Funding support is provided by the U.S. Department of Energy under the grant DE-EE0007888-02-7.
The present invention relates in general to non-ideal mixed gas adsorption. In particular, the present invention relates to a method and system for adsorbed phase activity coefficients for mixed-gas adsorption.
Without limiting the scope of the invention, its background is described in connection with local composition activity coefficients for mixed-gas adsorption for two gases.
The cornerstone of any gas adsorption system design is the accuracy of the vapor-adsorbate equilibrium (VAE) predictions. The multicomponent Langmuir isotherm equation [1], while useful for extracting insight into the fundamental thermodynamics of adsorption, cannot provide predictions with sufficient accuracy for rigorous adsorption design for systems of industrial interest, such as air separation, nitrogen rejection from methane, and carbon dioxide capture [2]. Beyond the multicomponent Langmuir isotherm equation, many theoretical models have been proposed to describe multicomponent adsorption, broadly classified here as solution theories [3-6], potential theories [7-10], and statistical theories [11, 12]. However, these models often become unwieldy and difficult for practicing engineers to comprehend and use, and are largely confined to academic and industrial research interests. Among them, solution theories are the most likely candidates for general use by practicing engineers due to their similarity to traditional vapor-liquid equilibria (VLE) calculations in classical thermodynamics.
Myers and Prausnitz [3] used classical surface thermodynamics to develop the Ideal Adsorbed Solution Theory (IAST), which to this date is considered the benchmark for modeling mixture adsorption isotherms [13]. The authors assume the adsorbate phase behaves as an ideal solution at constant spreading pressure (π) in equilibrium with an ideal gas phase, resulting in a Raoult's law type expression given by Eq. 1.
y
i
P=x
i
P
i
0(π) (1)
In Eq. 1, P is the total system pressure, yi and xi are the mole fractions of component i in the gas and the adsorbate phase, respectively, and Pi0 is the equilibrium gas phase pressure of the pure component i at the same temperature and spreading pressure as the adsorbed mixture. IAST is known to work well for chemically similar molecules of similar size, but IAST fails to predict the adsorption equilibria of polar gas mixtures, such as O2—CO and CO2—C3H8 binaries, and for heterogeneous adsorbents like molecular sieves or metal organic frameworks (MOFs) [13].
Deviations from IAST behavior are typically negative, as shown by Myers and coworkers for the adsorption of mixtures on heterogeneous surfaces [14, 15]. The Real Adsorbed Solution Theory (RAST) was proposed to account for the non-ideality during adsorption [14, 16-19]. In analogy with the treatment of non-ideal solutions in VLE, the modified Raoult's law type expression in RAST can be written as Eq. 2.
y
i
P=x
iγi(xi, π)Pi0(π) (2)
In Eq. 2, γi is the activity coefficient of the adsorbate species i, which reflects the non-ideality of the adsorbate phase. Similar to VLE, the activity coefficient is defined as the ratio of the fugacity of the component in the real adsorbate mixture and the fugacity at a reference state, usually taken to be the pure adsorbate at the same temperature and spreading pressure as the mixture and is therefore a function of pressure [17, 20].
Various well known activity coefficient models such as Van Laar, Wilson, NRTL, and UNIQUAC [16-19] have been used to calculate the activity coefficients of the adsorbate phase components. However, these popular activity coefficient models were developed for bulk liquids and they do not properly account for the unique adsorbate-adsorbent interactions present in the adsorption systems. Consequently, these models fail to correlate mixture isotherm data properly; the regressed model binary interaction parameters lack physical significance; the model extrapolations for multicomponent systems are not to be trusted [17, 20]. To address these issues, this study presents a novel activity coefficient expression that properly takes into consideration the effect of adsorbate-adsorbent interactions with the non-random two-liquid (NRTL) theory of Renon and Prausnitz [21].
Methods and systems for identifying local composition activity coefficients for mixed-gas adsorption are desirable.
Taking into consideration the adsorbate-adsorbent interactions, a novel activity coefficient model is derived from the non-random two-liquid theory for mixed-gas adsorption equilibrium. In contrast with the conventional activity coefficient models developed for bulk liquids, the new model correctly predicts negative deviations from ideality for adsorbed gas mixtures and azeotropic behavior exhibited by selected gas-adsorbent systems. Requiring a single binary interaction parameter per adsorbate-adsorbate pair, the model successfully correlates wide varieties of gas adsorption isotherm data and it is a powerful engineering thermodynamic tool in correlating and predicting multicomponent adsorption isotherms.
In some embodiments of the disclosure, a computerized method for identifying activity coefficients for mixed-gas adsorption equilibrium in a gas adsorption system includes: providing one or more processors, a memory communicably coupled to the one or more processors and an input/output device communicably coupled to the one or more processors; calculating a first gas activity coefficient γ1 for a first gas using the one or more processors and a first equation comprising
calculating a second gas activity coefficient γ2 for a second gas using the one or more processors and a second equation comprising
wherein: x1 is a bulk mole fraction of the first gas, x2 is a bulk mole fraction of the second gas, α is a first adjustable parameter, τ12 is derived by regression from mixture isotherm data and reflects a difference between adsorbate-adsorbent interactions of the first gas and the second gas, and
g20 is an interaction energy between molecules of the first gas and an adsorbent adsorption site, g20 is an interaction energy between molecules of the second gas and an adsorbent adsorption site, R is the gas constant, and T is a temperature for the gas adsorption system; providing the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas to the input/output device; and using the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas in the gas adsorption system. In one aspect, the first gas or the second gas is polar. In another aspect, the first gas is C2H4 and the second gas is C2H6; the first gas is C2H4 and the second gas is C3H6; the first gas is CO2 and the second gas is C2H4; or the first gas is O2 and the second gas is N2. In another aspect, the adsorbent adsorption site comprises activated carbon, silica gel, zeolite molecular sieve 13X, or zeolite molecular sieve 10X. In another aspect, the temperature is from 273 K to 323 K. In another aspect, a pressure for the gas adsorption system is from 10 kPa to 102 kPa. In another aspect, the gas adsorption system comprises an air separation system, a nitrogen rejection from methane system, or a carbon dioxide capture system. In another aspect, the input/output device comprises an interface to the gas adsorption system.
In some embodiments of the disclosure, a non-transitory computer readable medium containing program instructions that cause one or more processors to perform a method for identifying activity coefficients for mixed-gas adsorption equilibrium in a gas adsorption system includes: calculating a first gas activity coefficient γ1 for a first gas using a first equation comprising
calculating a second gas activity coefficient γ2 for a second gas using a second equation comprising
wherein: x1 is a bulk mole fraction of the first gas, x2 is a bulk mole fraction of the second gas, α is a first adjustable parameter, τ12 is derived by regression from mixture isotherm data and reflects a difference between adsorbate-adsorbent interactions of the first gas and the second gas, and
g10 is an interaction energy between molecules of the first gas and an adsorbent adsorption site, g20 is an interaction energy between molecules of the second gas and an adsorbent adsorption site, R is the gas constant, and T is a temperature for the gas adsorption system; providing the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas to an input/output device communicably coupled to the one or more processors; and using the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas in the gas adsorption system. In one aspect, the first gas or the second gas is polar. In another aspect, the first gas is C2H4 and the second gas is C2H6; the first gas is C2H4 and the second gas is C3H6; the first gas is CO2 and the second gas is C2H4; or the first gas is O2 and the second gas is N2. In another aspect, the adsorbent adsorption site comprises activated carbon, silica gel, zeolite molecular sieve 13X, or zeolite molecular sieve 10X. In another aspect, the temperature is from 273 K to 323 K. In another aspect, a pressure for the gas adsorption system is from 10 kPa to 102 kPa. In another aspect, the gas adsorption system comprises an air separation system, a nitrogen rejection from methane system, or a carbon dioxide capture system. In another aspect, the input/output device comprises an interface to the gas adsorption system.
In some embodiments of the disclosure, a system for identifying activity coefficients for mixed-gas adsorption equilibrium in a gas adsorption system includes: a memory; an input/output device; and one or more processors communicably coupled to the memory and the input/output device, wherein the one or more processors: calculate a first gas activity coefficient γ1 for a first gas using the one or more processors and a first equation comprising ln
calculate a second gas activity coefficient γ2 for a second gas using the one or more processors and a second equation comprising ln
wherein: x1 is a bulk mole fraction of the first gas, x2 is a bulk mole fraction of the second gas, α is a first adjustable parameter, τ12 is derived by regression from mixture isotherm data and reflects a difference between adsorbate-adsorbent interactions of the first gas and the second gas, and
g10 is an interaction energy between molecules of the first gas and an adsorbent adsorption site, 920 is an interaction energy between molecules of the second gas and an adsorbent adsorption site, R is the gas constant, and T is a temperature for the gas adsorption system; provide the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas to the input/output device; and use the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas in the gas adsorption system. In one aspect, the first gas or the second gas is polar. In another aspect, the first gas is C2H4 and the second gas is C2H6; the first gas is C2H4 and the second gas is C3H6; the first gas is CO2 and the second gas is C2H4; or the first gas is O2 and the second gas is N2. In another aspect, the adsorbent adsorption site comprises activated carbon, silica gel, zeolite molecular sieve 13X, or zeolite molecular sieve 10X. In another aspect, the temperature is from 273 K to 323 K. In another aspect, a pressure for the gas adsorption system is from 10 kPa to 102 kPa. In another aspect, the gas adsorption system comprises an air separation system, a nitrogen rejection from methane system, or a carbon dioxide capture system. In another aspect, the input/output device comprises an interface to the gas adsorption system.
In addition to the foregoing, various other method, system, and apparatus aspects are set forth in the teachings of the present disclosure, such as the claims, text, and drawings forming a part of the present disclosure.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations, and omissions of detail. Consequently, those skilled in the art will appreciate that this summary is illustrative only and is not intended to be in any way limiting. There aspects, features, and advantages of the devices, processes, and other subject matter described herein will be become apparent in the teachings set forth herein.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures, in which:
and the real case scenario
for an equimolar C2H6 (1)-C3H6 (2) mixture from the pure component isotherms on activated carbon [26] at 323 K and 10 kPa, τ12=1.515.
Illustrative embodiments of the system of the present application are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
Taking into consideration the adsorbate-adsorbent interactions, a novel activity coefficient model is derived from the non-random two-liquid theory for mixed-gas adsorption equilibrium. In contrast with the conventional activity coefficient models developed for bulk liquids, the new model correctly predicts negative deviations from ideality for adsorbed gas mixtures and azeotropic behavior exhibited by selected gas-adsorbent systems. Requiring a single binary interaction parameter per adsorbate-adsorbate pair, the model successfully correlates wide varieties of gas adsorption isotherm data and it is a powerful engineering thermodynamic tool in correlating and predicting multicomponent adsorption isotherms.
A novel activity coefficient model for mixed gas adsorption equilibria is described herein. The model accurately correlates binary mixture adsorption isotherm data for wide varieties of adsorbents including, but not limited to, silica gel, activated carbon, and zeolites. This model is believed to be the first and only activity coefficient model that is capable of fully representing the non-ideality of gas adsorption systems including those exhibiting azeotrope behavior. Requiring only a single binary interaction parameter per adsorbate-adsorbate binary, the model should be a very powerful engineering thermodynamic tool to correlate and predict gas adsorption equilibria in support of rigorous process modeling and simulation of multicomponent adsorption systems and processes. While this discussion focuses on the model formulation and its capability to correlate binary adsorption isotherm data, the model can be applied to correlate pure component isotherms, estimation of the binary interaction parameters from pure component isotherms, estimation of enthalpy of adsorption, and development of methodology to predict the binary interaction parameters from molecular simulations.
The thermodynamic framework for the new activity coefficient model will now be described. Following the NRTL theory [21], the local compositions of a binary adsorbate phase are first defined. Consider that the adsorption site of adsorbent “0” is surrounded by adsorbate molecule “1” and molecule “2”. This can be imagined as a situation where the adsorption site connects multiple cages in a framework with molecules adsorbed in each cage, as shown in
x
10
+x
20=1 (3)
where x10 and x20 are the local mole fractions of adsorbate component 1 and adsorbate component 2, respectively. The distribution of these molecules in the local domain can be expressed in terms of bulk mole fractions, x1 and x2, adjusted by a Boltzmann distribution type relationship, similar to the work of Renon and Prausnitz [21].
In Eq. 4, g10 is the interaction energy between the adsorbate molecule i (i=1, 2) and the adsorption site of the adsorbent. The adsorption site is assumed not to interact energetically with its neighboring adsorption site, therefore Eq. 4 does not include any g00 terms. A non-randomness factor, α, related to the inverse of the coordination number [21, 22], is introduced to scale the interaction energy between the adsorbate molecules and the adsorption site on a per adsorbate molecule basis. Furthermore, adsorbate-adsorbate intermolecular interactions are assumed to be negligible compared to the adsorbate-adsorbent interactions. The local mole fractions can be obtained by combining Eqs. 3 and 4.
Once again following the derivation of Renon and Prausnitz [21], the molar excess Gibbs free energy of the adsorbate mixture is treated with Scott's two-liquid theory [23]. The molar excess free energy is the sum of the changes in residual Gibbs free energy involved in exchanging molecules of a pure adsorbate phase at the same temperature and spreading pressure of the adsorbate mixture with those in the solution weighted by their bulk mole fractions.
h
E
=x
1(g(0)−gpure,1(0))+x2(g(0)−gpure,2(0)) (7)
where g(0)x10g10+x20g20, gpure,1(0)=g10, and gpure,2(0)=g20. Eq. 7 can therefore be rewritten as Eq. 8.
g
E
=x
1(x10g10+x20g20)+x2(x10g10+x20g20)−x1g10−x2g20 (8)
Substituting the expressions for x10 and x20 from Eqs. 5 and 6 into Eq. 8 and assuming the non-randomness factors α10 and α20 are equivalent and constant (α10=α20=α), the excess free energy is described by Eq. 9.
In keeping with the nomenclature of NRTL, Eq. 9 can be recast as Eq. 10 using the relations
The activity coefficient of adsorbate component 1 in a binary mixture is related to the partial molar excess Gibbs free energy by Eq. 11.
Substituting Eq. 10 in Eq. 11 yields expressions for the activity coefficients of adsorbate component 1 and adsorbate component 2.
Eqs. 12 and 13 represent the new activity coefficient expressions for the components in a binary mixture of the adsorbate phase, referred to as the adsorption Non-Random Two-Liquid equation (aNRTL). According to Eqs. 12 and 13, there are two adjustable parameters: αand τ12. Following the NRTL model convention, α is often fixed semi-empirically at 0.2 or 0.3 [21, 22] while τ12 is to be regressed from literature mixture isotherm data and reflects the difference between the adsorbate-adsorbent interactions. Since g10 and g20 represent the attractive interaction energy involved in adsorption, both values are negative. If τ12<0, then the g10 interaction is stronger (more negative) compared to g20, implying that component 1 is the thermodynamically preferred adsorbate. Conversely, if τ12>0, then g20 interaction is stronger and component 2 would be the thermodynamically preferred adsorbate. Furthermore, τ12=0 yields unity activity coefficients and the corresponding adsorbate phase behaves as an ideal solution described by IAST.
As mentioned earlier, it is assumed that the competitive adsorption is solely dependent on the difference between the adsorbate-adsorbent interaction, τ12. No assumptions are made on the spreading pressure dependence, if any, of τ12. Using the aNRTL model on pure component isotherms, it was found that g10 and g20 are a function of temperature and independent of adsorption coverage extent and spreading pressure, suggesting τ12 should be independent of spreading pressure.
It is interesting that the numerator of Eq. 10, the excess Gibbs energy expression derived from the NRTL theory for a binary adsorbate mixture, is consistent with the excess Gibbs energy expression proposed by Siperstein and Myers [24]. Considered the simplest form with the built-in limits required of adsorption theory, the empirical excess function of Siperstein and Myers requires up to three adjustable parameters while the proposed aNRTL model requires only one adjustable binary interaction parameter τ12. Given proper force field parameters for the adsorbate-adsorbent interaction, it should be possible to estimate τ12 from molecular sizes and potentials of mean force from molecular simulations [22].
For a multicomponent system with ‘m’ number of components, the molar excess Gibbs free energy can be described by Eq. 14.
The activity coefficients are then given by Eq. 15.
To predict the activity coefficients in multicomponent systems, Eq. 15 requires only the binary interaction parameters r determined from binary adsorption isotherm data.
The sensitivity analysis of the activity coefficient model will now be described. The behavior of the proposed aNRTL activity coefficient model depends strongly on the adsorbate-adsorbent interaction energy, τ12.
Implementation of the aNRTL model in VAE calculations involves first fitting pure component isotherm data to obtain a relationship between the adsorption amount and the gas phase pressure. Once the pure component isotherms are available, the spreading pressure of each component can be calculated using the Gibbs definition of adsorption, under the condition that the total area available for adsorption (A) is temperature invariant.
The adsorption isotherm for a pure component i can be expressed using various pure component isotherm equations such as Langmuir, Freundlich, Sips, Toth, etc. In this discussion, either the Langmuir or Sips isotherm equations are used to represent the pure component isotherm data. The Langmuir isotherm equation is given by Eq. 17, while the Sips (Langmuir-Freundlich) isotherm is given by Eq. 18.
In Eqs. 17 and 18, ni0 is the maximum amount adsorbed corresponding to a complete monolayer coverage in the Langmuir model, expressed in moles per kilogram of adsorbent; b is the Langmuir adsorption constant; k is a dimensionless empirical “heterogeneity” parameter [25]. Table 1 gives the regressed values of the Langmuir and Sips isotherm parameters for a few gas adsorption systems.
aUnits of no and b are (mol/kg) and (kPa−1) respectively.
Generally speaking, the Langmuir isotherm is the model of choice since it involves only two adjustable parameters. The Sips isotherm is used when the Langmuir isotherm does not adequately correlate the isotherm data.
If τij's are known, then the remaining RAST calculations are straight forward. Shown in
The procedures described in
More specifically, the known variables are provided in block 302, namely: system temperature (T) and pressure (P); pure component isotherms (n v/s P); gas phase composition, y1, y2; and binary interaction parameter, τ12. A guess of x1 is provided in block 304. In block 306, γi and γ2 are calculated, equilibrium pressures P10 and P20 are calculated using modified Raoult's law:
and the spreading pressure πi of each component in the mixture is calculated using Eq. 16. If the convergence criterion,
is false, as determined in decision block 308, the process loops back to block 304 to guess the next x1. If however, the convergence criterion is true, as determined in decision block 308, ni(P1o), ni(P2o) are calculated, and nT is calculated using Eq. 19 in block 310.
(green dashed line 400) and the real case scenario
(green solid line 402) for an equimolar C2H6 (1, blue solid line 404) —C3H6 (2, red solid line 406) mixture from the pure component isotherms on activated carbon [26] at 323 K and 10 kPa, τ12=1.515. The adsorption of an equimolar C2H6-C3H6 [16] mixture on activated carbon at 323 K and 10 kPa has been shown with both the IAST assumption and the RAST assumption. In the IAST scenario, γi=1, the spreading pressure of equimolar composition of C2H6—C3H6 mixture [26] on activated carbon would have the equilibrium pressures corresponding to P1o and P2o. For example, with y1=y2=0.5, the equilibrium partial pressures are P1o=59.45 kPa and P2o=5.46 kPa and the corresponding spreading pressure of the mixture is
The adsorbate phase compositions of the mixture corresponding to the above calculated spreading pressure would be x1=0.084 and x2=0.916. However, when the activity coefficients are taken into consideration as in the RAST scenario, the spreading pressure of the mixture is corresponding to the equilibrium pressures of P1o′ and P2o′. Thus, for y1=y2=0.5, the corresponding equilibrium partial pressures would be P1o′=62.23 kPa and P2o′=5.77 kPa as shown in
which would yield adsorbate phase compositions of x′1=0.128 and x′232 0.872.
Binary adsorption behavior was studied on different adsorbents including activated carbon, silica gel and various types of zeolite molecular sieves. The surface of activated carbon and silica gels is nonpolar or slightly polar and their heat of adsorption is generally low [27]. Therefore, these adsorbents are typically used for adsorbing nonpolar or weakly polar organic molecules or molecules having similar size and shape characteristics. As a result, IAST model tends to give satisfactory predictions for gas mixtures adsorbed on silica gel and activated carbon. Zeolites on the other hand are highly non-ideal, polar adsorbents and therefore, based on their shape and aperture size, they have wide applications such as air purification, air separation, separations based on molecular size and shape etc. [27] IAST does not give accurate predictions for adsorption with zeolites.
Tables 1 to 6 present the values of the pure component adsorption isotherm parameters and the binary interaction parameters obtained from data regression of pure component isotherm data and binary mixture adsorption data available in the literature. The objective function used in the regression of the binary mixture adsorption data is to minimize the average absolute deviation (AAD %) which is defined as:
where x1calc and x1exp are the calculated value and the experimental value of the mole fraction of component 1 in the adsorbate phase respectively, and N is the total number of data points in the binary mixture adsorption data set. The AAD's have been reported for the calculations performed using the new activity coefficient model and the IAST model.
Silica Gel
Table 1 presents the pure component adsorption isotherm parameters of various systems [28-31] obtained using either Langmuir or Sips equation whereas Table 2 presents the binary interaction parameters regressed using the mixture isotherm data of the above systems.
aα = 0.3, Numbers in the brackets represent the actual number of data points used in the regression
The regressed τ12 values are generally close to zero, suggesting relatively ideal adsorbate phase. Therefore, the RAST results are only slightly better than the IAST results. As an example,
Activated Carbon
Tables 3 and 4 enlist the pure component isotherm parameters and the binary interaction parameters regressed using the pure component and mixture adsorption isotherm data [26, 28-30] respectively.
k = 1.458
k = 1.263
k = 1.494
k = 2.333
k = 1.331
k = 1.429
k = 1.331
k = 1.429
k = 1.331
k = 1.974
k = 1.429
k = 1.974
Similar to the silica gel cases above, the regressed τ12 values are close to zero, suggesting relatively ideal adsorbate phase. Therefore, the RAST results are only slightly better than the IAST predictions.
Zeolites
Tables 5 and 6 report the pure component isotherm parameters and the binary interaction parameters respectively for various kinds of zeolites regressed using the pure component and mixture adsorption isotherm data [17, 32-36].
which could be defined as the difference between the spreading pressure of the mixture at non-ideal conditions and the spreading pressure of the mixture at ideal conditions. This difference keeps on increasing with the decrease in temperature which reflects the fact that a mixture becomes more and more non-ideal with the decrease in temperature.
Multicomponent Mixture
The proposed new activity coefficient model is readily extendable to predict multicomponent adsorptions using the binary interaction parameters regressed from the binary mixture data.
calculate a second gas activity coefficient γ2 for a second gas using the one or more processors and a second equation comprising
wherein: x1 is a bulk mole fraction of the first gas, x2 is a bulk mole fraction of the second gas, α is a first adjustable parameter, τ12 is derived by regression from mixture isotherm data and reflects a difference between adsorbate-adsorbent interactions of the first gas and the second gas, and
g10 is an interaction energy between molecules of the first gas and an adsorbent adsorption site, g20 is an interaction energy between molecules of the second gas and an adsorbent adsorption site, R is the gas constant, and T is a temperature for the gas adsorption system; provide the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas to the input/output device; and use the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas in the gas adsorption system. Note that the one or more processors can be part of one or more controller, computers, servers or other devices suitable for performing the method. The memory can be any type of data storage. The input/output device can be any component capable of interfacing with the one or more processors. The components can be local, remote or a combination thereof. Moreover, the components can be part of a distributed computing architecture, design system or control system. In one aspect, the first gas or the second gas is polar. In another aspect, the first gas is C2H4 and the second gas is C2H6; the first gas is C2H4 and the second gas is C3H6; the first gas is CO2 and the second gas is C2H4; or the first gas is O2 and the second gas is N2. In another aspect, the adsorbent adsorption site comprises activated carbon, silica gel, zeolite molecular sieve 13X, or zeolite molecular sieve 10X. In another aspect, the temperature is from 273 K to 323 K. In another aspect, a pressure for the gas adsorption system is from 10 kPa to 102 kPa. In another aspect, the gas adsorption system comprises an air separation system, a nitrogen rejection from methane system, or a carbon dioxide capture system. In another aspect, the input/output device comprises an interface to the gas adsorption system.
calculating a second gas activity coefficient γ2 for a second gas using the one or more processors and a second equation comprising
in block 1304; wherein: x1 is a bulk mole fraction of the first gas, x2 is a bulk mole fraction of the second gas, α is a first adjustable parameter, τ12 is derived by regression from mixture isotherm data and reflects a difference between adsorbate-adsorbent interactions of the first gas and the second gas, and
g10 is an interaction energy between molecules of the first gas and an adsorbent adsorption site, g20 is an interaction energy between molecules of the second gas and an adsorbent adsorption site, R is the gas constant, and T is a temperature for the gas adsorption system; providing the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas to the input/output device in block 1306; and using the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas in the gas adsorption system in block 1308. Note that the one or more processors can be part of one or more controller, computers, servers or other devices suitable for performing the method. The memory can be any type of data storage. The input/output device can be any component capable of interfacing with the one or more processors. The components can be local, remote or a combination thereof. Moreover, the components can be part of a distributed computing architecture, design system or control system. In one aspect, the first gas or the second gas is polar. In another aspect, the first gas is C2H4 and the second gas is C2H6; the first gas is C2H4 and the second gas is C3H6; the first gas is CO2 and the second gas is C2H4; or the first gas is O2 and the second gas is N2. In another aspect, the adsorbent adsorption site comprises activated carbon, silica gel, zeolite molecular sieve 13X, or zeolite molecular sieve 10X. In another aspect, the temperature is from 273 K to 323 K. In another aspect, a pressure for the gas adsorption system is from 10 kPa to 102 kPa. In another aspect, the gas adsorption system comprises an air separation system, a nitrogen rejection from methane system, or a carbon dioxide capture system. In another aspect, the input/output device comprises an interface to the gas adsorption system.
The foregoing method can be implemented as a non-transitory computer readable medium. More specifically, a non-transitory computer readable medium containing program instructions that cause one or more processors to perform a method for identifying activity coefficients for mixed-gas adsorption equilibrium in a gas adsorption system includes: calculating a first gas activity coefficient γ1 for a first gas using a first equation comprising ln
calculating a second gas activity coefficient γ2 for a second gas using a second equation comprising ln
wherein: x1 is a bulk mole fraction of the first gas, x2 is a bulk mole fraction of the second gas, α is a first adjustable parameter, τ12 is derived by regression from mixture isotherm data and reflects a difference between adsorbate-adsorbent interactions of the first gas and the second gas, and
g10 is an interaction energy between molecules of the first gas and an adsorbent adsorption site, g20 is an interaction energy between molecules of the second gas and an adsorbent adsorption site, R is the gas constant, and T is a temperature for the gas adsorption system; providing the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas to an input/output device communicably coupled to the one or more processors; and using the first gas activity coefficient γ1 for the first gas and the second gas activity coefficient γ2 for the second gas in the gas adsorption system. In one aspect, the first gas or the second gas is polar. In another aspect, the first gas is C2H4 and the second gas is C2H6; the first gas is C2H4 and the second gas is C3H6; the first gas is CO2 and the second gas is C2H4; or the first gas is O2 and the second gas is N2. In another aspect, the adsorbent adsorption site comprises activated carbon, silica gel, zeolite molecular sieve 13X, or zeolite molecular sieve 10X. In another aspect, the temperature is from 273 K to 323 K. In another aspect, a pressure for the gas adsorption system is from 10 kPa to 102 kPa. In another aspect, the gas adsorption system comprises an air separation system, a nitrogen rejection from methane system, or a carbon dioxide capture system. In another aspect, the input/output device comprises an interface to the gas adsorption system.
One skilled in the art of mixed-gas adsorption will recognize that the present invention provide sufficiently accurate activity coefficients for mixed-gas adsorption equilibrium for predictions with sufficient accuracy for rigorous adsorption design for systems of industrial interest.
It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. In embodiments of any of the compositions and methods provided herein, “comprising” may be replaced with “consisting essentially of” or “consisting of” As used herein, the phrase “consisting essentially of” requires the specified integer(s) or steps as well as those that do not materially affect the character or function of the claimed invention. As used herein, the term “consisting” is used to indicate the presence of the recited integer (e.g., a feature, an element, a characteristic, a property, a method/process step, or a limitation) or group of integers (e.g., feature(s), element(s), characteristic(s), property(ies), method/process(s) steps, or limitation(s)) only.
The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
As used herein, words of approximation such as, without limitation, “about,” “substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skill in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “about” may vary from the stated value by at least ±1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.
All of the devices and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the devices and/or methods of this invention have been described in terms of particular embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the disclosure. Accordingly, the protection sought herein is as set forth in the claims below.
Modifications, additions, or omissions may be made to the systems and apparatuses described herein without departing from the scope of the invention. The components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses may be performed by more, fewer, or other components. The methods may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order.
To aid the Patent Office, and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims to invoke 35 U.S.C. § 112(f) as it exists on the date of filing hereof unless the words “means for” or “step for” are explicitly used in the particular claim.
29. W. K. Lewis, E. R. Gilliland, B. Chertow, and W. Milliken, “Vapor—Adsorbate Equilibrium. II. Acetylene—Ethylene on Activated Carbon and on Silica Gel,” Journal of the American Chemical Society, vol. 72, pp. 1157-1159, 1950.
This application claims priority to U.S. Provisional Application Ser. No. 62/750,165, filed Oct. 24, 2018, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/057165 | 10/21/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62750165 | Oct 2018 | US |