for better analysis of soft-tissue motion. In a general sense, this process enables imaging improvement via deformation, as poor images can be better understood, and therefore improved, by applying deformation techniques that indicate information like anatomical sizes, shapes, and content. This information can be incorporated into image reconstruction, modification, or enhancement processes.


The software program 90 also includes a modeling module 130 operable to generate and apply a biological model for estimating biological effects for a particular treatment. The biological model can be based upon measurements and models describing the effects of radiation on tissues, tumors, and organs and using knowledge of prescribed or delivered doses. The modeling module 130 can apply a biological model to determine patient effects, and also the effect that the location and/or movement of the patient had on the delivery of the prescribed radiation dose. Based on the biological effects, the medical personnel can adjust the patient 14, the system settings, or make other adjustments in the treatment plan. The biological information can be incorporated in the patient registration process to identify a preferred position for the patient 14 that results in a delivered dose with a preferred biological effect.


The modeling module 130 can utilize data related to the radiation dose actually delivered to the patient and the biological effects of the radiation dose delivered to apply a biological model to relate the radiation dose delivered to the patient and the corresponding patient effects. To relate the radiation dose and the patient effects means a simple comparison or active constraint on a biological model. The net radiation dose delivered (accumulated using deformation techniques) can be used to estimate the biological effect that would result from continuing the treatment, and likewise, possible alternatives for adapting the treatment would be evaluated for a preferred biological effect. The resulting fractionation schedule, dose distribution, and plans can reflect this culmination of information.


The patient or biological effects can be tracked or determined over time by physical observations of the patient 14 and/or with biological tracers. For example, biological tracers can include patient markers and radioactive materials that may be inhaled by and/or injected into the patient 14.


An aspect of this invention is to utilize biological models with the combination of both deformation and adaptive therapy. In particular, when accumulating radiation doses as an aspect of adaptive therapy, it is preferable to use deformation techniques, as these help relate the actual received doses to particular tissues, rather than to physical space. Given this, it is desirable to analyze the doses received based upon the biological effects they cause, rather than purely on physical amount of dose.


A particular extension of biological and deformation based dose accumulation applies to the case of 4D images and 4D dose calculation. “4D” images are a collection of 3D image volumes that each represent a “phase” of a motion pattern, such as breathing. Patient motion and dose calculation on the appropriate portions of a 4D CT (or 4D MRI etc.) image can be enhanced by using biological estimators to evaluate the motion-dependent biological effect, based upon the motion-dependent dose distribution. The modeling module 130 can recalculate dose more accurately on one of the 3D volumes.


The modeling module 130 is operable to receive patient data (real-time and historic), patient images (e.g., the planning images and/or the pre-treatment images), patient position data, anatomical position data, and system or machine data. The modeling module 130 can determine the amount of radiation dose that was delivered to the patient 14 by using data from the motion detection system 114 to identify the phase that the patient was in at any given time, and recalculate the radiation dose for each time in the phase of the 4D CT image that best matches the patient's instantaneous position. Based on a better understanding of the amount of radiation dose that the patient is actually receiving, the medical personnel can make adjustments to the treatment plan, patient position/registration during treatment, dose amount, dose distribution, as well as other parameters and system settings. Dose calculations can also be performed on updated 4D CT images, as well as other types of 4D images, such as 4D PET or 4D MRI, that are acquired before or during treatment.


The process of applying biological models can be performed at the end of the treatment and/or during the course of the treatment such that any discrepancies can be detected and potentially corrected. In one implementation, the total radiation dose delivered (accumulated using deformation) is used to estimate the biological effect to the patient 14 that would result from continuing the treatment, and likewise, possible alternatives for adapting the treatment would be evaluated for a preferred biological effect. The resulting fractionation schedule, dose distribution, and plans can be modified to reflect this culmination of information. Additional information that can be incorporated are ranges, magnitudes, and distributions of motion seen throughout the treatment, or from canonical patient studies. The optimization or adaptation of a treatment plan can be performed to account for the biological effect of this motion, and the plan can be modified to best account for it. Similarly, biologically based adaptive therapy need not rely upon physical dose information, but can also utilize knowledge of chemotherapy agent deliveries, especially using tagged agents that could be imaged with PET, SPECT, or other nuclear medicine equipment. Dose targeting could be defined or modified based upon the other agents delivered, their locations, or based on radioimmunotherapy deliveries or feedback.


This process can be expanded to not only last for the duration of the treatment, but to be a means of tracking patient dose and biological effect over a patient's lifetime. The modeling module 130 can generate a model of radiation dose received over a patient's life, and can incorporate dose history, anticipated biological repair, biological effect, and other parameters. Knowledge of this history can be utilized when designing new radiation therapy treatment plans and other medical plans for the patient 14.


Biological information can also be incorporated for the purposes of patient registration. This method improves upon current registration methods, in which on-line images are used to align the patient based upon the image content, the planned dose distribution, the planning contours, etc. In one embodiment, the method would be to collect an on-line image, auto-contour it (potentially using the deformation-based technique discussed above), perform predictive dose calculation, and then estimate the biological effect for the given patient position. Using this model, registration can then be performed based upon finding the image position that results in a delivered dose that results in the optimal or preferred biological effect.


It is another aspect of this invention to use available a priori knowledge to better or more easily identify structures for purposes of biological estimation. For example, biological models typically require definitions of tissue types or structures in images, since different types of structures may react differently to radiation dose. By performing biological analysis in the context of patient quality assurance and adaptive therapy, it is commonly presumed that there is a planning image and initial contours. Thus, when a new on-line image is collected, structures in this image can be automatically identified as particular biological structures, based not only on the raw image information, but also based upon the processing of this image with regard to the a priori images.


Biological modeling methods can also be applied more directly to dose reconstruction by monitoring changes in biological uptake of agents that respond to dose delivered and/or repair mechanisms. For example, FLT can be used for biological dose reconstruction which can be compared with physical dose reconstruction using biological models.


Adaptive biological therapy can also be used with genetic testing, as genetic testing can potentially identify patients in which metastases are occurring on a cellular level that is not yet detectable to other imaging modalities. Adaptive therapy can be applied to these patients to evaluate where dose has been received, what likely regions for metastases are based upon clinical history and dosimetric evaluation, and then determine a treatment plan that would deliver dose to likely metastatic regions.


Another aspect of this invention is that adaptive therapy can be applied not only based upon the radiation doses received alone, but also on predicted trends in the patient's treatment, clinical results, machine changes, and/or biological markers. For example, if a trend is detected in that a tumor is shrinking, or that a normal tissue structure is gradually migrating, the adaptive planning process could not only account for the current status of the patient and the doses delivered to date, but could also generate plans that reflect anticipated further changes in anatomy. Similarly, when analyzing cumulative dose information during the course of a treatment, the medical personnel could also consider the level of clinical effects and side-effects that the patient is experiencing, either based upon clinical findings or available biological markers or tests. If few side effects are felt, a more aggressive adaptive therapy treatment might be pursued, whereas if more complications are detected, the therapy might be modified to better avoid the affected region. Furthermore, plans can be adapted to compensate for detected changes in the machine, such as variations in output, energy, or calibration.


A variation of this aspect is to perform a radiobiopsy. Early in a treatment, or before radiation treatment fully begins, the patient 14 may receive a fraction with a high dose to a localized region, or potentially a dose only to a localized region. The biological effects on this region can be monitored to determine the nature of that region, such as whether it is tumorous, and what type. An appropriate course of treatment can be determined based upon these results, and the dose already delivered can be incorporated into the planning process.


The software program 90 also includes a treatment delivery module 134 operable to instruct the radiation therapy treatment system 10 to deliver radiation therapy to the patient 14 according to the treatment plan. The treatment delivery module 134 can generate and transmit instructions to the gantry 18, the linear accelerator 26, the modulation device 34, and the couch drive system 86 to deliver radiation to the patient 14. The instructions coordinate the necessary movements of the gantry 18, the modulation device 34, and the couch drive system 86 to deliver the radiation beam 30 to the proper target in the proper amount as specified in the treatment plan.


The treatment delivery module 134 also calculates the appropriate pattern, position, and intensity of the radiation beam 30 to be delivered, to match the prescription as specified by the treatment plan. The pattern of the radiation beam 30 is generated by the modulation device 34, and more particularly by movement of the plurality of leaves in the multi-leaf collimator. The treatment delivery module 134 can utilize canonical, predetermined or template leaf patterns to generate the appropriate pattern for the radiation beam 30 based on the treatment parameters. The treatment delivery module 134 can also include a library of patterns for typical cases that can be accessed in which to compare the present patient data to determine the pattern for the radiation beam 30.



FIG. 5 illustrates a flow chart of a method of adapting a radiation therapy treatment plan according to one embodiment of the invention. Medical personnel generate (at 200) a treatment plan for the patient 14 based on patient data, images, or other information. When the patient 14 is ready for a treatment, medical personnel position (at 204) the patient 14 on the couch 82 with the assistance of the patient positioning module 110 prior to delivery of treatment. Medical personnel initiate (at 208) acquisition of one or more images of the patient 14 while the patient is on the couch 82. After the patient 14 is properly positioned, the medical personnel initiate (at 212) delivery of the treatment plan. Before, during and/or after delivery of the treatment plan, the deformation module 118 performs (at 216) a deformable registration of the one or more images of the patient 14. The modeling module 130 acquires (at 220) data relating to the radiation dose delivered to the patient. The modeling module 130 applies (at 224) a biological model relating the radiation dose delivered and a patient effect. The modeling module 130 also adapts/modifies (at 228) the radiation therapy treatment plan based on the deformable registration and the biological model.


Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A method of adapting a treatment plan, the method comprising: preparing a treatment plan for a patient for treating a patient condition, the preparation including acquiring an internal reference image of the patient;acquiring three-dimensional internal images of the patient in substantially a treatment position;performing deformable registration of the images;acquiring data relating to a radiation dose delivered to the patient;applying a biological model to relate the radiation dose delivered and a patient effect; andadapting subsequent dose delivery of the treatment plan in a radiation delivery device based on the deformable registration and the biological model.
  • 2. A method as set forth in claim 1 wherein the treatment plan is a radiation therapy treatment plan.
  • 3. A method as set forth in claim 1 and further comprising tuning the biological model based on an effect of the radiation dose on the patient.
  • 4. A method as set forth in claim 3 wherein the effect of the radiation dose on the patient can be determined using one of a patient marker and a biological tracer.
  • 5. A method as set forth in claim 1 and further comprising tracking how the patient effect relates to the biological model over a period of time.
  • 6. A method as set forth in claim 5 wherein the period of time is a lifetime of the patient.
  • 7. A method as set forth in claim 5 and further comprising adjusting the biological model parameters based on the relation.
  • 8. A method as set forth in claim 1 and further comprising adapting the treatment plan based on the patient effect.
  • 9. A method as set forth in claim 1 and further comprising evaluating whether a region of interest of the patient moved and wherein the act of adapting the treatment plan incorporates the information relating to motion of the region of interest.
  • 10. A method as set forth in claim 1 and further comprising positioning the patient for a treatment based upon the patient effect of the radiation dose delivered to the patient in prior treatments.
  • 11. A method as set forth in claim 1 and further comprising monitoring the patient effects for trends and adapting the treatment plan based on the trends.
  • 12. A method as set forth in claim 1 wherein the act of adapting the treatment plan further comprises automatically selecting a biological model for evaluation, and automatically applying the biological model to adapt the treatment plan.
  • 13. A method as set forth in claim 1 wherein the biological model is a mathematical model.
  • 14. A method as set forth in claim 1 wherein the biological model is an empirical model.
  • 15. A method as set forth in claim 1 wherein the biological model is a biological effect based on an anatomical influence.
  • 16. A method as set forth in claim 1 wherein the biological model is based on patient metrics.
  • 17. A method as set forth in claim 1 and further comprising performing genetic testing to identify whether the patient condition being treated is predisposed to reoccur.
  • 18. A computer program embodied by a computer readable medium capable of being executed by a computer, the computer program for use in a treatment system, the computer program comprising: a treatment plan module operable to generate a treatment plan for a patient, the plan based at least in part on an internal reference image of the patient;an image acquisition module operable to acquire a three-dimensional internal image of at least a portion of the patient in substantially a treatment position;a deformation module operable to generate a deformable registration between the reference image and the acquired image; anda modeling module operable to relate a radiation dose delivered to the patient and an effect of the radiation dose on the patient and to adapt subsequent dose delivery of the treatment plan based on the deformable registration and a biological model.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 60/701,580, filed on Jul. 22, 2005, titled SYSTEM AND METHOD FOR FEEDBACK GUIDED QUALITY ASSURANCE AND ADAPTATIONS TO RADIATION THERAPY TREATMENT, the entire contents of which are incorporated herein by reference.

US Referenced Citations (313)
Number Name Date Kind
3949265 Holl Apr 1976 A
3964467 Rose Jun 1976 A
4006422 Schriber Feb 1977 A
4032810 Eastham et al. Jun 1977 A
4149081 Seppi Apr 1979 A
4181894 Pottier Jan 1980 A
4189470 Rose Feb 1980 A
4208185 Sawai et al. Jun 1980 A
4273867 Lin et al. Jun 1981 A
4314180 Salisbury Feb 1982 A
4335465 Christiansen et al. Jun 1982 A
4388560 Robinson et al. Jun 1983 A
4393334 Glaser Jul 1983 A
4395631 Salisbury Jul 1983 A
4401765 Craig et al. Aug 1983 A
4426582 Orloff et al. Jan 1984 A
4446403 Cuomo et al. May 1984 A
4480042 Craig et al. Oct 1984 A
4570103 Schoen Feb 1986 A
4664869 Mirzadeh et al. May 1987 A
4703018 Craig et al. Oct 1987 A
4715056 Vlasbloem et al. Dec 1987 A
4736106 Kashy et al. Apr 1988 A
4752692 Jergenson et al. Jun 1988 A
4754760 Fukukita et al. Jul 1988 A
4815446 McIntosh Mar 1989 A
4818914 Brodie Apr 1989 A
4868844 Nunan Sep 1989 A
4870287 Cole et al. Sep 1989 A
4879518 Broadhurst Nov 1989 A
4912731 Nardi Mar 1990 A
4936308 Fukukita et al. Jun 1990 A
4987309 Klasen et al. Jan 1991 A
4998268 Winter Mar 1991 A
5003998 Collett Apr 1991 A
5008907 Norman et al. Apr 1991 A
5012111 Ueda Apr 1991 A
5065315 Garcia Nov 1991 A
5073913 Martin Dec 1991 A
5084682 Swenson et al. Jan 1992 A
5107222 Tsuzuki Apr 1992 A
5124658 Adler Jun 1992 A
5210414 Wallace et al. May 1993 A
5250388 Schoch et al. Oct 1993 A
5317616 Swerdloff et al. May 1994 A
5335255 Seppi et al. Aug 1994 A
5346548 Mehta Sep 1994 A
5351280 Swerdloff et al. Sep 1994 A
5382914 Hamm et al. Jan 1995 A
5391139 Edmundson Feb 1995 A
5394452 Swerdloff et al. Feb 1995 A
5405309 Carden Apr 1995 A
5442675 Swerdloff et al. Aug 1995 A
5453310 Andersen et al. Sep 1995 A
5466587 Fitzpatrick-McElligott et al. Nov 1995 A
5471516 Nunan Nov 1995 A
5483122 Derbenev et al. Jan 1996 A
5489780 Diamondis Feb 1996 A
5523578 Herskovic Jun 1996 A
5528650 Swerdloff et al. Jun 1996 A
5548627 Swerdloff et al. Aug 1996 A
5576602 Hiramoto et al. Nov 1996 A
5578909 Billen Nov 1996 A
5581156 Roberts et al. Dec 1996 A
5596619 Carol Jan 1997 A
5596653 Kurokawa Jan 1997 A
5621779 Hughes et al. Apr 1997 A
5622187 Carol Apr 1997 A
5625663 Swerdloff et al. Apr 1997 A
5627041 Shartle May 1997 A
5641584 Andersen et al. Jun 1997 A
5647663 Holmes Jul 1997 A
5651043 Tsuyuki et al. Jul 1997 A
5661377 Mishin et al. Aug 1997 A
5661773 Swerdloff et al. Aug 1997 A
5667803 Paronen et al. Sep 1997 A
5668371 Deasy et al. Sep 1997 A
5673300 Reckwerdt et al. Sep 1997 A
5692507 Seppi et al. Dec 1997 A
5695443 Brent et al. Dec 1997 A
5712482 Gaiser et al. Jan 1998 A
5721123 Hayes et al. Feb 1998 A
5724400 Swerdloff et al. Mar 1998 A
5729028 Rose Mar 1998 A
5734168 Yao Mar 1998 A
5747254 Pontius May 1998 A
5751781 Brown et al. May 1998 A
5753308 Andersen et al. May 1998 A
5754622 Hughes May 1998 A
5754623 Seki May 1998 A
5760395 Johnstone Jun 1998 A
5802136 Carol Sep 1998 A
5811944 Sampayan et al. Sep 1998 A
5815547 Shepherd et al. Sep 1998 A
5818058 Nakanishi et al. Oct 1998 A
5818902 Yu Oct 1998 A
5820553 Hughes Oct 1998 A
5821051 Androphy et al. Oct 1998 A
5821705 Caporaso et al. Oct 1998 A
5834454 Kitano et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5842175 Andros et al. Nov 1998 A
5866912 Slater et al. Feb 1999 A
5870447 Powell et al. Feb 1999 A
5877023 Sautter et al. Mar 1999 A
5877192 Lindberg et al. Mar 1999 A
5912134 Shartle Jun 1999 A
5920601 Nigg et al. Jul 1999 A
5953461 Yamada Sep 1999 A
5962995 Avnery Oct 1999 A
5963615 Egley et al. Oct 1999 A
5969367 Hiramoto et al. Oct 1999 A
5977100 Kitano et al. Nov 1999 A
5983424 Naslund Nov 1999 A
5986274 Akiyama et al. Nov 1999 A
6011825 Welch et al. Jan 2000 A
6020135 Levine et al. Feb 2000 A
6020538 Han et al. Feb 2000 A
6029079 Cox et al. Feb 2000 A
6038283 Carol et al. Mar 2000 A
6049587 Leksell et al. Apr 2000 A
6066927 Koudijs May 2000 A
6069459 Koudijs May 2000 A
6071748 Modlin et al. Jun 2000 A
6094760 Nonaka et al. Aug 2000 A
6127688 Wu Oct 2000 A
6152599 Salter Nov 2000 A
6171798 Levine et al. Jan 2001 B1
6178345 Vilsmeier et al. Jan 2001 B1
6197328 Yanagawa Mar 2001 B1
6198957 Green Mar 2001 B1
6200959 Haynes et al. Mar 2001 B1
6204510 Ohkawa Mar 2001 B1
6207400 Kwon Mar 2001 B1
6218675 Akiyama et al. Apr 2001 B1
6222905 Yoda et al. Apr 2001 B1
6241670 Nambu Jun 2001 B1
6242747 Sugitani et al. Jun 2001 B1
6264825 Blackburn et al. Jul 2001 B1
6265837 Akiyama et al. Jul 2001 B1
6279579 Riaziat et al. Aug 2001 B1
6291823 Doyle et al. Sep 2001 B1
6316776 Hiramoto et al. Nov 2001 B1
6319469 Mian et al. Nov 2001 B1
6322249 Wofford et al. Nov 2001 B1
6331194 Elizondo-Decanini et al. Dec 2001 B1
6345114 Mackie et al. Feb 2002 B1
6360116 Jackson, Jr. et al. Mar 2002 B1
6385286 Fitchard et al. May 2002 B1
6385288 Kanematsu May 2002 B1
6393096 Carol et al. May 2002 B1
6405072 Cosman Jun 2002 B1
6407505 Bertsche Jun 2002 B1
6417178 Klunk et al. Jul 2002 B1
6424856 Vilsmeier et al. Jul 2002 B1
6428547 Vilsmeier et al. Aug 2002 B1
6433349 Akiyama et al. Aug 2002 B2
6438202 Olivera et al. Aug 2002 B1
6455844 Meyer Sep 2002 B1
6462490 Matsuda et al. Oct 2002 B1
6465957 Whitham et al. Oct 2002 B1
6466644 Hughes et al. Oct 2002 B1
6469058 Grove et al. Oct 2002 B1
6472834 Hiramoto et al. Oct 2002 B2
6473490 Siochi Oct 2002 B1
6475994 Tomalia et al. Nov 2002 B2
6482604 Kwon Nov 2002 B2
6484144 Martin et al. Nov 2002 B2
6487274 Bertsche Nov 2002 B2
6493424 Whitham Dec 2002 B2
6497358 Walsh Dec 2002 B1
6498011 Hohn et al. Dec 2002 B2
6500343 Siddiqi Dec 2002 B2
6504899 Pugachev et al. Jan 2003 B2
6510199 Hughes et al. Jan 2003 B1
6512942 Burdette et al. Jan 2003 B1
6516046 Frohlich et al. Feb 2003 B1
6527443 Vilsmeier et al. Mar 2003 B1
6531449 Khojasteh et al. Mar 2003 B2
6535837 Schach Von Wittenau Mar 2003 B1
6552338 Doyle Apr 2003 B1
6558961 Sarphie et al. May 2003 B1
6560311 Shepard et al. May 2003 B1
6562376 Hooper et al. May 2003 B2
6584174 Schubert et al. Jun 2003 B2
6586409 Wheeler Jul 2003 B1
6605297 Nadachi et al. Aug 2003 B2
6611700 Vilsmeier et al. Aug 2003 B1
6617768 Hansen Sep 2003 B1
6618467 Ruchala et al. Sep 2003 B1
6621889 Mostafavi Sep 2003 B1
6633686 Bakircioglu et al. Oct 2003 B1
6634790 Salter, Jr. Oct 2003 B1
6636622 Mackie et al. Oct 2003 B2
6637056 Tybinkowski et al. Oct 2003 B1
6646383 Bertsche et al. Nov 2003 B2
6653547 Akamatsu Nov 2003 B2
6661870 Kapatoes et al. Dec 2003 B2
6688187 Masquelier Feb 2004 B1
6690965 Riaziat et al. Feb 2004 B1
6697452 Xing Feb 2004 B2
6705984 Angha Mar 2004 B1
6713668 Akamatsu Mar 2004 B2
6713976 Zumoto et al. Mar 2004 B1
6714620 Caflisch et al. Mar 2004 B2
6714629 Vilsmeier Mar 2004 B2
6716162 Hakamata Apr 2004 B2
6723334 McGee et al. Apr 2004 B1
6760402 Ghelmansarai Jul 2004 B2
6774383 Norimine et al. Aug 2004 B2
6787771 Garty et al. Sep 2004 B2
6787983 Yamanobe et al. Sep 2004 B2
6788764 Saladin et al. Sep 2004 B2
6792073 Deasy et al. Sep 2004 B2
6796164 McLoughlin et al. Sep 2004 B2
6800866 Amemiya et al. Oct 2004 B2
6822244 Beloussov et al. Nov 2004 B2
6822247 Sasaki Nov 2004 B2
6838676 Jackson Jan 2005 B1
6842502 Jaffray et al. Jan 2005 B2
6844689 Brown et al. Jan 2005 B1
6871171 Agur et al. Mar 2005 B1
6873115 Sagawa et al. Mar 2005 B2
6873123 Marchand et al. Mar 2005 B2
6878951 Ma Apr 2005 B2
6882702 Luo Apr 2005 B2
6882705 Egley et al. Apr 2005 B2
6888326 Amaldi et al. May 2005 B2
6889695 Pankratov et al. May 2005 B2
6922455 Jurczyk et al. Jul 2005 B2
6929398 Tybinkowski et al. Aug 2005 B1
6936832 Norimine et al. Aug 2005 B2
6955464 Tybinkowski et al. Oct 2005 B1
6963171 Sagawa et al. Nov 2005 B2
6974254 Paliwal et al. Dec 2005 B2
6984835 Harada Jan 2006 B2
6990167 Chen Jan 2006 B2
7015490 Wang et al. Mar 2006 B2
7046762 Lee May 2006 B2
7051605 Lagraff et al. May 2006 B2
7060997 Norimine et al. Jun 2006 B2
7077569 Tybinkowski et al. Jul 2006 B1
7081619 Bashkirov et al. Jul 2006 B2
7084410 Beloussov et al. Aug 2006 B2
7087200 Taboas et al. Aug 2006 B2
7112924 Hanna Sep 2006 B2
7130372 Kusch et al. Oct 2006 B2
7154991 Earnst et al. Dec 2006 B2
7186986 Hinderer et al. Mar 2007 B2
7186991 Kato et al. Mar 2007 B2
7203272 Chen Apr 2007 B2
7209547 Baier et al. Apr 2007 B2
7221733 Takai et al. May 2007 B1
7252307 Kanbe et al. Aug 2007 B2
7257196 Brown et al. Aug 2007 B2
20020007918 Owen et al. Jan 2002 A1
20020077545 Takahashi et al. Jun 2002 A1
20020080915 Frohlich Jun 2002 A1
20020085668 Blumhofer et al. Jul 2002 A1
20020091314 Schlossbauer et al. Jul 2002 A1
20020115923 Erbel Aug 2002 A1
20020120986 Erbel et al. Sep 2002 A1
20020122530 Erbel et al. Sep 2002 A1
20020136439 Ruchala et al. Sep 2002 A1
20020150207 Kapatoes et al. Oct 2002 A1
20020187502 Waterman et al. Dec 2002 A1
20020193685 Mate et al. Dec 2002 A1
20030007601 Jaffray et al. Jan 2003 A1
20030031298 Xing Feb 2003 A1
20030086527 Speiser et al. May 2003 A1
20030105650 Lombardo et al. Jun 2003 A1
20030174872 Chalana et al. Sep 2003 A1
20040010418 Buonocore et al. Jan 2004 A1
20040068182 Misra Apr 2004 A1
20040116804 Mostafavi Jun 2004 A1
20040165696 Lee Aug 2004 A1
20040202280 Besson Oct 2004 A1
20040230115 Scarantino et al. Nov 2004 A1
20040254492 Zhang et al. Dec 2004 A1
20040254773 Zhang et al. Dec 2004 A1
20040264640 Myles Dec 2004 A1
20050013406 Dyk et al. Jan 2005 A1
20050031181 Bi et al. Feb 2005 A1
20050080332 Shiu et al. Apr 2005 A1
20050096515 Geng May 2005 A1
20050123092 Mistretta et al. Jun 2005 A1
20050143965 Failla et al. Jun 2005 A1
20050180544 Sauer et al. Aug 2005 A1
20050197564 Dempsey Sep 2005 A1
20050251029 Khamene et al. Nov 2005 A1
20060074292 Thomson et al. Apr 2006 A1
20060083349 Harari et al. Apr 2006 A1
20060100738 Alsafadi et al. May 2006 A1
20060133568 Moore Jun 2006 A1
20060193429 Chen Aug 2006 A1
20060193441 Cadman Aug 2006 A1
20060285639 Olivera et al. Dec 2006 A1
20070041494 Ruchala et al. Feb 2007 A1
20070041495 Olivera et al. Feb 2007 A1
20070041497 Schnarr et al. Feb 2007 A1
20070041498 Olivera et al. Feb 2007 A1
20070041499 Lu et al. Feb 2007 A1
20070041500 Olivera et al. Feb 2007 A1
20070076846 Ruchala et al. Apr 2007 A1
20070088573 Ruchala et al. Apr 2007 A1
20070104316 Ruchala et al. May 2007 A1
20070127623 Goldman et al. Jun 2007 A1
20070189591 Lu et al. Aug 2007 A1
20070195922 Mackie et al. Aug 2007 A1
20070195929 Ruchala et al. Aug 2007 A1
20070195930 Kapatoes et al. Aug 2007 A1
20070201613 Lu et al. Aug 2007 A1
20070211857 Urano et al. Sep 2007 A1
Foreign Referenced Citations (4)
Number Date Country
2091275 Sep 1993 CA
2180227 Dec 1996 CA
WO 03076003 Sep 2003 WO
2004057515 Jul 2004 WO
Related Publications (1)
Number Date Country
20070043286 A1 Feb 2007 US
Provisional Applications (1)
Number Date Country
60701580 Jul 2005 US