This invention relates generally to the data management field, and more specifically to a new and useful method and system for applying data retention policies in the data management field.
Data analytics are an important part of running a data driven computing platform. However, there are many cases where the data is inappropriate for storage. In some cases, the information is sensitive and an operator would not want to store such information. Storing such information may violate the trust of involved parties or create an information liability. In some cases, the data cannot be stored to maintain compliance with regulations. For example, personal medical information may not be allowed to be stored when building a HIPAA compliant application. Thus, there is a need in the data management field to create a new and useful method and system for applying data retention policies in a computing platform. This invention provides such a new and useful method and system.
The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The computing platform is preferably data-driven in the sense that the accumulation of data is used in subsequent processes of the platform—at least one operational aspect depends on accurate and exhaustive collection of data. In one case the data of the computing platform is metered/measured for each account and used in regulating usage of an account. In computing platform where the usage is a factor of billing, the data history for an account must be accurate to calculate fees. One objective of the method is to enable such data-driven behavior, while simultaneously enabling data protection that may otherwise conflict with the notion of metering usage.
In one particular implementation, the computing platform is a communication platform and more specifically a communication application platform such as the one described in U.S. Pat. No. 8,306,021, issued Nov. 6, 2012, which is incorporated in its entirety by this reference. A communication platform may have complicated billing models that can depend on the count of communications, the source and/or destination of communication, the type of communication, the duration of communication, the events and media processes associated with the communication (e.g., text to speech services, speech detection services, transcription services, recording services, etc.), rate and threshold billing variables, and other suitable factors. Such complicated billing models may preclude the on-demand calculation of itemized billing per communication or data record. The method can address the requirement of accounting while preserving the data in a private manner. Herein, the communication platform may be used as an exemplary platform, but any suitable computing platform may similarly apply the method for controlling data.
Block S110, which includes setting of a data retention policy of an account S110, functions to receive a signal that defines how at least a subset of data should be retained with the system. A data retention policy is preferably set by an account holder. The data retention policy is preferably received from the account holder. In one variation, the data retention policy is pre-defined. The policy retention policy could be globally pre-set for all data generated in association with the account. The policy retention policy may alternatively be defined for a sub-set of account data. For example, a policy retention policy may be mapped to a sub-account of the account, to a type of data (e.g., data generated during a voice communication or data generated during a message communication), or any suitable data scope. For example, data associated with SMS and MMS messaging may not be set for “deletion” while voice communication data is kept in an original format. Similarly, the data retention policy for communication with a first endpoint (e.g., phone number) may be different for data retention policies for a second endpoint. In one variation, an administrator of an account may specify the data retention policy/policies through an administrator control panel user interface. In another variation, the data retention policy may be set in response to a developer API request. A data retention policy may alternatively be defined in any suitable manner.
Data retention policy may additionally or alternatively be specified on-demand. The data retention policy can be defined in directives during operation of the computing platform. In the communication platform implementation, a data retention policy may be selectively changed for part or all of a call. The data retention policy directives may provide commands to initiate pause, end, or otherwise change the data retention policy. A data retention policy may be initiated in a first instance and then terminated in a second instance. Any data generated or associated with the time period between the first and second instances is preferably processed according to the data retention policy. Data outside of those two instances may be processed according to the default data retention policy or any original data retention policy. In one example, a user may be placing a call to a banking customer support phone system. While most of the communicated information is not sensitive data, a portion of the call may require the customer to enter personal information such as a credit card. The data retention policy may be elevated to a higher level of data protection during this process to prevent such data being retained and accessible in data logs.
Additionally or alternatively, a specific request to apply data retention to one or more data elements may be received and processed. In this variation, specific data records can be selectively targeted for particular data retention policy compliance.
A data retention policy preferably defines actions to take on data prior to storing or warehousing the data. In one variation, there are preferably at least two data retention policies. A first data retention policy is a passive data retention policy that preserves the data in an original and raw format. Such a data retention policy is preferably a default data retention policy, and no action is preferably taken on the data. The passive data retention policy can alternatively be described as a lack of a data retention policy. The other forms of data retention policy are preferably transformative data retention policies that result in some change or transformation of the data. A transformative data retention policy preferably removes or secures sensitive information while creating some mechanism through which the computing platform can accomplish data-driven operations.
A transformative data retention policy will preferably take some form of a data retention action on the data during moderation of the data. A data retention action can include data redaction/censoring, data classifying/bucketing, data aggregating, data encryption, partial deletion, and/or any suitable approach to data protection. Within the computing platform varying levels of data retention policies may be defined wherein different levels of data retention may have differing degrees of data destruction/preservation. Additionally, different forms of data transformation may be applied to different data fields. In a computing platform, the data stored may follow a substantially defined schema and the forms of transformations that should be applied can be customized for each field. For example, some fields may not be used for data-driven processes and can be deleted, while other fields may be suitable for a form of redaction, while other fields may be better suited for data classifying or bucketing.
A transformative data retention policy may additionally include one or more defined temporal properties. One temporal property may define how long the data may be retained before the data is moderated and transformed. One account may maintain the original raw data for 30 days and after 30 days transform the data. Another account may have no temporary need for the data and transform data directly after completing active use (e.g., during initial warehousing of the data). A second temporal property may be a backup time window that defines how long the original data is preserved in addition to the transformed data before deletion. In this variation, the method enables the capability to undo or reverse the transformation of a data retention policy. For example, a backup time window property for one account of 24 hours will allow any data transformation or deletion request to be undone for up to 24 hours. In one implementation, deleted or transformed data may be shown in a special folder within an administrator control panel until the time window is up. In another example, a backup time window property for another account can be set to zero seconds, and any data transformations or deletion requests are effective immediately and cannot be reversed.
The interface through which a data retention policy is received can be through an Application Program Interface, a configuration file, a user interface (e.g., in an administrator control panel), or any suitable interface. The manner in which a data retention policy is defined may be achieved through various approaches. In a first variation, a transformative data retention policy can be selected from a set of offered transformative data retention policy options. For example, an account may be able to set up an application within a communication application platform, and in the settings of that application select a default of no data transformations, a pre-defined redaction process, or a custom encryption data retention process. In another variation, a data retention policy may be specifically defined. A schema or configuration file may be provided that defines how data retention should be applied. The data retention can be specified specifically for different data attributes. Particular types of data retention actions may be directed to particular data types, data conditions (e.g., if a data field satisfies a specified condition enact a data retention action), data fields, or other suitable aspects. Alternatively, any suitable approach may be used to define the data retention policy. In another variation, the type of data retention policy may be defined based on the type of account.
Block S120, which includes generating data through the operation of a computing platform S120, functions to produce data within a system. The data produced is preferably data produced as a result of the accounts, users, or other entities using the multi-tenant computing platform. The data can be data logs, API request/response records, captured packets (PCAP files), form data input, user generated data, generated or obtained media (e.g., audio, images, video, etc.), and/or any suitable type of data. The data may be accessible to an account holder for any suitable use. For example, a customer support phone system built in a communication application platform may include event logs that include meta data about the calling phone number, the called phone number, the duration of the call, media recordings made during the call, DTMF input, and other suitable information. An account holder is preferably a developer account or administrator account, which may build different analytics or tools that leverage a portion of the generated data. For example, a history of a customer support agent could be generated by polling the data source of the communication application platform. Since the computing platform may be built as a general set of functionality to serve a wide variety of parties, there may be particular use cases to which this data logging behavior is not ideal or possibly prohibitive. For example, if phone system builds a tool where users enter their social security number, the data logs will automatically create a record of callers' social security numbers. The administrator of this system may not want to be liable for having access to such sensitive data. In another example, a health care system may end up storing personal identifiable information in the data, which may cause HIPAA compliance issues and so such automatic data logging may ordinarily prevent such a use case. The method of the preferred embodiment can preferably address such scenarios.
While the data generated may be the result of building a generic tool, the computing platform may additionally partially depend on information of the data. The computing platform in which the data is generated may be an at least partially closed system with operations that are outside of the control or direction of an account holder—there are preferably components of the computing platform to which an account holder/user of the platform will not have visibility. The computing platform is preferably multitenant, wherein multiple account holders will share the use of the computing platform while maintaining distinct and substantially independent applications/services. The partially closed portions of the platform can include the system orchestration system, usage/analytics tools, billing engine, business intelligence tools, a platform operations system (e.g., the platform operations system 270 of
The data generated may have different stages in the data life cycle. The data is preferably generated as a result of some event relating to an account, sub-account, user action of an application, service action, or other suitable event. The data may have a period of being in-flight wherein inflight data is actively stored for use within some operation. For example, data generated during a phone call may be in-flight for the duration of the call. An SMS or MMS message may have in-flight data for the duration to complete transmission. Alternatively, there may be a concept of a conversation wherein the data is in-flight for the duration of the messaging conversation. After active use, the data may be moved to a temporary storage system prior to being transmitted for data warehousing. Data warehousing will preferably be used to store the data for long duration. It is between in-flight state and the data warehousing that blocks S130 preferably occurs, but Block S130 may alternatively occur at any suitable time. The data may additionally or alternatively include any alternative states.
Block S130, which includes moderating data of the account according to the data retention policy of the account, functions to exercise the actions defined by the data retention policy. As described above, the data retention policy is preferably exercised after active use and prior to long term storage for data records. The data retention policy may alternatively be applied to any new data records at a periodic interval, be applied immediately as data is generated, or at any suitable time. The conditions in which the data retention policy is exercised are preferably dependent on the data retention policy configuration of an account. More generally, the moderation of the data depends on the data retention policy defined for the data scope (e.g., sub-account data, user data, etc.). In the case where the data retention policy is to take no action, then the data is preferably stored in a raw and unaltered state. In the case where the data retention policy is a transformative data retention policy, the data will be augmented according to the defined actions. There may be different variations on how data is augmented or moderated. Some preferred variations might include data redaction processing, data classifying, data aggregating, data encrypting, partially deleting, and/or any suitable approach to data protection.
Redaction processing functions to remove elements of the data that are sensitive. The redaction processing can effectively censor data so as to put it in a form suitable for storage. Redaction processing additionally can preserve a subset of the data content. Preferably, the information in the data that is desired by the computing platform can be preserved while a subset or all of the remaining data is removed. Redaction processing is preferably applied to data fields or properties where the semantics or pattern of the data is understood sufficiently to differentiate between what should be kept and what should be removed. In one case, phone numbers may be an element of a data record. Phone numbers may provide personally identifying information as they often map back to an individual. However, a communication platform may depend on knowing the country and area codes of phone numbers during billing of an account. Accordingly, the country and area code are preferably preserved while the remaining four digits are censored. In one variation, redaction processing may include automatically detecting a pattern and applying censorship to the pattern. Automatic detection may be useful in situations where a fixed rule cannot be defined to specify where and when content will need to be augmented. Credit card numbers, social security numbers, and account numbers, addresses, and other suitable forms of information may be detected and automatically removed from the data. Such type of content may appear in various places, when data matches those patterns it may be automatically removed.
Data classifying functions to abstract or bucket the data content to remove details of the original information. The data classifying preferably includes abstracting up the level of information in the original data. One approach is to classify content into a higher-level abstraction. For example, geo-location data may be generalized from precise geo-location data to general location information such as zip code, region, city, state or country. As another alternative, data metrics may be bucketed from precise measurements into ranges. For example, a data metric measuring the duration of a call may be changed from second-level precision to minute level precision.
Data aggregating functions to create a distinct data record that is the cumulative combination of previous data records. The precise metrics of a data record can be maintained but only in combination with a set of other data records. The individual metric is preferably deleted or censored. For example, the total duration of a phone call may be aggregated into total duration of all phone calls for an account, however the duration of the individual call cannot normally be obtained.
Encrypting data functions to cryptographically transform the data. Encrypting data preferably depends on an account-defined key. Encrypting data preferably includes receiving an encryption callback reference, determining the data content to be encrypted, transmitting the original content to the encryption callback reference (e.g., the encryption callback 281 of
A data augmentation may additionally include a partial deletion of data, wherein some data fields or whole data records may be deleted. Some subset of data types or data parameters may be fully deletable. Such fields may include customer defined data fields (e.g., data tags or metadata).
Block S140, which includes storing the moderated data, functions to store the moderated data. The moderated data can be stored in any suitable manner. As described above, for encrypted data. A second form of data transformation may be stored for some all parts of the encrypted data. The stored moderated data may be used for various system operations such as scaling infrastructure, metering account usage, billing for account usage, informing business decisions, acquiring assets, or any suitable data-driven decision. The policy transformed data is preferably applied to any location where data is stored such as in a data warehouse, log files, media records, and/or any suitable location.
The method can additionally facilitate various data related functionality. Such functionality may be enabled on secured data despite the original data being too sensitive to normally allow such functionality. As a primary functionality, account usage and analytics can be provided. Data aggregation, classification, and selective redaction can preserve some level of information that can provide insight into patterns. Such data preservation may additionally be applied to enable fraud detection, error detection, or general event pattern detection. Within the computing platform, the data information may be used in making decisions related to platform administration, orchestrating a cluster or distributed computing system, allocating/deallocating resource, pricing, and/or other operational factors of the computing platform. The systematic approach to data retention policies may additionally provide an audit trail of data management for an account, which can be used to show data compliance in various situations.
In one preferred implementation, the method is applied to a communication platform that can facilitate synchronous communication such as voice, video, screen sharing, virtual reality and/or any suitable media stream. The synchronous communication may use PSTN, SIP, WebRTC, IP-based protocols, or any suitable communication protocols. The communication platform may additionally or alternatively facilitate asynchronous communication such as SMS, MMS, or IP based messaging. As shown in
In one example, form of a data retention policy a call record may have the following actions applied call record fields: the “to” field is redacted to exclude last four digits, the “from” field is redacted to exclude last four digits, application URL field is deleted, duration field is bucketed into five minute buckets, time field is bucketed to only show events by hour, associated account identifier is kept, and a price field is deleted or bucketed. A location field may be abstracted to only show city information. Call recordings may be deleted or encrypted through an account controlled cryptographic key.
In some implementations, the communication platform includes the communication system 210, the in-flight data storage 220, the post-flight data storage 230, the data manager 250, the data retention policy engine 251, the data warehouse 260, the data retention policy 252, and the platform operations system 270, and the account holder system 280 is external to the communication platform.
In some implementations, the communication platform (e.g., the communication platform 200 of
As shown in
In some implementations, the computing platform system 300 includes the account holder system. In some implementations, the platform operations system is external to the computing platform system. In some implementations, the data warehouse system is external to the computing platform system. In some implementations, the data retention policy engine is constructed to perform redaction, data classifying, data aggregating, and encrypting. In some implementations, the data warehouse system is included in an account holder system (e.g., the account holder system 380), and the computing platform system includes information to access data in the data warehouse system.
In some implementations, the computing platform system 300 is similar to the computing platform described above for
The system 300 is communicatively coupled to the external system 380 via the data retention policy API 313 and the computing service API 314 of the computing system 310.
In the embodiment of
In some implementations, the computing system 310, the in-flight data storage system 320, the post-flight data storage system 330, the data manager 350, the data retention policy engine 351, the data warehouse system 360, and the platform operations system 370 are implemented as a server device. In some implementations, the computing system 310, the in-flight data storage system 320, the post-flight data storage system 330, the data manager 350, the data retention policy engine 351, the data warehouse system 360, and the platform operations system 370 are implemented as a plurality of server devices communicatively coupled to each other (e.g., a computing cluster).
The computing system 310 functions to provide any suitable computing service (e.g., a service provided via the computing service API 314).
In some implementations, the computing system 310 includes an account system (e.g., 312), which functions to allow distinct accounts to use the computing system 310. An account is preferably operated by a developer or application provider that builds an application or service that utilizes the computing system 310. For example, in an implementation in which the computing system 310 is a communication system, an account holder of an account may build a call center application that uses the computing system 310 to direct customers to customer service representatives. Alternatively, the account holder of an account may be an end user of an endpoint (e.g., phone number or SIP address) that uses the computing system 310 to provide some service. For example, an end user may use the computing system 310 to dynamically direct incoming calls to ring multiple destinations until the first device picks up. Any suitable account hierarchy or division may be used. For example, an account may include subaccounts, which run different instances of an application with unique configuration. The accounts additionally have specific authentication credentials. API requests and communication is preferably scoped to a particular account. Accordingly, a data retention policy provided by one account can be stored and associated with the account.
The data retention policy API 313 is preferably a set of data retention policy API calls and/or resources that can be used in the setting, editing, and reading of one or more data retention policies. In some implementations, an account is preferably limited with privileges to interacting with data retention policies associated with the account.
The data retention policy API 313 is preferably part of a RESTful API but may alternatively be any suitable API such as SOAP or custom protocol. The RESTful API works according to an HTTP request and response model. HTTP requests (or any suitable request communication) to the computing platform 300 preferably observe the principles of a RESTful design. RESTful is understood in this document to describe a Representational State Transfer architecture as is known in the art. The RESTful HTTP requests are preferably stateless, thus each message communicated contains all necessary information for processing the request and generating a response. The API service can include various resources, which act as API endpoints, which act as a mechanism for specifying requested information or requesting particular actions. The resources can be expressed as URI's or resource paths. The RESTful API resources can additionally be responsive to different types of HTTP methods such as GET, PUT, POST and/or DELETE.
The method 400 of
In some implementations, the moderated data is stored at a data warehouse system (e.g., 360 of
In some implementations, the method 400 includes: accessing, at the computing platform system (e.g., 300) (e.g., by using the platform operations system 370) the moderated data (e.g., 354) stored at the data warehouse system (e.g., 360) (process S450); and performing (e.g., by using the platform operations system 370) at least one system operation by using the accessed moderated data (process S460). In some implementations, system operations include at least one of usage analytics, business intelligence operations, infrastructure scaling operations, metering account usage, billing for account usage, fraud detection, error detection, general event pattern detection, platform administration operations, allocating resources, deallocating resources, cluster management operations, and auditing operations.
In some implementations, the multi-tenant computing platform system 300 performs the processes S410-S440. In some implementations, the multi-tenant computing platform system 300 performs the process S450. In some implementations, the multi-tenant computing platform system 300 performs the process S460.
In some implementations, the computing system 310 performs the process S410. In some implementations, the policy API 313 performs the process S410. In some implementations, the computing system 310 and the policy API 313 perform the process S410. In some implementations, the computing system 310 performs the process S410 responsive to a request received via the policy API 313. In some implementations, the computing system 310 performs the process S410 responsive to a response received via the policy API 313.
In some implementations, the computing system 310 performs the process S420.
In some implementations, the data retention policy engine 351 performs the process S430.
In some implementations, the data retention policy engine 351 performs the process S440. In some implementations, the data warehouse system 360 performs the process S440. In some implementations, the system 300 stores the moderated data (e.g., the moderated data 354 of
In some implementations, the system 300 stores the data retention policy (e.g., the data retention policy 352 of
In some implementations, the platform operations system 370 performs the process S450. In some implementations, the platform operations system 370 performs the process S460.
In some implementations, the process S410 is similar to the process S110 of
3.1 Setting a Data Retention Policy
In some implementations, the process S410 functions to control the multi-tenant computing platform system 300 to set a data retention policy of an account (e.g., an account of the account system 312) at the computing platform system 300. In some implementations, the data retention policy is set as described above for S110 of FIG. 1. In some implementations, the data retention policy is similar to at least one of the data retention policies described above for S110 of
In some implementations, the computing system 310 receives the data retention policy (e.g., 352) in a data retention policy message provided by an external system (e.g., the external account holder system 380), and responsive to the data retention policy message, the computing system 310 sets the data retention policy (e.g., 352) at the system 300 in association with an account identifier specified by the data retention policy message (e.g., an account of the account holder system 380). In some implementations, the computing system 310 receives the data retention policy (e.g., 352) via the data retention policy API 313.
In some implementations, the computing system 310 receives the data retention policy (e.g., 352) via an administrator control panel user interface provided by the system 300 (e.g., provided to the external account holder system 380).
In some implementations, the computing system 310 accesses a configuration file provided by an external account holder system (e.g., 380), and the configuration file defines the data retention policy 352.
In some implementations, the computing system 310 receives the data retention policy (e.g., 352) by processing a configuration file. In some implementations, the computing system 310 receives the data retention policy (e.g., 352) by processing a configuration file of an account holder of an account at the system 300 (e.g., an account associated with the external system 380).
In some implementations, the data retention policy is specified on-demand. In some implementations, the data retention policy is defined in directives during operation of the computing system 310. The computing system 310 processes such directives which set the data retention policy at the system 300.
In some implementations in which the system 300 is a communication platform system, the data retention policy is selectively changed for part or all of a call, as described above for S110. In some implementations in which the system 300 is a communication platform system, the data retention policy is selectively changed at least a portion of a communication session (e.g., a telephony voice communication) in a manner similar to that which is described above for S110.
In some implementations, the data retention policy (e.g., 352) is received from an external account holder system (e.g., 380), and the policy is received with a request to apply the policy to one or more specified data elements. In some implementations, specific data records are selectively targeted for particular data retention policy compliance. In some implementations, the data retention policy is a transformative data retention policy as described above for S110. In some implementations, the data retention policy is a transformative data retention policy that secures sensitive information while providing the system 300 with information for performing data-driven system operations. In some implementations, the transformative data retention policy defines at least one data retention action to be performed on the data during moderation of the data. In some implementations, the transformative data retention policy defines at least one data retention action to be performed on the data during moderation of the data, and at least one temporal property (e.g., a temporal property as described above for S110).
In some implementations, the computing system 310 sets the data retention policy by storing the data retention policy 352 in a storage medium of the system 300 (e.g., the storage medium 605 of
3.2 Generating the Data
In some implementations, the process S420 functions to control the multi-tenant computing platform system 300 to generate data (e.g., the original data 340) through operation of the computing platform system (e.g., 300) on behalf of the account (e.g., an account of the account system 312). In some implementations, the process S420 functions to generate data within the system 300. In some implementations, the generated data (e.g., 340) is data that is produced as a result of accounts (of the system 300), users or other entities using the multi-tenant computing platform system 300.
In some implementations, the computing system 310 generates the data (e.g., the data 340) responsive to a computing request (e.g., the computing request 311) provided by an external system (e.g., the account holder system 380) and received by the computing system 310 via the computing service API (Application Program Interface) 314.
In some implementations, the generated data includes at least one of data logs, API request records, API response records, captured packets, form data input, user generated data, generated media, and obtained media.
The data is similar to the generated data described above for S120 of
3.3 Moderating the Generated Data
In some implementations, the process S430 functions to control the multi-tenant computing platform system 300 to moderate the generated data of the account according to the data retention policy of the account. In some implementations, the data manger 350 receives the generated data (e.g., 340) from the computing system 310. In some implementations, the data manger 350 receives the generated data (e.g., 340) from the in-flight data storage system 320. In some implementations, the data manger 350 receives the generated data (e.g., 340) from the post-flight data storage system 330.
In some implementations, the data manager 350 moderates the received generated data according to the data retention policy 352. In some implementations, the data retention policy engine 351 of the data manger 350 moderates the received generated data according to the data retention policy 352. In some implementations, the data manager 350 receives the policy 352 from the computing system 310. In some implementations, the data manager 350 receives the policy 352 from an external system (e.g., the external account holder system 380). In some implementations, the data manager 350 moderates the data as described for S130 of
In some implementations, the data retention policy engine 351 stores the data retention policy 352. In some implementations, the data retention policy engine 351 manages the data retention policy 352.
In some implementations, the data manager 350 moderates the received generated data by performing actions defined by the data retention policy 352. In some implementations, actions include at least one of data redaction, data censoring, data classifying, data bucketing, data aggregating, data encryption, and partial deletion.
In some implementations, the data retention policy (e.g., 352) defines actions performed by the computing platform system 300 on the data (e.g., 340) to secure the sensitive information prior to storing the data in a data warehouse (e.g., 360) of the computing platform system, and moderating data includes performing the actions defined by the data retention policy. In some implementations, actions include at least one of data redaction, data censoring, data classifying, data bucketing, data aggregating, data encryption, and partial deletion.
In some implementations, the data manager 350 performs redaction as described above for S130 of
In some implementations, the data manager 350 performs data classifying as described above for S130 of
In some implementations, the data manager 350 performs data aggregating as described above for S130 of
In some implementations, the data manager 350 performs data encryption as described above for S130 of
In some implementations, the data manager 350 performs partial deletion as described above for S130 of
In some implementations, the data manager 350 moderates the received generated data 340 after active use of the generated data by the computing system 310, and prior to long term storage of the data (e.g., in the data warehouse 360). In some implementations, the data manager 350 moderates newly generated data (e.g., 340) at a periodic interval. In some implementations, the data manager 350 moderates newly generated data (e.g., 340) immediately as the data is generated.
In some implementations, moderating the generated data (process S430) includes securing sensitive information of the generated data (e.g., 340) from access by the computing platform system (e.g., 300); and providing operational information from the generated data, the operational information being accessible by the computing platform system (e.g., 300) during performance of system operations (e.g., by the platform operations system 370). In some implementations, the data manager 350 secures sensitive information of the generated data. In some implementations, the data retention policy engine 351 secures sensitive information of the generated data. In some implementations, the data manager 350 provides the operational information from the generated data. In some implementations, the data retention policy engine 351 provides the operational information from the generated data.
In some implementations, securing sensitive information includes at least one of redacting, removing, censoring and encrypting of the sensitive information of the generated data. In some implementations, the encrypting is performed by using an external system (e.g., the external account holder system 380) associated with the account (e.g., an account of the accounting system 312), and the encrypted sensitive information is secured from access by the computing platform system (e.g., 300).
In some implementations, providing operation information from the generated data includes at least one of: preserving operational information from the generated data, providing a portion of the generated data as operation information, and generating operation information from the generated data.
In some implementations, providing a portion of the generated data includes performing redaction on at least one portion of the generated data, preserving at least one portion of the original data, and providing each preserved portion for storage (e.g., providing each preserved portion to the data warehouse 360). In some implementations, providing a portion of the generated data includes performing data deletion on at least one portion of the generated data, preserving at least one portion of the original data, and providing each preserved portion for storage (e.g., providing each preserved portion to the data warehouse 360). In some implementations, providing a portion of the generated data includes performing data encryption on at least one portion of the generated data, preserving at least one portion of the original data in an unencrypted format, and providing each preserved (unencrypted) portion for storage (e.g., providing each preserved portion to the data warehouse 360).
In some implementations, generating operation information from the generated data includes performing a data classification process as described above for S130 of
In some implementations, system operations (e.g., performed by the platform operations system 370) include at least one of usage analytics, business intelligence operations, infrastructure scaling operations, metering account usage, billing for account usage, fraud detection, error detection, general event pattern detection, platform administration operations, allocating resources, deallocating resources, cluster management operations, and auditing operations.
3.4 Storing the Moderated Data
In some implementations, the process S440 functions to control the multi-tenant computing platform system 300 to store the moderated data (e.g., the policy compliant data 354 of
3.5 Accessing the Moderated Data
In some implementations, the process S450 functions to control the multi-tenant computing platform system 300 to access the stored moderated data. In some implementations, the platform operations system 370 accesses the stored moderated data. In some implementations, the moderated data is accessed at the data warehouse system 360. In some implementations, the moderated data is accessed at a log file storage location of the system 300. In some implementations, the moderated data is accessed at a media records storage location of the system 300
3.6 Performing System Operations
In some implementations, the process S460 functions to control the multi-tenant computing platform system 300 perform at least one system operation by using the accessed moderated data. In some implementations, the platform operations system 370 performs at least one system operation by using the accessed moderated data. In some implementations, system operations include at least one of usage analytics, business intelligence operations, infrastructure scaling operations, metering account usage, billing for account usage, fraud detection, error detection, general event pattern detection, platform administration operations, allocating resources, deallocating resources, cluster management operations, and auditing operations.
The method 500 of
In some implementations, the moderated data is stored at a data warehouse system (e.g., 360 of
In some implementations, the method 500 includes: accessing, at the computing platform system (e.g., 300) (e.g., by using the platform operations system 370) the moderated data (e.g., 354) stored at the data warehouse system (e.g., 360) (process S530); and performing (e.g., by using the platform operations system 370) at least one system operation by using the accessed moderated data (process S540). In some implementations, system operations include at least one of usage analytics, business intelligence operations, infrastructure scaling operations, metering account usage, billing for account usage, fraud detection, error detection, general event pattern detection, platform administration operations, allocating resources, deallocating resources, cluster management operations, and auditing operations.
In some implementations, the multi-tenant computing platform system 300 performs the processes S510-S520. In some implementations, the multi-tenant computing platform system 300 performs the process S530. In some implementations, the multi-tenant computing platform system 300 performs the process S540.
In some implementations, the data retention policy engine 351 performs the process S510. In some implementations, the data manager 350 performs the process S510
In some implementations, the data retention policy engine 351 performs the process S520. In some implementations, the data warehouse system 360 performs the process S520. In some implementations, the system 300 stores the moderated data (e.g., the moderated data 354 of
In some implementations, the method of
In some implementations, the data retention policy is set for the account as described above for the process S410 of
In some implementations, the data retention policy (e.g., 352) defines actions performed by the computing platform system 300 on the data (e.g., 340) to secure the sensitive information prior to storing the data in a data warehouse (e.g., 360) of the computing platform system, and moderating data includes performing the actions defined by the data retention policy.
In some implementations, the data (e.g., 340) includes at least one of data logs, API request records, API response records, captured packets, form data input, user generated data, generated media, and obtained media.
In some implementations, actions include at least one of data redaction, data censoring, data classifying, data bucketing, data aggregating, data encryption, and partial deletion.
In some implementations, data redaction includes automatically detecting and removing at least one of a credit card number, social security number, account number, and address from the data (e.g., 340). In some implementations, data classifying includes replacing data with a generalized representation of the data. In some implementations, data aggregating includes replacing metrics of data with an aggregated representation of the metrics of data. In some implementations, data encryption includes determining an encryption callback reference (e.g., 381) for the data, transmitting the data to an external system (e.g., 380) of the encryption callback reference, and replacing the data with encrypted data provided by the external system of the encryption callback reference, wherein the account is an account for the external system (e.g., 380).
In some implementations, the computing platform system (e.g., 300) secures the sensitive information from access by the computing platform system (e.g., 300) by performing at least one of removing, censoring and encrypting of the sensitive information of the generated data. In some implementations, the computing platform system provides the operational information from the generated data by at least one of preserving operational information from the generated data and generating operation information from the generated data. In some implementations, the encrypting is performed by using an external system (e.g., 380) associated with the account, and the encrypted sensitive information is secured from access by the computing platform system (e.g., 300).
In some implementations, the encryption allows only an account holder of the account to access the encrypted sensitive information.
In some implementations, system operations include at least one of usage analytics, business intelligence operations, infrastructure scaling operations, metering account usage, billing for account usage, fraud detection, error detection, general event pattern detection, platform administration operations, allocating resources, deallocating resources, cluster management operations, and auditing operations. In some implementations, system operations include at least one of metering account usage, and billing for account usage.
In some implementations, the computing platform system performs at least one system operation by using the operational information. In some implementations, the computing platform system performs at least one system operation by using the stored moderated data. In some implementations, the moderated data is stored at a data warehouse system (e.g., 360), and the computing platform system accesses the moderated data stored at the data warehouse system and performs at least one system operation by using the accessed moderated data.
The bus 601 interfaces with the processors 601A-601N, the main memory (e.g., a random access memory (RAM)) 622, a read only memory (ROM) 604, a processor-readable storage medium 605, a display device 607, a user input device 608, and a network device 611.
The processors 601A-601N may take many forms, such as ARM processors, ×86 processors, and the like.
In some implementations, the system (e.g., 600) includes at least one of a central processing unit (processor) and a multi-processor unit (MPU).
The processors 601A-601N and the main memory 622 form a processing unit 699. In some embodiments, the processing unit includes one or more processors communicatively coupled to one or more of a RAM, ROM, and machine-readable storage medium; the one or more processors of the processing unit receive instructions stored by the one or more of a RAM, ROM, and machine-readable storage medium via a bus; and the one or more processors execute the received instructions. In some embodiments, the processing unit is an ASIC (Application-Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-on-Chip). In some embodiments, the processing unit includes one or more of a computing system, a data manager, a data warehouse, a platform operations system, an in-flight data storage system, a post-flight data storage system, a data retention policy storage system, at least one data retention policy, in-flight data, and post-flight data.
The network adapter device 611 provides one or more wired or wireless interfaces for exchanging data and commands between the system (e.g., 600) and other devices, such as an external system (e.g., 380). Such wired and wireless interfaces include, for example, a universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet interface, near field communication (NFC) interface, and the like.
Machine-executable instructions in software programs (such as an operating system, application programs, and device drivers) are loaded into the memory 622 (of the processing unit 699) from the processor-readable storage medium 605, the ROM 604 or any other storage location. During execution of these software programs, the respective machine-executable instructions are accessed by at least one of processors 601A-601N (of the processing unit 699) via the bus 601, and then executed by at least one of processors 601A-601N. Data used by the software programs are also stored in the memory 622, and such data is accessed by at least one of processors 601A-601N during execution of the machine-executable instructions of the software programs. The processor-readable storage medium 605 is one of (or a combination of two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a flash storage, a solid state drive, a ROM, an EEPROM, an electronic circuit, a semiconductor memory device, and the like. The processor-readable storage medium 605 includes machine-executable instructions (and related data) for an operating system 612, software programs 613, device drivers 614, the computing system 310, the in-flight data storage system 320, the post-flight data storage system 330, the data manager 350, and the platform operations system 370. In some implementations, the processor-readable storage medium 605 includes machine-executable instructions (and related data) for the data warehouse 360. In some implementations, the data warehouse is external to the system 300. In some implementations, the platform operations system is external to the system 300.
In some implementations, the processor-readable storage medium 605 includes in-flight data. In some implementations, the processor-readable storage medium 605 includes post-flight data. In some implementations, the processor-readable storage medium 605 includes the policy compliant (moderated) data 354. In some implementations, the processor-readable storage medium 605 includes data retention policies 615 of a plurality of accounts of the system 300 (e.g., accounts of the account system 312 of
The systems and methods of the preferred embodiments and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the computing platform. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/412,843, filed Jan. 23, 2017, which is a continuation of U.S. patent application Ser. No. 14/974,312, filed Dec. 18, 2015, which is a continuation of U.S. patent application Ser. No. 14/793,435, filed Jul. 7, 2015, which claims the benefit of U.S. Provisional Application Ser. No. 62/021,645, filed on Jul. 7, 2014, all of which are incorporated in their entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
5274700 | Gechter et al. | Dec 1993 | A |
5526416 | Dezonno et al. | Jun 1996 | A |
5581608 | Jreij et al. | Dec 1996 | A |
5598457 | Foladare et al. | Jan 1997 | A |
5867495 | Elliott et al. | Feb 1999 | A |
5934181 | Adamczewski | Aug 1999 | A |
5978465 | Corduroy et al. | Nov 1999 | A |
6026440 | Shrader et al. | Feb 2000 | A |
6034946 | Roginsky et al. | Mar 2000 | A |
6094681 | Shaffer et al. | Jul 2000 | A |
6138143 | Gigliotti et al. | Oct 2000 | A |
6185565 | Meubus et al. | Feb 2001 | B1 |
6192123 | Grunsted et al. | Feb 2001 | B1 |
6206564 | Adamczewski | Mar 2001 | B1 |
6223287 | Douglas et al. | Apr 2001 | B1 |
6232979 | Shochet | May 2001 | B1 |
6269336 | Ladd et al. | Jul 2001 | B1 |
6317137 | Rosasco | Nov 2001 | B1 |
6363065 | Thornton et al. | Mar 2002 | B1 |
6373836 | Deryugin et al. | Apr 2002 | B1 |
6425012 | Trovato et al. | Jul 2002 | B1 |
6426995 | Kim et al. | Jul 2002 | B1 |
6430175 | Echols et al. | Aug 2002 | B1 |
6434528 | Sanders | Aug 2002 | B1 |
6445694 | Swartz | Sep 2002 | B1 |
6445776 | Shank et al. | Sep 2002 | B1 |
6459913 | Cloutier | Oct 2002 | B2 |
6463414 | Su et al. | Oct 2002 | B1 |
6493558 | Bernhart et al. | Dec 2002 | B1 |
6496500 | Nance et al. | Dec 2002 | B2 |
6501739 | Cohen | Dec 2002 | B1 |
6501832 | Saylor et al. | Dec 2002 | B1 |
6507875 | Mellen-Garnett et al. | Jan 2003 | B1 |
6571245 | Huang et al. | May 2003 | B2 |
6574216 | Farris et al. | Jun 2003 | B1 |
6577721 | Vainio et al. | Jun 2003 | B1 |
6600736 | Ball et al. | Jun 2003 | B1 |
6606596 | Zirngibl et al. | Aug 2003 | B1 |
6614783 | Sonesh et al. | Sep 2003 | B1 |
6625258 | Ram et al. | Sep 2003 | B1 |
6625576 | Kochanski et al. | Sep 2003 | B2 |
6636504 | Albers et al. | Oct 2003 | B1 |
6662231 | Drosset et al. | Dec 2003 | B1 |
6704785 | Koo et al. | Mar 2004 | B1 |
6707889 | Saylor et al. | Mar 2004 | B1 |
6711129 | Bauer et al. | Mar 2004 | B1 |
6711249 | Weissman et al. | Mar 2004 | B2 |
6738738 | Henton | May 2004 | B2 |
6757365 | Bogard | Jun 2004 | B1 |
6765997 | Zirngibl et al. | Jul 2004 | B1 |
6768788 | Langseth et al. | Jul 2004 | B1 |
6771955 | Imura et al. | Aug 2004 | B2 |
6778653 | Kallas et al. | Aug 2004 | B1 |
6785266 | Swartz | Aug 2004 | B2 |
6788768 | Saylor et al. | Sep 2004 | B1 |
6792086 | Saylor et al. | Sep 2004 | B1 |
6792093 | Barak et al. | Sep 2004 | B2 |
6798867 | Zirngibl et al. | Sep 2004 | B1 |
6807529 | Johnson et al. | Oct 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6819667 | Brusilovsky et al. | Nov 2004 | B1 |
6820260 | Flockhart et al. | Nov 2004 | B1 |
6829334 | Zirngibl et al. | Dec 2004 | B1 |
6831966 | Tegan et al. | Dec 2004 | B1 |
6834265 | Balasuriya | Dec 2004 | B2 |
6836537 | Zirngibl et al. | Dec 2004 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6850603 | Eberle et al. | Feb 2005 | B1 |
6870830 | Schuster et al. | Mar 2005 | B1 |
6873952 | Bailey et al. | Mar 2005 | B1 |
6885737 | Gao et al. | Apr 2005 | B1 |
6874084 | Dobner et al. | May 2005 | B1 |
6888929 | Saylor et al. | May 2005 | B1 |
6895084 | Saylor et al. | May 2005 | B1 |
6898567 | Balasuriya | May 2005 | B2 |
6912581 | Johnson et al. | Jun 2005 | B2 |
6922411 | Taylor | Jul 2005 | B1 |
6928469 | Duursma et al. | Aug 2005 | B1 |
6931405 | El-Shimi et al. | Aug 2005 | B2 |
6937699 | Schuster et al. | Aug 2005 | B1 |
6940953 | Eberle et al. | Sep 2005 | B1 |
6941268 | Porter et al. | Sep 2005 | B2 |
6947417 | Laursen et al. | Sep 2005 | B2 |
6947988 | Saleh | Sep 2005 | B1 |
6961330 | Cattan et al. | Nov 2005 | B1 |
6964012 | Zirngibl et al. | Nov 2005 | B1 |
6970915 | Partovi et al. | Nov 2005 | B1 |
6977992 | Zirngibl et al. | Dec 2005 | B2 |
6981041 | Araujo et al. | Dec 2005 | B2 |
6985862 | Stroem et al. | Jan 2006 | B2 |
6999576 | Sacra | Feb 2006 | B2 |
7003464 | Ferrans et al. | Feb 2006 | B2 |
7006606 | Cohen et al. | Feb 2006 | B1 |
7010586 | Allavarpu et al. | Mar 2006 | B1 |
7020685 | Chen et al. | Mar 2006 | B1 |
7039165 | Saylor et al. | May 2006 | B1 |
7058042 | Bontempi et al. | Jun 2006 | B2 |
7062709 | Cheung | Jun 2006 | B2 |
7065637 | Nanja | Jun 2006 | B1 |
7076037 | Gonen et al. | Jul 2006 | B1 |
7076428 | Anastasakos et al. | Jul 2006 | B2 |
7089310 | Ellerman et al. | Aug 2006 | B1 |
7103003 | Brueckheimer et al. | Sep 2006 | B2 |
7103171 | Annadata et al. | Sep 2006 | B1 |
7106844 | Holland | Sep 2006 | B1 |
7111163 | Haney | Sep 2006 | B1 |
7136932 | Schneider | Nov 2006 | B1 |
7140004 | Kunins et al. | Nov 2006 | B1 |
7143039 | Stifelman et al. | Nov 2006 | B1 |
7197331 | Anastasakos et al. | Mar 2007 | B2 |
7197461 | Eberle et al. | Mar 2007 | B1 |
7197462 | Takagi et al. | Mar 2007 | B2 |
7197544 | Wang et al. | Mar 2007 | B2 |
7225232 | Elberse | May 2007 | B2 |
7227849 | Rasanen | Jun 2007 | B1 |
7245611 | Narasimhan et al. | Jul 2007 | B2 |
7260208 | Cavalcanti | Aug 2007 | B2 |
7266181 | Zirngibl et al. | Sep 2007 | B1 |
7269557 | Bailey et al. | Sep 2007 | B1 |
7272212 | Eberle et al. | Sep 2007 | B2 |
7272564 | Phillips et al. | Sep 2007 | B2 |
7277851 | Henton | Oct 2007 | B1 |
7283515 | Fowler | Oct 2007 | B2 |
7286521 | Jackson et al. | Oct 2007 | B1 |
7287248 | Adeeb | Oct 2007 | B1 |
7289453 | Riedel et al. | Oct 2007 | B2 |
7296739 | Mo et al. | Nov 2007 | B1 |
7298732 | Cho | Nov 2007 | B2 |
7298834 | Homeier et al. | Nov 2007 | B1 |
7308085 | Weissman | Dec 2007 | B2 |
7308408 | Stifelman et al. | Dec 2007 | B1 |
7324633 | Gao et al. | Jan 2008 | B2 |
7324942 | Mahowald et al. | Jan 2008 | B1 |
7328263 | Sadjadi | Feb 2008 | B1 |
7330463 | Bradd et al. | Feb 2008 | B1 |
7330890 | Partovi et al. | Feb 2008 | B1 |
7340040 | Saylor et al. | Mar 2008 | B1 |
7349714 | Lee et al. | Mar 2008 | B2 |
7369865 | Gabriel et al. | May 2008 | B2 |
7370329 | Kumar et al. | May 2008 | B2 |
7373660 | Guichard et al. | May 2008 | B1 |
7376223 | Taylor et al. | May 2008 | B2 |
7376586 | Partovi et al. | May 2008 | B1 |
7376733 | Connelly et al. | May 2008 | B2 |
7376740 | Porter et al. | May 2008 | B1 |
7412525 | Cafarella et al. | Aug 2008 | B2 |
7418090 | Reding et al. | Aug 2008 | B2 |
7428302 | Zirngibl et al. | Sep 2008 | B2 |
7440898 | Eberle et al. | Oct 2008 | B1 |
7447299 | Partovi et al. | Nov 2008 | B1 |
7454459 | Kapoor et al. | Nov 2008 | B1 |
7457249 | Baldwin et al. | Nov 2008 | B2 |
7457397 | Saylor et al. | Nov 2008 | B1 |
7473872 | Takimoto | Jan 2009 | B2 |
7486780 | Zirngibl et al. | Feb 2009 | B2 |
7496054 | Taylor | Feb 2009 | B2 |
7496188 | Saha et al. | Feb 2009 | B2 |
7496651 | Joshi | Feb 2009 | B1 |
7500249 | Kampe et al. | Mar 2009 | B2 |
7505951 | Thompson et al. | Mar 2009 | B2 |
7519359 | Chiarulli et al. | Apr 2009 | B2 |
7522711 | Stein et al. | Apr 2009 | B1 |
7536454 | Balasuriya | May 2009 | B2 |
7542761 | Sarkar | Jun 2009 | B2 |
7552054 | Stifelman et al. | Jun 2009 | B1 |
7571226 | Partovi et al. | Aug 2009 | B1 |
7606868 | Le et al. | Oct 2009 | B1 |
7613287 | Stifelman et al. | Nov 2009 | B1 |
7623648 | Oppenheim et al. | Nov 2009 | B1 |
7630900 | Strom | Dec 2009 | B1 |
7631310 | Henzinger | Dec 2009 | B1 |
7644000 | Strom | Jan 2010 | B1 |
7657433 | Chang | Feb 2010 | B1 |
7657434 | Thompson et al. | Feb 2010 | B2 |
7668157 | Weintraub et al. | Feb 2010 | B2 |
7672275 | Yajnik et al. | Mar 2010 | B2 |
7672295 | Andhare et al. | Mar 2010 | B1 |
7675857 | Chesson | Mar 2010 | B1 |
7676221 | Roundtree et al. | Mar 2010 | B2 |
7685280 | Berry et al. | Mar 2010 | B2 |
7685298 | Day et al. | Mar 2010 | B2 |
7715547 | Ibbotson et al. | May 2010 | B2 |
7716293 | Kasuga et al. | May 2010 | B2 |
7742499 | Erskine et al. | Jun 2010 | B1 |
7779065 | Gupta et al. | Aug 2010 | B2 |
7809125 | Brunson et al. | Oct 2010 | B2 |
7875836 | Imura et al. | Jan 2011 | B2 |
7882253 | Pardo-Castellote et al. | Feb 2011 | B2 |
7920866 | Bosch et al. | Apr 2011 | B2 |
7926099 | Chakravarty et al. | Apr 2011 | B1 |
7929562 | Petrovykh | Apr 2011 | B2 |
7936867 | Hill et al. | May 2011 | B1 |
7949111 | Harlow et al. | May 2011 | B2 |
7962644 | Ezerzer et al. | Jun 2011 | B1 |
7979555 | Rothstein et al. | Jul 2011 | B2 |
7992120 | Wang et al. | Aug 2011 | B1 |
8023425 | Raleigh | Sep 2011 | B2 |
8024785 | Andress | Sep 2011 | B2 |
8045689 | Provenzale et al. | Oct 2011 | B2 |
8046378 | Zhuge et al. | Oct 2011 | B1 |
8046823 | Begen et al. | Oct 2011 | B1 |
8069096 | Ballaro et al. | Nov 2011 | B1 |
8078483 | Hirose et al. | Dec 2011 | B1 |
8081744 | Sylvain | Dec 2011 | B2 |
8081958 | Soederstroem et al. | Dec 2011 | B2 |
8103725 | Gupta et al. | Jan 2012 | B2 |
8126128 | Hicks, III et al. | Feb 2012 | B1 |
8126129 | McGuire | Feb 2012 | B1 |
8130750 | Hester | Mar 2012 | B2 |
8139730 | Palma et al. | Mar 2012 | B2 |
8145212 | Lopresti et al. | Mar 2012 | B2 |
8149716 | Ramanathan et al. | Apr 2012 | B2 |
8150918 | Edelman et al. | Apr 2012 | B1 |
8156213 | Deng et al. | Apr 2012 | B1 |
8165116 | Ku et al. | Apr 2012 | B2 |
8166185 | Samuel et al. | Apr 2012 | B2 |
8169936 | Koren et al. | May 2012 | B2 |
8175007 | Jain et al. | May 2012 | B2 |
8185619 | Maiocco et al. | May 2012 | B1 |
8196133 | Kakumani et al. | Jun 2012 | B2 |
8204479 | Vendrow et al. | Jun 2012 | B2 |
8214868 | Hamilton et al. | Jul 2012 | B2 |
8233611 | Zettner | Jul 2012 | B1 |
8238533 | Blackwell et al. | Aug 2012 | B2 |
8243889 | Taylor et al. | Aug 2012 | B2 |
8249552 | Gailloux et al. | Aug 2012 | B1 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8295272 | Boni et al. | Oct 2012 | B2 |
8306021 | Lawson et al. | Nov 2012 | B2 |
8315198 | Corneille et al. | Nov 2012 | B2 |
8315620 | Williamson et al. | Nov 2012 | B1 |
8319816 | Swanson et al. | Nov 2012 | B1 |
8326805 | Arous et al. | Dec 2012 | B1 |
8346630 | McKeown | Jan 2013 | B1 |
8355394 | Taylor et al. | Jan 2013 | B2 |
8413247 | Hudis et al. | Apr 2013 | B2 |
8417817 | Jacobs | Apr 2013 | B1 |
8429827 | Wetzel | Apr 2013 | B1 |
8438315 | Tao et al. | May 2013 | B1 |
8462670 | Chien et al. | Jun 2013 | B2 |
8467502 | Sureka et al. | Jun 2013 | B2 |
8477926 | Jasper et al. | Jul 2013 | B2 |
8503639 | Reding et al. | Aug 2013 | B2 |
8503650 | Reding et al. | Aug 2013 | B2 |
8509068 | Begall et al. | Aug 2013 | B2 |
8532686 | Schmidt et al. | Sep 2013 | B2 |
8542805 | Agranovsky et al. | Sep 2013 | B2 |
8543665 | Ansari et al. | Sep 2013 | B2 |
8547962 | Ramachandran et al. | Oct 2013 | B2 |
8565117 | Hilt et al. | Oct 2013 | B2 |
8572391 | Golan et al. | Oct 2013 | B2 |
8576712 | Sabat et al. | Nov 2013 | B2 |
8577803 | Chatterjee et al. | Nov 2013 | B2 |
8582450 | Robesky | Nov 2013 | B1 |
8594626 | Woodson et al. | Nov 2013 | B1 |
8601136 | Fahlgren et al. | Dec 2013 | B1 |
8611338 | Lawson et al. | Dec 2013 | B2 |
8613102 | Nath | Dec 2013 | B2 |
8621598 | Lai et al. | Dec 2013 | B2 |
8649268 | Lawson et al. | Feb 2014 | B2 |
8656452 | Li et al. | Feb 2014 | B2 |
8667056 | Proulx et al. | Mar 2014 | B1 |
8675493 | Buddhikot et al. | Mar 2014 | B2 |
8688147 | Nguyen et al. | Apr 2014 | B2 |
8695077 | Gerhard et al. | Apr 2014 | B1 |
8728656 | Takahashi et al. | May 2014 | B2 |
8751801 | Harris et al. | Jun 2014 | B2 |
8755376 | Lawson et al. | Jun 2014 | B2 |
8767925 | Sureka et al. | Jul 2014 | B2 |
8781975 | Bennett et al. | Jul 2014 | B2 |
8806024 | Francis et al. | Aug 2014 | B1 |
8819133 | Wang | Aug 2014 | B2 |
8825746 | Ravichandran | Sep 2014 | B2 |
8837465 | Lawson et al. | Sep 2014 | B2 |
8838707 | Lawson et al. | Sep 2014 | B2 |
8843596 | Goel et al. | Sep 2014 | B2 |
8855271 | Brock | Oct 2014 | B2 |
8861510 | Fritz | Oct 2014 | B1 |
8879547 | Maes | Nov 2014 | B2 |
8938053 | Cooke et al. | Jan 2015 | B2 |
8948356 | Nowack et al. | Feb 2015 | B2 |
8954591 | Ganesan et al. | Feb 2015 | B2 |
8964726 | Lawson et al. | Feb 2015 | B2 |
8990610 | Bostick et al. | Mar 2015 | B2 |
9014664 | Kim et al. | Apr 2015 | B2 |
9015702 | Bhat | Apr 2015 | B2 |
9031223 | Smith et al. | May 2015 | B2 |
9032204 | Byrd et al. | May 2015 | B2 |
9071677 | Aggarwal et al. | Jun 2015 | B2 |
9137127 | Nowack | Sep 2015 | B2 |
9141682 | Adoc, Jr. et al. | Sep 2015 | B1 |
9161296 | Parsons et al. | Oct 2015 | B2 |
9204281 | Ramprasad et al. | Dec 2015 | B2 |
9210275 | Lawson et al. | Dec 2015 | B2 |
9251371 | Ballai et al. | Feb 2016 | B2 |
9306982 | Lawson et al. | Apr 2016 | B2 |
9307094 | Nowack et al. | Apr 2016 | B2 |
9325624 | Malatack et al. | Apr 2016 | B2 |
9338190 | Eng et al. | May 2016 | B2 |
9344573 | Wolthuis et al. | May 2016 | B2 |
9378337 | Kuhr | Jun 2016 | B2 |
9456008 | Lawson et al. | Sep 2016 | B2 |
9456339 | Hildner et al. | Sep 2016 | B1 |
9588974 | Ballai et al. | Mar 2017 | B2 |
9596274 | Lawson et al. | Mar 2017 | B2 |
9628624 | Wolthuis et al. | Apr 2017 | B2 |
9632875 | Raichstein et al. | Apr 2017 | B2 |
9858279 | Ballai et al. | Jan 2018 | B2 |
20010038624 | Greenberg et al. | Nov 2001 | A1 |
20010043684 | Guedalia et al. | Nov 2001 | A1 |
20010051996 | Cooper et al. | Dec 2001 | A1 |
20020006124 | Jimenez et al. | Jan 2002 | A1 |
20020006125 | Josse et al. | Jan 2002 | A1 |
20020006193 | Rodenbusch et al. | Jan 2002 | A1 |
20020025819 | Cetusic et al. | Feb 2002 | A1 |
20020057777 | Saito et al. | May 2002 | A1 |
20020064267 | Martin et al. | May 2002 | A1 |
20020067823 | Walker et al. | Jun 2002 | A1 |
20020077833 | Arons et al. | Jun 2002 | A1 |
20020126813 | Partovi et al. | Sep 2002 | A1 |
20020133587 | Ensel et al. | Sep 2002 | A1 |
20020136391 | Armstrong | Sep 2002 | A1 |
20020165957 | Devoe et al. | Nov 2002 | A1 |
20020176378 | Hamilton et al. | Nov 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020184361 | Eden | Dec 2002 | A1 |
20020198941 | Gavrilescu et al. | Dec 2002 | A1 |
20030006137 | Wei et al. | Jan 2003 | A1 |
20030012356 | Zino et al. | Jan 2003 | A1 |
20030014665 | Anderson et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030023672 | Vaysman | Jan 2003 | A1 |
20030026426 | Wright | Feb 2003 | A1 |
20030046366 | Pardikar et al. | Mar 2003 | A1 |
20030051037 | Sundaram et al. | Mar 2003 | A1 |
20030058884 | Kallner et al. | Mar 2003 | A1 |
20030059020 | Meyerson et al. | Mar 2003 | A1 |
20030060188 | Gidron et al. | Mar 2003 | A1 |
20030061317 | Brown et al. | Mar 2003 | A1 |
20030061404 | Atwal | Mar 2003 | A1 |
20030088421 | Maes et al. | May 2003 | A1 |
20030097330 | Hillmer et al. | May 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030097639 | Niyogi et al. | May 2003 | A1 |
20030103620 | Brown et al. | Jun 2003 | A1 |
20030123640 | Roelle et al. | Jul 2003 | A1 |
20030149721 | Alfonso-Nogueiro et al. | Aug 2003 | A1 |
20030162506 | Toshimitsu et al. | Aug 2003 | A1 |
20030195950 | Huang et al. | Oct 2003 | A1 |
20030195990 | Greenblat | Oct 2003 | A1 |
20030196076 | Zabarski et al. | Oct 2003 | A1 |
20030204616 | Billhartz et al. | Oct 2003 | A1 |
20030211842 | Kempf et al. | Nov 2003 | A1 |
20030231647 | Petrovykh | Dec 2003 | A1 |
20030233276 | Pearlman et al. | Dec 2003 | A1 |
20040008635 | Nelson et al. | Jan 2004 | A1 |
20040011690 | Marfino et al. | Jan 2004 | A1 |
20040044953 | Watkins et al. | Mar 2004 | A1 |
20040052349 | Creamer et al. | Mar 2004 | A1 |
20040071275 | Bowater et al. | Apr 2004 | A1 |
20040101122 | Da Palma | May 2004 | A1 |
20040102182 | Reith et al. | May 2004 | A1 |
20040117788 | Karaoguz et al. | Jun 2004 | A1 |
20040136324 | Steinberg et al. | Jul 2004 | A1 |
20040165569 | Sweatman et al. | Aug 2004 | A1 |
20040172482 | Weissman et al. | Sep 2004 | A1 |
20040199572 | Hunt et al. | Oct 2004 | A1 |
20040205101 | Radhakrishnan | Oct 2004 | A1 |
20040205689 | Ellens et al. | Oct 2004 | A1 |
20040213400 | Golitsin et al. | Oct 2004 | A1 |
20040216058 | Chavers et al. | Oct 2004 | A1 |
20040218748 | Fisher | Nov 2004 | A1 |
20040228469 | Andrews et al. | Nov 2004 | A1 |
20040236696 | Aoki et al. | Nov 2004 | A1 |
20040240649 | Goel | Dec 2004 | A1 |
20050005109 | Castaldi et al. | Jan 2005 | A1 |
20050005200 | Matena et al. | Jan 2005 | A1 |
20050010483 | Ling | Jan 2005 | A1 |
20050015505 | Kruis et al. | Jan 2005 | A1 |
20050021626 | Prajapat et al. | Jan 2005 | A1 |
20050025303 | Hostetler | Feb 2005 | A1 |
20050038772 | Colrain | Feb 2005 | A1 |
20050043952 | Sharma et al. | Feb 2005 | A1 |
20050047579 | Salame | Mar 2005 | A1 |
20050060411 | Coulombe et al. | Mar 2005 | A1 |
20050083907 | Fishler | Apr 2005 | A1 |
20050091336 | DeHamer et al. | Apr 2005 | A1 |
20050091572 | Gavrilescu et al. | Apr 2005 | A1 |
20050108770 | Karaoguz et al. | May 2005 | A1 |
20050125251 | Berger et al. | Jun 2005 | A1 |
20050125739 | Thompson et al. | Jun 2005 | A1 |
20050128961 | Miloslavsky et al. | Jun 2005 | A1 |
20050135578 | Ress et al. | Jun 2005 | A1 |
20050141500 | Bhandari et al. | Jun 2005 | A1 |
20050147088 | Bao et al. | Jul 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050181835 | Lau et al. | Aug 2005 | A1 |
20050198292 | Duursma et al. | Sep 2005 | A1 |
20050228680 | Malik | Oct 2005 | A1 |
20050238153 | Chevalier | Oct 2005 | A1 |
20050240659 | Taylor | Oct 2005 | A1 |
20050243977 | Creamer et al. | Nov 2005 | A1 |
20050246176 | Creamer et al. | Nov 2005 | A1 |
20050286496 | Malhotra | Dec 2005 | A1 |
20050289222 | Sahim | Dec 2005 | A1 |
20060008065 | Longman et al. | Jan 2006 | A1 |
20060008073 | Yoshizawa et al. | Jan 2006 | A1 |
20060008256 | Khedouri et al. | Jan 2006 | A1 |
20060015467 | Morken et al. | Jan 2006 | A1 |
20060021004 | Moran et al. | Jan 2006 | A1 |
20060023676 | Whitmore et al. | Feb 2006 | A1 |
20060047666 | Bedi et al. | Mar 2006 | A1 |
20060067506 | Flockhart et al. | Mar 2006 | A1 |
20060080415 | Tu | Apr 2006 | A1 |
20060098624 | Morgan et al. | May 2006 | A1 |
20060129638 | Deakin | Jun 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060146792 | Ramachandran et al. | Jul 2006 | A1 |
20060146802 | Baldwin et al. | Jul 2006 | A1 |
20060168334 | Potti et al. | Jul 2006 | A1 |
20060203979 | Jennings | Sep 2006 | A1 |
20060209695 | Archer et al. | Sep 2006 | A1 |
20060212865 | Vincent et al. | Sep 2006 | A1 |
20060215824 | Mitby et al. | Sep 2006 | A1 |
20060217823 | Hussey | Sep 2006 | A1 |
20060217978 | Mitby et al. | Sep 2006 | A1 |
20060222166 | Ramakrishna et al. | Oct 2006 | A1 |
20060235715 | Abrams | Oct 2006 | A1 |
20060256816 | Yarlagadda et al. | Nov 2006 | A1 |
20060262915 | Marascio et al. | Nov 2006 | A1 |
20060270386 | Yu et al. | Nov 2006 | A1 |
20060285489 | Francisco et al. | Dec 2006 | A1 |
20070002744 | Mewhinney et al. | Jan 2007 | A1 |
20070036143 | Alt et al. | Feb 2007 | A1 |
20070038499 | Margulies et al. | Feb 2007 | A1 |
20070043681 | Morgan et al. | Feb 2007 | A1 |
20070050306 | McQueen | Mar 2007 | A1 |
20070064672 | Raghav et al. | Mar 2007 | A1 |
20070070906 | Thakur | Mar 2007 | A1 |
20070070980 | Phelps | Mar 2007 | A1 |
20070071223 | Lee et al. | Mar 2007 | A1 |
20070074174 | Thornton | Mar 2007 | A1 |
20070088836 | Tai et al. | Apr 2007 | A1 |
20070091907 | Seshadri et al. | Apr 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070112574 | Greene | May 2007 | A1 |
20070116191 | Bermudez et al. | May 2007 | A1 |
20070121651 | Casey et al. | May 2007 | A1 |
20070127691 | Lert | Jun 2007 | A1 |
20070127703 | Siminoff | Jun 2007 | A1 |
20070130260 | Weintraub et al. | Jun 2007 | A1 |
20070133771 | Stifelman et al. | Jun 2007 | A1 |
20070147351 | Dietrich et al. | Jun 2007 | A1 |
20070149166 | Turcotte et al. | Jun 2007 | A1 |
20070153711 | Dykas et al. | Jul 2007 | A1 |
20070167170 | Fitchett et al. | Jul 2007 | A1 |
20070192629 | Saito | Aug 2007 | A1 |
20070201448 | Baird et al. | Aug 2007 | A1 |
20070208862 | Fox et al. | Sep 2007 | A1 |
20070232284 | Mason et al. | Oct 2007 | A1 |
20070239761 | Baio et al. | Oct 2007 | A1 |
20070242626 | Altberg et al. | Oct 2007 | A1 |
20070255828 | Paradise | Nov 2007 | A1 |
20070265073 | Novi et al. | Nov 2007 | A1 |
20070286180 | Marquette et al. | Dec 2007 | A1 |
20070291734 | Bhatia et al. | Dec 2007 | A1 |
20070291905 | Halliday et al. | Dec 2007 | A1 |
20070293200 | Roundtree et al. | Dec 2007 | A1 |
20070295803 | Levine et al. | Dec 2007 | A1 |
20080005275 | Overton et al. | Jan 2008 | A1 |
20080025320 | Bangalore et al. | Jan 2008 | A1 |
20080037715 | Prozeniuk et al. | Feb 2008 | A1 |
20080037746 | Dufrene et al. | Feb 2008 | A1 |
20080040484 | Yardley | Feb 2008 | A1 |
20080049617 | Grice et al. | Feb 2008 | A1 |
20080052395 | Wright et al. | Feb 2008 | A1 |
20080091843 | Kulkarni | Apr 2008 | A1 |
20080101571 | Harlow et al. | May 2008 | A1 |
20080104348 | Kabzinski et al. | May 2008 | A1 |
20080120702 | Holimoto | May 2008 | A1 |
20080123559 | Haviv et al. | May 2008 | A1 |
20080134049 | Gupta et al. | Jun 2008 | A1 |
20080139166 | Agarwal et al. | Jun 2008 | A1 |
20080146268 | Gandhi et al. | Jun 2008 | A1 |
20080152101 | Griggs | Jun 2008 | A1 |
20080154601 | Stifelman et al. | Jun 2008 | A1 |
20080155029 | Helbling | Jun 2008 | A1 |
20080162482 | Ahern et al. | Jul 2008 | A1 |
20080165708 | Moore et al. | Jul 2008 | A1 |
20080172404 | Cohen | Jul 2008 | A1 |
20080177883 | Hanai et al. | Jul 2008 | A1 |
20080192736 | Jabri et al. | Aug 2008 | A1 |
20080201426 | Darcie | Aug 2008 | A1 |
20080209050 | Li | Aug 2008 | A1 |
20080212945 | Khedouri et al. | Sep 2008 | A1 |
20080222656 | Lyman | Sep 2008 | A1 |
20080229421 | Hudis | Sep 2008 | A1 |
20080232574 | Baluja et al. | Sep 2008 | A1 |
20080235230 | Maes | Sep 2008 | A1 |
20080256224 | Kaji et al. | Oct 2008 | A1 |
20080275741 | Loeffen | Nov 2008 | A1 |
20080307436 | Hamilton | Dec 2008 | A1 |
20080310599 | Purnadi et al. | Dec 2008 | A1 |
20080313318 | Vermeulen | Dec 2008 | A1 |
20080316931 | Qiu et al. | Dec 2008 | A1 |
20080317222 | Griggs et al. | Dec 2008 | A1 |
20080317232 | Couse et al. | Dec 2008 | A1 |
20080317233 | Rey et al. | Dec 2008 | A1 |
20090018489 | Babaev | Jan 2009 | A1 |
20090046838 | Andreasson | Feb 2009 | A1 |
20090052437 | Taylor et al. | Feb 2009 | A1 |
20090052641 | Taylor et al. | Feb 2009 | A1 |
20090059894 | Jackson et al. | Mar 2009 | A1 |
20090063502 | Coimbatore et al. | Mar 2009 | A1 |
20090074159 | Goldfarb et al. | Mar 2009 | A1 |
20090075684 | Cheng et al. | Mar 2009 | A1 |
20090083155 | Tudor et al. | Mar 2009 | A1 |
20090089165 | Sweeney | Apr 2009 | A1 |
20090089352 | Davis et al. | Apr 2009 | A1 |
20090089699 | Saha et al. | Apr 2009 | A1 |
20090092674 | Schwartz | Apr 2009 | A1 |
20090093250 | Jackson et al. | Apr 2009 | A1 |
20090125608 | Werth et al. | May 2009 | A1 |
20090129573 | Gavan et al. | May 2009 | A1 |
20090136011 | Goel | May 2009 | A1 |
20090170496 | Bourque | Jul 2009 | A1 |
20090171659 | Pearce et al. | Jul 2009 | A1 |
20090171669 | Engelsma et al. | Jul 2009 | A1 |
20090171752 | Galvin et al. | Jul 2009 | A1 |
20090182896 | Patterson et al. | Jul 2009 | A1 |
20090193433 | Maes | Jul 2009 | A1 |
20090216835 | Jain et al. | Aug 2009 | A1 |
20090217293 | Wolber et al. | Aug 2009 | A1 |
20090220057 | Waters | Sep 2009 | A1 |
20090221310 | Chen et al. | Sep 2009 | A1 |
20090222341 | Belwadi et al. | Sep 2009 | A1 |
20090225748 | Taylor | Sep 2009 | A1 |
20090225763 | Forsberg et al. | Sep 2009 | A1 |
20090228868 | Drukman et al. | Sep 2009 | A1 |
20090232289 | Drucker | Sep 2009 | A1 |
20090234965 | Viveganandhan et al. | Sep 2009 | A1 |
20090235349 | Lai et al. | Sep 2009 | A1 |
20090241135 | Wong et al. | Sep 2009 | A1 |
20090252159 | Lawson et al. | Oct 2009 | A1 |
20090262725 | Chen | Oct 2009 | A1 |
20090276771 | Nickolov et al. | Nov 2009 | A1 |
20090288012 | Udo et al. | Nov 2009 | A1 |
20090288165 | Qiu et al. | Nov 2009 | A1 |
20090300194 | Ogasawara | Dec 2009 | A1 |
20090316687 | Kruppa | Dec 2009 | A1 |
20090318112 | Vasten | Dec 2009 | A1 |
20100027531 | Kurashima | Feb 2010 | A1 |
20100037204 | Lin et al. | Feb 2010 | A1 |
20100054142 | Moiso et al. | Mar 2010 | A1 |
20100070424 | Monk | Mar 2010 | A1 |
20100071053 | Ansari et al. | Mar 2010 | A1 |
20100082513 | Liu | Apr 2010 | A1 |
20100087215 | Gu et al. | Apr 2010 | A1 |
20100088187 | Courtney et al. | Apr 2010 | A1 |
20100088698 | Krishnamurthy | Apr 2010 | A1 |
20100094758 | Chamberlain et al. | Apr 2010 | A1 |
20100103845 | Ulupinar et al. | Apr 2010 | A1 |
20100107222 | Glasser | Apr 2010 | A1 |
20100115041 | Hawkins et al. | May 2010 | A1 |
20100138501 | Clinton et al. | Jun 2010 | A1 |
20100142516 | Lawson et al. | Jun 2010 | A1 |
20100150139 | Lawson | Jun 2010 | A1 |
20100167689 | Sepehri-Nik et al. | Jul 2010 | A1 |
20100188979 | Thubert et al. | Jul 2010 | A1 |
20100191915 | Spencer | Jul 2010 | A1 |
20100208881 | Kawamura | Aug 2010 | A1 |
20100217837 | Ansari | Aug 2010 | A1 |
20100217982 | Brown et al. | Aug 2010 | A1 |
20100232594 | Lawson | Sep 2010 | A1 |
20100235539 | Carter et al. | Sep 2010 | A1 |
20100250946 | Korte et al. | Sep 2010 | A1 |
20100251329 | Wei | Sep 2010 | A1 |
20100251340 | Martin et al. | Sep 2010 | A1 |
20100265825 | Blair et al. | Oct 2010 | A1 |
20100281108 | Cohen | Nov 2010 | A1 |
20100291910 | Sanding et al. | Nov 2010 | A1 |
20100299437 | Moore | Nov 2010 | A1 |
20100312919 | Lee et al. | Dec 2010 | A1 |
20100332852 | Vembu et al. | Dec 2010 | A1 |
20110026516 | Roberts et al. | Feb 2011 | A1 |
20110029882 | Jaisinghani | Feb 2011 | A1 |
20110029981 | Jaisinghani | Feb 2011 | A1 |
20110053555 | Cai et al. | Mar 2011 | A1 |
20110078278 | Cui et al. | Mar 2011 | A1 |
20110081008 | Lawson et al. | Apr 2011 | A1 |
20110083069 | Paul et al. | Apr 2011 | A1 |
20110083179 | Lawson et al. | Apr 2011 | A1 |
20110093516 | Geng et al. | Apr 2011 | A1 |
20110096673 | Stevenson et al. | Apr 2011 | A1 |
20110110366 | Moore et al. | May 2011 | A1 |
20110131293 | Mori | Jun 2011 | A1 |
20110138453 | Verma | Jun 2011 | A1 |
20110143714 | Keast | Jun 2011 | A1 |
20110145049 | Udo et al. | Jun 2011 | A1 |
20110149810 | Koren et al. | Jun 2011 | A1 |
20110149950 | Petit-Huguenin et al. | Jun 2011 | A1 |
20110151884 | Zhao | Jun 2011 | A1 |
20110158235 | Senga | Jun 2011 | A1 |
20110167172 | Roach et al. | Jul 2011 | A1 |
20110170505 | Rajasekar et al. | Jul 2011 | A1 |
20110176537 | Lawson et al. | Jul 2011 | A1 |
20110179126 | Wetherell et al. | Jul 2011 | A1 |
20110211679 | Mezhibovsky et al. | Sep 2011 | A1 |
20110251921 | Kassaei et al. | Oct 2011 | A1 |
20110253693 | Lyons et al. | Oct 2011 | A1 |
20110255675 | Jasper et al. | Oct 2011 | A1 |
20110258432 | Rao | Oct 2011 | A1 |
20110265168 | Lucovsky et al. | Oct 2011 | A1 |
20110265172 | Sharma | Oct 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110274111 | Narasappa et al. | Nov 2011 | A1 |
20110276892 | Jensen-Horne et al. | Nov 2011 | A1 |
20110276951 | Jain | Nov 2011 | A1 |
20110280390 | Lawson et al. | Nov 2011 | A1 |
20110283259 | Lawson et al. | Nov 2011 | A1 |
20110289126 | Aikas et al. | Nov 2011 | A1 |
20110289162 | Furlong et al. | Nov 2011 | A1 |
20110299672 | Chiu et al. | Dec 2011 | A1 |
20110310902 | Xu | Dec 2011 | A1 |
20110313950 | Nuggehalli et al. | Dec 2011 | A1 |
20110320449 | Gudlavenkatasiva | Dec 2011 | A1 |
20110320550 | Lawson et al. | Dec 2011 | A1 |
20120000903 | Baarman et al. | Jan 2012 | A1 |
20120011274 | Moreman | Jan 2012 | A1 |
20120017222 | May | Jan 2012 | A1 |
20120023531 | Meuninck et al. | Jan 2012 | A1 |
20120023544 | Li | Jan 2012 | A1 |
20120027228 | Rijken et al. | Feb 2012 | A1 |
20120028602 | Lisi et al. | Feb 2012 | A1 |
20120036574 | Heithcock et al. | Feb 2012 | A1 |
20120039202 | Song | Feb 2012 | A1 |
20120059709 | Lieberman et al. | Mar 2012 | A1 |
20120079066 | Li et al. | Mar 2012 | A1 |
20120083266 | VanSwol et al. | Apr 2012 | A1 |
20120089572 | Raichstein | Apr 2012 | A1 |
20120094637 | Jeyaseelan et al. | Apr 2012 | A1 |
20120101952 | Raleigh et al. | Apr 2012 | A1 |
20120110564 | Ran et al. | May 2012 | A1 |
20120114112 | Rauschenberger et al. | May 2012 | A1 |
20120149404 | Beattie et al. | Jun 2012 | A1 |
20120166488 | Kaushik et al. | Jun 2012 | A1 |
20120170726 | Schwartz | Jul 2012 | A1 |
20120173610 | Bleau | Jul 2012 | A1 |
20120174095 | Natchadalingam et al. | Jul 2012 | A1 |
20120179646 | Hinton | Jul 2012 | A1 |
20120179907 | Byrd et al. | Jul 2012 | A1 |
20120180021 | Byrd et al. | Jul 2012 | A1 |
20120180029 | Hill et al. | Jul 2012 | A1 |
20120185561 | Klein | Jul 2012 | A1 |
20120198004 | Watte | Aug 2012 | A1 |
20120201238 | Lawson et al. | Aug 2012 | A1 |
20120208495 | Lawson et al. | Aug 2012 | A1 |
20120221603 | Kothule et al. | Aug 2012 | A1 |
20120226579 | Ha et al. | Sep 2012 | A1 |
20120239757 | Firstenberg et al. | Sep 2012 | A1 |
20120240226 | Li | Sep 2012 | A1 |
20120246273 | Bornstein et al. | Sep 2012 | A1 |
20120254828 | Aiylam et al. | Oct 2012 | A1 |
20120266258 | Tuchman | Oct 2012 | A1 |
20120281536 | Gell et al. | Nov 2012 | A1 |
20120288082 | Segall | Nov 2012 | A1 |
20120290706 | Lin et al. | Nov 2012 | A1 |
20120304245 | Lawson | Nov 2012 | A1 |
20120304275 | Ji et al. | Nov 2012 | A1 |
20120316809 | Egolf et al. | Dec 2012 | A1 |
20120321058 | Eng et al. | Dec 2012 | A1 |
20120321070 | Smith et al. | Dec 2012 | A1 |
20130029629 | Lindholm et al. | Jan 2013 | A1 |
20130031158 | Salsburg | Jan 2013 | A1 |
20130031613 | Shanabrook | Jan 2013 | A1 |
20130036476 | Roever et al. | Feb 2013 | A1 |
20130047232 | Tuchman et al. | Feb 2013 | A1 |
20130054517 | Beechuk | Feb 2013 | A1 |
20130054684 | Brazier et al. | Feb 2013 | A1 |
20130058262 | Parreira | Mar 2013 | A1 |
20130067232 | Cheung et al. | Mar 2013 | A1 |
20130067448 | Sannidhanam et al. | Mar 2013 | A1 |
20130097298 | Ting et al. | Apr 2013 | A1 |
20130110658 | Lyman et al. | May 2013 | A1 |
20130132573 | Lindblom | May 2013 | A1 |
20130139148 | Berg et al. | May 2013 | A1 |
20130156024 | Burg | Jun 2013 | A1 |
20130166580 | Maharajh et al. | Jun 2013 | A1 |
20130179942 | Caplis et al. | Jul 2013 | A1 |
20130201909 | Bosch et al. | Aug 2013 | A1 |
20130204786 | Mattes et al. | Aug 2013 | A1 |
20130212603 | Cooke et al. | Aug 2013 | A1 |
20130244632 | Spence et al. | Sep 2013 | A1 |
20130268676 | Martins et al. | Oct 2013 | A1 |
20130325934 | Fausak et al. | Dec 2013 | A1 |
20130328997 | Desai | Dec 2013 | A1 |
20130336472 | Fahlgren et al. | Dec 2013 | A1 |
20140013400 | Warshavsky | Jan 2014 | A1 |
20140025503 | Meyer et al. | Jan 2014 | A1 |
20140058806 | Guenette et al. | Feb 2014 | A1 |
20140064467 | Lawson | Mar 2014 | A1 |
20140072115 | Makagon et al. | Mar 2014 | A1 |
20140073291 | Hildner et al. | Mar 2014 | A1 |
20140095627 | Romagnino | Apr 2014 | A1 |
20140101058 | Castel et al. | Apr 2014 | A1 |
20140101149 | Winters | Apr 2014 | A1 |
20140105372 | Nowack et al. | Apr 2014 | A1 |
20140106704 | Cooke et al. | Apr 2014 | A1 |
20140122600 | Kim et al. | May 2014 | A1 |
20140123187 | Reisman | May 2014 | A1 |
20140126715 | Lum et al. | May 2014 | A1 |
20140129363 | Lorah et al. | May 2014 | A1 |
20140153565 | Lawson et al. | Jun 2014 | A1 |
20140185490 | Holm et al. | Jul 2014 | A1 |
20140254600 | Shibata et al. | Sep 2014 | A1 |
20140258481 | Lundell | Sep 2014 | A1 |
20140269333 | Boerjesson | Sep 2014 | A1 |
20140274086 | Boerjesson et al. | Sep 2014 | A1 |
20140282473 | Saraf et al. | Sep 2014 | A1 |
20140289391 | Balaji et al. | Sep 2014 | A1 |
20140304054 | Orun et al. | Oct 2014 | A1 |
20140317640 | Harm | Oct 2014 | A1 |
20140355600 | Lawson | Dec 2014 | A1 |
20140372508 | Fausak et al. | Dec 2014 | A1 |
20140372509 | Fausak et al. | Dec 2014 | A1 |
20140372510 | Fausak et al. | Dec 2014 | A1 |
20140373098 | Fausak et al. | Dec 2014 | A1 |
20140379670 | Kuhr | Dec 2014 | A1 |
20150004932 | Kim et al. | Jan 2015 | A1 |
20150004933 | Kim et al. | Jan 2015 | A1 |
20150023251 | Giakoumelis et al. | Jan 2015 | A1 |
20150026477 | Malatack et al. | Jan 2015 | A1 |
20150066865 | Yara | Mar 2015 | A1 |
20150081918 | Nowack et al. | Mar 2015 | A1 |
20150082378 | Collison | Mar 2015 | A1 |
20150100634 | He et al. | Apr 2015 | A1 |
20150119050 | Liao et al. | Apr 2015 | A1 |
20150181631 | Lee et al. | Jun 2015 | A1 |
20150236905 | Bellan et al. | Aug 2015 | A1 |
20150281294 | Nur et al. | Oct 2015 | A1 |
20150365480 | Soto et al. | Dec 2015 | A1 |
20150370788 | Bareket et al. | Dec 2015 | A1 |
20150381580 | Graham, II | Dec 2015 | A1 |
20160004882 | Ballai et al. | Jan 2016 | A1 |
20160011758 | Dornbush et al. | Jan 2016 | A1 |
20160028695 | Binder | Jan 2016 | A1 |
20160077693 | Meyer et al. | Mar 2016 | A1 |
20160103846 | Ballai et al. | Apr 2016 | A1 |
20160112475 | Lawson et al. | Apr 2016 | A1 |
20160112521 | Lawson et al. | Apr 2016 | A1 |
20160119291 | Zollinger et al. | Apr 2016 | A1 |
20160127254 | Kumar et al. | May 2016 | A1 |
20160149956 | Birnbaum et al. | May 2016 | A1 |
20160162172 | Rathod | Jun 2016 | A1 |
20160205519 | Patel et al. | Jul 2016 | A1 |
20160226937 | Patel et al. | Aug 2016 | A1 |
20160226979 | Lancaster et al. | Aug 2016 | A1 |
20160234391 | Wolthuis | Aug 2016 | A1 |
20160239770 | Batabyal et al. | Aug 2016 | A1 |
20170132233 | Ballai et al. | May 2017 | A1 |
20170339283 | Chaudhary et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1684587 | Mar 1971 | DE |
0282126 | Sep 1988 | EP |
1464418 | Oct 2004 | EP |
1522922 | Apr 2005 | EP |
1770586 | Apr 2007 | EP |
2053869 | Apr 2009 | EP |
2134107 | Sep 1999 | ES |
10294788 | Apr 1998 | JP |
2004166000 | Jun 2004 | JP |
2004220118 | Aug 2004 | JP |
2006319914 | Nov 2006 | JP |
9732448 | Sep 1997 | WO |
2002087804 | Nov 2002 | WO |
2006037492 | Apr 2006 | WO |
018489 | Feb 2009 | WO |
2009124223 | Oct 2009 | WO |
2010037064 | Apr 2010 | WO |
2010040010 | Apr 2010 | WO |
2010101935 | Sep 2010 | WO |
2011091085 | Jul 2011 | WO |
Entry |
---|
“Ethernet to Token ring Bridge”—Black Box Corporation, Oct. 1999 http://blackboxcanada.com/resource/files/productdetails/17044.pdf. |
Abu-Lebdeh et al. “A 3GPP Evolved Packet Core-Based Architecture for QoS-Enabled Mobile Video Surveillance Applications”. 2012 Third International Conference on the Network of the Future (NOF). Nov. 21-23, 2012. pp. 1-6. |
Archive Microsoft Office 365 Email | Retain Unified Archiving, 2015, GWAVA, Inc., Montreal, Canada. |
Complaint for Patent Infringement, Telinit Technologies, LLC v. Twilio Inc., dated Oct. 12, 2012. |
Kim et al. “In-service Feedback QoE Framework” 2010 Third International Conference on Communication Theory. Reliability and Quality of Service. pp. 135-138. 2010. |
Matos et al. “Quality of Experience-based Routing in Multi-Service Wireless Mesh Networks” Realizing Advanced Video Optimized Wireless Networks. IEEE. pp. 7060-7065. 2012. |
NPL, “API Monetization Platform”, 2013. |
RFC 3986: Uniform Resource Identifier (URI): Generic Syntax; T. Berners-Lee, R. Fielding, L. Masinter; Jan. 2005; The Internet Society. |
S. barakovic and L. Skorin-Kapov. “Survey and Challenges of QoE Management Issues in Wireless Networks”. 2012, pp. 1-29. |
Subramanya, et al. “Digital Signatures”, IEEE Potentials, Mar./Apr. 2006, pp. 5-8. |
Tran et al. “User to User adaptive routing based on QoE” ICNS 2011: The Seventh International Conference on Networking and Services. pp. 170-177. 2011. |
Twilio Cloud Communications—APIs for Voice, VoIP, and Text Messaging, Twilio. |
Wu et al. “Quality Evaluation in Peer-to-Peer IPTV Services” Data Traffic and Monitoring Analysis, LNCS 7754. pp. 302-319. 2013. |
“U.S. Appl. No. 14/793,435, Notice of Allowance dated Oct. 7, 2015”, 10 pgs. |
“U.S. Appl. No. 14/974,312, Examiner Interview Summary dated Sep. 30, 2016”, 3 pgs. |
“U.S. Appl. No. 14/974,312, Non Final Office Action dated Jul. 19, 2016”, 13 pgs. |
“U.S. Appl. No. 14/974,312, Notice of Allowance dated Oct. 21, 2016”, 8 pgs. |
“U.S. Appl. No. 14/974,312, Response filed Oct. 5, 2016 to Non Final Office Action dated Jul. 19, 2016”, 6 pgs. |
“U.S. Appl. No. 15/412,843, Non Final Office Action dated Jun. 26, 2017”, 22 pgs. |
“U.S. Appl. No. 15/412,843, Notice of Allowance dated Aug. 30, 2017”, 8 pgs. |
“U.S. Appl. No. 15/412,843, Preliminary Amendment filed Feb. 21, 2017”, 5 pgs. |
“U.S. Appl. No. 15/412,843, Response filed Jul. 28, 2017 to Non Final Office Action dated Jun. 26, 2017”, 5 pgs. |
Number | Date | Country | |
---|---|---|---|
20180081888 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62021645 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15412843 | Jan 2017 | US |
Child | 15826434 | US | |
Parent | 14974312 | Dec 2015 | US |
Child | 15412843 | US | |
Parent | 14793435 | Jul 2015 | US |
Child | 14974312 | US |