Method and system for automated stacking and loading of wrapped facemasks into a carton in a manufacturing line

Information

  • Patent Grant
  • 11059690
  • Patent Number
    11,059,690
  • Date Filed
    Friday, October 16, 2015
    9 years ago
  • Date Issued
    Tuesday, July 13, 2021
    3 years ago
Abstract
An automated method and system for stacking and loading wrapped or unwrapped facemasks into a carton in a facemask production line includes conveying individual wrapped facemasks in a continuous stream to a stacking location. At the stacking location, the facemasks are deposited into a vertical accumulator such that the facemasks are stacked in the accumulator. Upon reaching a predetermined fill level of facemasks in the accumulator, a bottom retainer in the accumulator is opened such that the stacked facemasks drop into a carton placed below the accumulator. Upon opening the bottom retainer, a mid-level retainer is actuated in the accumulator that captures facemasks that continue to be deposited into the accumulator at an intermediate height above the bottom retainer. The bottom retainer is closed after the stacked facemasks drop into the carton, and the mid-level retainer is then opened such that the facemasks captured by the mid-level retainer drop onto the bottom retainer.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of protective facemasks, and more specifically to a method and related system for stacking and packaging wrapped facemask in the manufacturing line of such facemasks.


FAMILY OF RELATED APPLICATIONS

The present application is related by subject matter to the following concurrently filed PCT applications (all of which designate the US):


a. International Application No.: PCT/US2015/055858;


entitled “Method and System for Splicing Nose Wire in a Facemask Manufacturing Process”.


b. International Application No.: PCT/US2015/055861;


entitled “Method and System for Splicing Nose Wire in a Facemask Manufacturing Process”.


c. International Application No.: PCT/US2015/055863;


entitled “Method and System for Introducing a Reserve Nose Wire in a Facemask Production Line”.


d. International Application No.: PCT/U S2015/055865; entitled “Method and System for Cutting and Placing Nose Wires in a Facemask Manufacturing Process”.


e. International Application No.: PCT/US2015/055867;


entitled “Method and System for Placing Nose Wires in a Facemask Manufacturing Process”.


f. International Application No.: PCT/US2015/055871;


entitled “Method and System for Placing Nose Wires in a Facemask Manufacturing Process”.


g. International Application No.: PCT/US2015/055872;


entitled “Method and System for Placing Nose Wires in a Facemask Manufacturing Process”.


h. International Application No.: PCT/US2015/055876;


entitled “Method and System for Wrapping and Preparing Facemasks for Packaging in a Manufacturing Line”.


i. International Application No.: PCT/US2015/055878;


entitled “Method and System for Automated Stacking and Loading of Wrapped Facemasks into a Carton in a Facemask Manufacturing Line”.


The above cited applications are incorporated herein by reference for all purposes. Any combination of the features and aspects of the subject matter described in the cited applications may be combined with embodiments of the present application to yield still further embodiments of the present invention.


BACKGROUND OF THE INVENTION

Various configurations of disposable filtering facemasks or respirators are known and may be referred to by various names, including “facemasks”, “respirators”, “filtering face respirators”, and so forth. For purposes of this disclosure, such devices are referred to generically as “facemasks.”


The ability to supply aid workers, rescue personnel, and the general populace with protective facemasks during times of natural disasters or other catastrophic events is crucial. For example, in the event of a pandemic, the use of facemasks that offer filtered breathing is a key aspect of the response and recovery to such event. For this reason, governments and other municipalities generally maintain a ready stockpile of the facemasks for immediate emergency use. However, the facemasks have a defined shelf life, and the stockpile must be continuously monitored for expiration and replenishing. This is an extremely expensive undertaking.


Recently, investigation has been initiated into whether or not it would be feasible to mass produce facemasks on an “as needed” basis during pandemics or other disasters instead of relying on stockpiles. For example, in 2013, the Biomedical Advanced Research and Development Authority (BARDA) within the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services estimated that up to 100 million facemasks would be needed during a pandemic situation in the U.S., and proposed research into whether this demand could be met by mass production of from 1.5 to 2 million facemasks per day to avoid stockpiling. This translates to about 1,500 masks/minute. Current facemask production lines are capable of producing only about 100 masks/minute due to technology and equipment restraints, which falls far short of the estimated goal. Accordingly, advancements in the manufacturing and production processes will be needed if the goal of “on demand” facemasks during a pandemic is to become a reality.


In conventional facemask production lines, once the facemasks have been cut and wrapped, manual labor is necessary to align, stack, and place the masks in a carton. These manual steps are a significant impediment to mass production of the facemasks at the throughputs mentioned above.


The present invention addresses this need and provides a method and system for high speed aligning and stacking of wrapped facemasks into a carton for further high speed packaging.


SUMMARY OF THE INVENTION

Objects and advantages of the invention will be set forth in the following description, or may be obvious from the description, or may be learned through practice of the invention.


In accordance with aspects of the invention, an automated method is provided for stacking and loading wrapped or unwrapped facemasks into a carton in a facemask production line. The method includes conveying individual wrapped or unwrapped facemasks in a continuous stream to a stacking location. At the stacking location, the facemasks are deposited into a vertical accumulator such that the facemasks are stacked in the accumulator. Upon reaching a predetermined fill level of facemasks in the accumulator, a bottom retainer in the accumulator is opened such that the stacked facemasks drop into a carton placed below the accumulator. The bottom retainer may be a floor of the accumulator, tabs or flaps at an open bottom end of the accumulator, and so forth. Upon opening the bottom retainer, a mid-level retainer in the accumulator is actuated to project into the accumulator and capture facemasks that continue to be deposited into the accumulator while the bottom retainer is open at an intermediate height above the bottom retainer. The mid-level retainer may be flaps or a gate within the accumulator that swing from a vertical position to a horizontal position when actuated. The bottom retainer is closed after the stacked facemasks drop into the carton. The mid-level retainer is then opened such that the facemasks captured by the mid-level retainer drop onto the bottom retainer.


The method may further include staging a second carton below the accumulator after the bottom retainer has closed, wherein the process is repeated in a continuous manner.


The facemasks may be brought to the stacking location and deposited into the accumulator by various conveying means. In one embodiment, a linear conveyor conveys the continuous stream of facemasks at a transport speed to the stacking location. This transport speed, however, may be too great for depositing the facemasks into the accumulator without causing damage to the wrapped facemasks (including cosmetic damage to the wrapping material) resulting from the facemasks hitting the accumulator wall. The method may include using controllable feed rollers that “grab” the facemasks from the linear conveyor and decelerate the articles to a slower speed prior to facemasks dropping into the accumulator.


In an alternate embodiment, the facemasks may be brought to the stacking location by a rotary conveyor, wherein the facemasks are held to the conveyor by vacuum and dropped into the accumulator at deposit position of the rotary conveyor.


It may be desired that the facemasks have an alternating stack pattern in the carton. Thus, the method includes depositing the facemasks into the accumulator in an alternating configuration. For this, the facemasks may be oriented on the conveyor prior to reaching the stacking location, for example by a vacuum puck placer or other article moving device.


The present method provides increased versatility in that different carton sizes and load requirements can be met by changing the predetermined fill level of facemasks in the accumulator to accommodate the different carton sizes.


The present invention also encompasses various system embodiments for automated stacking and loading facemasks in a facemask production line in accordance with the present methods, as described and supported herein.


Other features and aspects of the present invention are discussed in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, which makes reference to the appended figures in which:



FIG. 1 is a perspective view of a conventional respiratory facemask worn by a user, the facemask incorporating a nose wire to conform the facemask to the user's face;



FIG. 2 is a top view of the conventional facemask of FIG. 1 is a folded state;



FIG. 3 is a schematic representation of facemask production line in which embodiments of the present method may be incorporated;



FIG. 4 is a schematic representation of aspects in accordance with the present invention for stacking and loading facemasks into a carton in a production line;



FIG. 5 is a schematic representation of aspects in accordance with the present invention for stacking and loading facemasks into a carton in a production line; and



FIGS. 6A through 6D are sequential representations in accordance with the present invention for stacking and loading facemasks into a carton in a production line.





DETAILED DESCRIPTION OF REPRESENTATIVE EMBODIMENTS

Reference now will be made in detail to various embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations may be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.


As mentioned, the present methods relate to stacking and loading individually wrapped facemasks into a carton in an automated production line. The current methods will reduce the time spent on these processes as compared to current production lines, and thus contribute to achieving the production throughputs necessary for on-demand facemasks during extreme situations (e.g., a pandemic or natural disaster). It should be appreciated that that the upstream production steps for forming and wrapping the individual facemasks are not limiting aspects of the invention and, thus, will not be explained in great detail herein.


Also, the present disclosure refers to or implies conveyance or transport of certain components of the facemasks through the production line. It should be readily appreciated that any manner and combination of article conveyors (e.g., rotary and linear conveyors), article placers (e.g. vacuum puck placers), and transfer devices are well known in the article conveying industry and can be used for the purposes described herein. It is not necessary for an understanding and appreciation of the present methods to provide a detailed explanation of these well-known devices and system.


Various styles and configurations of facemasks, including generally trapezoidal cone masks and flat pleated facemasks are well-known, and the present methods may have utility in the production lines for these conventional masks. For illustrative purposes only, aspects of the present method are described herein with reference to a particular type of trapezoidal respirator facemask often referred to in the art as a “duckbill” mask, as illustrated in FIG. 1.


Referring to FIGS. 1 and 2, a representative facemask 11 (e.g., a duckbill facemask) is illustrated on the face of wearer 12. The mask 11 includes filter body 14 that is secured to the wearer 12 by means of resilient and elastic straps or securing members 16 and 18. The filter body 14 includes an upper portion 20 and a lower portion 22, both of which have complimentary trapezoidal shapes and are preferably bonded together such as by heat and/or ultrasonic sealing along three sides. Bonding in this manner adds important structural integrity to mask 11.


The fourth side of the mask 11 is open and includes a top edge 24 and a bottom edge 38, which cooperate with each other to define the periphery of the mask 11 that contacts the wearer's face. The top edge 24 is arranged to receive an elongated malleable member 26 (FIG. 2) in the form of a flat metal ribbon or wire (referred to herein as a “nose wire”). The nose wire 26 is provided so that top edge 24 of mask 11 can be configured to closely fit the contours of the nose and cheeks of wearer 12. The nose wire 26 is typically constructed from an aluminum strip with a rectangular cross-section. With the exception of having the nose wire 26 located along top edge 24 of the upper portion 20 of the mask 11, the upper and lower portions 20 and 22 may be identical.


As shown in FIG. 1, the mask 11 has the general shape of a cup or cone when placed on the face of wearer 12 and thus provides “off-the-face” benefits of a molded-cone style mask while still being easy for wearer 12 to carry mask 11 in a pocket prior to use. “Off-the-face” style masks provide a larger breathing chamber as compared to soft, pleated masks which contact a substantial portion of the wearer's face. Therefore, “off-the-face” masks permit cooler and easier breathing.


Blow-by associated with normal breathing of wearer 12 is substantially eliminated by properly selecting the dimension and location of the nose wire 26 with respect to top edge of 24. The nose wire 26 is preferably positioned in the center of top edge 24 and has a length in the range of fifty percent (50%) to seventy percent (70%) of the total length of the top edge 24.


The upper and lower portions 20 and 22 may include multiple layers and each have an outer mask layer 30 and inner mask layer. Located between the outer and inner mask layers are one or more intermediate filtration layers that are typically constructed from a melt-blown polypropylene, extruded polycarbonate, melt-blown polyester, or a melt-blown urethane.


The top edge 24 of the mask 11 is faced with an edge binder 36 that extends across the open end of mask 11 and covers the nose wire 26. Similarly, the bottom edge 38 is encompassed by an edge binder 40. Edge binders 36 and 40 are folded over and bonded to the respective edges 24, 38 after placement of the nose wire 26 along the top edge 24. The edge binders 36, 40 may be constructed from a spun-laced polyester material.



FIG. 3 depicts portions of a generic production line 102 for automated, in-line production of individual facemasks. It should be appreciated that the various processes, equipment, controls, etc., can vary greatly between different production lines 102, and that FIG. 3 is presented for illustrative purposes only. The methods described herein will have utility in many different types of production lines 102.



FIG. 3 represents a production line 102 wherein nose wires are incorporated into an edge of the facemasks. A running nose wire 106 is supplied in continuous strip form from a source, such as a driven spool or roll 104, to a cutting station 107 wherein the wire 106 is cut into individual nose wires 108 having a defined length. Suitable cutting stations 108 are known and used in conventional production lines.


The nose wires 108 are conveyed onto a carrier web 110, which, referring to FIG. 2, may be the continuous multi-layer web that defines the upper body portion 20 of the finished face mask 11. The individual nose wires 108 are deposited along the edge of the carrier web 110 corresponding to the top edge 24 of the facemask 11 in FIG. 2.


After placement of the individual nose wires 108 in position on the carrier web 110, a binder web 112 is introduced to the production line 102 along both edges of the carrier web 110 (only one binder web 112 is depicted in FIG. 3.). The combination of carrier web 110, nose wire 108, and binder webs 112 pass through a folding station 114 wherein the binder webs 112 are folded around the respective running edges of the carrier web 110. The components then pass through a bonding station 116 wherein the binder webs 112 are thermally bonded to the carrier web 110, thereby producing the edge configurations 24, 38 depicted in FIGS. 1 and 2. The nose wire 108 is essentially encapsulated along the top edge 24 by the binder web 112.


From the bonding station 116, the continuous combination of carrier web 110 with nose wires 108 encapsulated in the binder 112 is conveyed to another bonding station 122. At this station, an additional web 118 is introduced that corresponds to the lower panel portion 22 of the face mask 11 depicted in FIGS. 1 and 2. This web 118 may already have the binder web applied to the edge thereof from an upstream process. Continuous elastomeric straps 120 are also introduced and are laid between the edges of the web 118 and web 110 corresponding to the edges 24, 28 in FIG. 1. The materials are bonded together in a bond pattern that corresponds to the trapezoidal shape of the facemask 11 with a closed end and an open end at the edges 24, 28.


The bonded webs 110 and 118 (with nose wires and straps) are conveyed to a cutting station 124 wherein the individual facemasks 101 are cut out from the webs along the bond lines.


The facemasks 101 are then conveyed to a bonding station 128 wherein wrapping materials 126 (e.g. a poly material) are introduced and are folded (if necessary) and bonded around the individual facemasks 101. A single web of the wrapping material 126 may be folded around the facemasks and sealed along a continuous longitudinal bond line or, in an alternate embodiment depicted by the dashed line in FIG. 3, an additional web of the wrapping material 126 may be introduced to the bonding station, wherein the facemasks are sandwiched between the two webs 126. The webs 126 are then sealed along continuous longitudinal bond lines along their mating edges.


A continuous stream of wrapped facemasks 132 emerge from the bonding station 128 and are conveyed to a cutting station 130 wherein cuts are made in the bonded wrapping material in a desired pattern to produce individual wrapped facemasks 134. These masks 134 are conveyed to downstream processing stations 136 for further processing, including stacking and packaging.


Referring to the embodiment of FIG. 4, individual wrapped facemasks 134 are conveyed by a conveyor 142 in a continuous stream to a delivery location 148. A rotary wheel conveyor 144 is operationally disposed at the delivery location 148 and includes a plurality of individual pick-up devices 146 spaced around a circumference thereof. Various types of pick-up devices 146 are well known in the article conveying industry, and any one or combination of such conventional devices may be used with the current method 100. For example, the pick-up devices 146 may be vacuum pucks, mechanical graspers, suction devices, and so forth.


As the rotary wheel conveyor 144 rotates by the delivery location 148, each individual wrapped facemask 134 is picked up by a respective pick-up device 146 and is transported by the rotary wheel conveyor 144 to an intermediate linear conveyor 160, which conveys the wrapped facemasks to a stacking station 158 wherein the facemasks 134 are deposited into an accumulator 164 for eventual transfer to a carton, as described in greater detail below.


As depicted in FIG. 4, multiple stacking stations 158 and associated conveyors 160 may be operationally disposed around the periphery of the rotary wheel conveyor 144. With this configuration, multiple stations 158 can be serviced at the same time by the same rotary wheel conveyor 144. One station 158 may have a different load size requirement (e.g., different sized carton) as compared to an adjacent station 158. The stations 158 can be simultaneously filled in an alternating process from the same rotary wheel conveyor 144, particularly if the upstream processing speed for production of the masks 134 and speed of the rotary wheel conveyor 144 exceeds the loading rate of a single conveyor 160 and associated accumulator 164.


The embodiment of FIG. 5 is similar to that of FIG. 4 except that the wrapped facemasks are deposited directly from the pick-up devices 146 into the accumulator 164. As the rotary wheel conveyor 144 indexes to the stacking location 158, the pucks 146 are controlled to release the facemasks, which fall directly or are guided into the accumulator 164. As with FIG. 4, this embodiment may have multiple stacking locations configured around the periphery of the rotary wheel conveyor 144.



FIGS. 6A through 6D show an operational sequence of one embodiment of the method 100 according to the invention. The method includes conveying individual wrapped facemasks 134 in a continuous stream to the stacking location 158. In the embodiment depicted in FIG. 6A, the facemasks 134 are conveyed by the rotary conveyor 144 and dropped by the puck 146 onto the intermediate linear conveyor 160, as discussed above with respect to FIG. 4. At the stacking location 158, the facemasks 134 are deposited into a vertical accumulator 164 such that the facemasks 134 are stacked in the accumulator 164. The accumulator 164 may be a column or box-like structure having vertical walls 165 and an open top end and an open bottom end.


It may be desired that the facemasks 134 have an alternating stack pattern in the final carton. Thus, the method 100 includes depositing the facemasks 134 into the accumulator 164 in an alternating configuration. For this, the facemasks 134 may be oriented on the conveyor 166, 144 prior to reaching the stacking location 158, for example by a vacuum puck placer or other article moving device.


Referring to FIG. 6A, the facemasks 134 continue to be deposited into the accumulator 164 until a predetermined fill level of facemasks 134 in the accumulator 164 is determined by a sensor, counter, or other automated means. FIG. 6A depicts a full load of facemasks 134 in the accumulator 164. A bottom retainer 166 holds the facemasks 134 in the accumulator. This retainer 116 may be any type of flap, floor, side wall, or bottom that can be actuated to a position that allows the facemasks to fall through an open bottom or be pushed out a side wall of the accumulator 164 and into a carton 152 placed below or beside the accumulator 164. In the depicted embodiment, the retainer 166 is a bottom retainer depicted as a pair of flaps 168 that extend at least partially across the open bottom of the accumulator 164 in a closed state, and swing to vertical position in an open state to release the facemasks 134.


Referring to FIG. 6B, once the full load of facemasks 134 has been deposited into the accumulator 164, the bottom retainer 168 is opened such that the stacked facemasks 134 drop into the carton 152 placed below the accumulator 164. At essentially the same time, a mid-level retainer 170 in the accumulator 164 is actuated to a closed position at an intermediate height above the bottom retainer 166 so as to project into the accumulator 164 and temporarily capture the facemasks 134 that continue to be deposited into the accumulator 164 while the bottom retainer 166 is open. As with the bottom retainer 166, the mid-level retainer 170 may be any manner of controllable flaps, panel, wall, or the like. In the illustrated embodiment, the mid-level retainer 170 is a pair of controllable flaps that are actuated from vertical position within the accumulator 164 (FIG. 6A) to an essentially horizontal position (FIG. 6B) to capture the facemasks at the intermediate height.


Referring to FIG. 6C, the bottom retainer 166 is closed after the stacked facemasks 134 drop into the carton (FIG. 6b). At or about the same time, the mid-level retainer 170 opened such that the facemasks 134 captured by the mid-level retainer 170 drop onto the bottom retainer 166, as depicted in FIG. 6D.


The method 100 may further include staging a second carton 152 below the accumulator 164 after the bottom retainer 166 has closed, as depicted in FIG. 6D, wherein the process is repeated in a continuous manner.


Referring again to FIG. 4 and FIG. 6A, the facemasks 134 may be brought to the stacking location 158 and deposited into the accumulator by a linear conveyor 160 that conveys the continuous stream of facemasks 134 at a certain transport speed to the accumulator 164. This transport speed, however, may be too great for depositing the facemasks 134 directly into the accumulator without causing damage to the wrapped facemasks 134 (including cosmetic damage to the wrapping material) resulting from the facemasks being “launched” and hitting the opposite accumulator wall 165. The method 100 may include slowing the transport speed of the facemasks 134 with a braking device prior to deposition of the facemasks into the accumulator 134. This braking may be accomplished by various means. For example, a pair of controllable feed rollers 162 may “grab” the facemasks 134 from the linear conveyor 160 and decelerate the articles to a slower speed prior to the facemasks 134 dropping into the accumulator 164.


The present method 100 provides increased versatility in that different carton sizes and load requirements can be met by changing the predetermined fill level of facemasks in the accumulator 164 to accommodate the different carton sizes.


It should be appreciated that the methods and systems described herein are not limited to stacking and loading wrapped facemasks. The present invention is just as applicable to stacking and loading unwrapped facemasks. Although the embodiments described herein relate to wrapped facemasks, it is intended that the invention encompass the same methods and systems for stacking and loading unwrapped facemasks. For example, in the embodiment of FIG. 4, unwrapped facemasks could be conveyed by conveyor 142 to the rotary conveyor 144, and then processed as described herein.


As mentioned, the present invention also encompasses various system embodiments for automated stacking and loading facemasks into a carton in a facemask production line in accordance with the present methods. Aspects of such systems are illustrated in the figures, and described and supported above.


The material particularly shown and described above is not meant to be limiting, but instead serves to show and teach various exemplary implementations of the present subject matter. As set forth in the attached claims, the scope of the present invention includes both combinations and sub-combinations of various features discussed herein, along with such variations and modifications as would occur to a person of skill in the art.

Claims
  • 1. An automated method for stacking and loading facemasks into a carton in a facemask production line, comprising: conveying individual facemasks in a continuous stream to a stacking location;at the stacking location, depositing the facemasks into a vertical accumulator such that the facemasks are initially stacked in the accumulator atop a bottom retainer in the accumulator until a predetermined fill level of the facemasks constituting a carton of the facemasks are accumulated atop the bottom retainer;upon reaching the predetermined fill level of the initially stacked facemasks atop the bottom retainer in the accumulator, opening the bottom retainer such that the stacked facemasks drop into a carton placed below the accumulator, the bottom retainer at a fixed height in the accumulator such that the stacked facemasks drop from the fixed height at which they were stacked on the bottom retainer into the carton;upon opening the bottom retainer, continuing to deposit the facemasks into the accumulator and actuating a mid-level retainer in the accumulator that captures the facemasks that continue to be deposited into the accumulator at an intermediate height above the bottom retainer, the mid-level retainer at a fixed height in the accumulator; andclosing the bottom retainer after the stacked facemasks drop into the carton, and then opening the mid-level retainer such that the facemasks captured by the mid-level retainer drop from the fixed height at which the facemasks were deposited on the mid-level retainer onto the bottom retainer.
  • 2. The method as in claim 1, further comprising staging a second carton below the accumulator after the bottom retainer has closed, and repeating the method.
  • 3. The method as in claim 1, wherein a conveyance speed of the facemasks is slowed prior to the facemask being deposited into the accumulator.
  • 4. The method as in claim 3, wherein the facemasks are deposited from a conveyor into the accumulator by feed rollers, the method further comprising slowing the conveyance speed of the facemasks with the feed rollers prior to the facemasks being deposited into the accumulator.
  • 5. The method as in claim 1, wherein the facemasks are deposited into the accumulator in an alternating configuration.
  • 6. The method as in claim 1, further comprising changing the predetermined fill level of facemasks in the accumulator to accommodate different carton sizes.
  • 7. The method as in claim 6, wherein the facemasks are conveyed to the stacking location by a linear conveyor.
  • 8. The method as in claim 1, wherein the facemasks are conveyed to the stacking by a rotary vacuum conveyor and released from the vacuum conveyor above the accumulator.
  • 9. The method as in claim 1, wherein the facemasks are individually wrapped prior to reaching the stacking location.
  • 10. A system for stacking and loading facemasks into a carton in a facemask production line, wherein the system is specifically configured to practice the method of claim 1.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2015/055882 10/16/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2017/065794 4/20/2017 WO A
US Referenced Citations (71)
Number Name Date Kind
2354294 Schimmel Jul 1944 A
3123125 Lacey, Jr. Mar 1964 A
3205794 Califano Sep 1965 A
3242783 Schmermund Mar 1966 A
3670474 Vieson et al. Jun 1972 A
3800640 Barrie Apr 1974 A
3847046 Schmermund Nov 1974 A
3926097 Santa Maria et al. Dec 1975 A
3958390 Pringle, Jr. et al. May 1976 A
3960096 Zobel Jun 1976 A
3971369 Aspelin et al. Jul 1976 A
3983774 Seragnoli Oct 1976 A
4111411 Graves Sep 1978 A
4261457 van Maanen Apr 1981 A
4269315 Boyce May 1981 A
4440289 Weis Apr 1984 A
4467589 van Maanen Aug 1984 A
4525977 Matt Jul 1985 A
4543152 Nozaka Sep 1985 A
4549386 Wilson Oct 1985 A
4550856 Ballmann et al. Nov 1985 A
4630310 Winesett Dec 1986 A
4662005 Grier-Idris May 1987 A
4722168 Heaney Feb 1988 A
4788812 Morita Dec 1988 A
4809481 Früh et al. Mar 1989 A
5079902 Seko et al. Jan 1992 A
5117614 Johnsen Jun 1992 A
5155967 Branson Oct 1992 A
5170610 Tisma Dec 1992 A
5255584 Fakler Oct 1993 A
5322061 Brunson Jun 1994 A
5548946 Holub Aug 1996 A
5615767 Eull et al. Apr 1997 A
5724677 Bryant et al. Mar 1998 A
5727369 Mosse Mar 1998 A
5921375 Van Laar Jul 1999 A
6098785 Van Maanen Aug 2000 A
6117515 Brunson et al. Sep 2000 A
6122898 De Kort Sep 2000 A
6123077 Bostock et al. Sep 2000 A
6125849 Williams et al. Oct 2000 A
6173712 Brunson Jan 2001 B1
6174397 Johnson Jan 2001 B1
6394090 Chen et al. May 2002 B1
6524423 Hilt et al. Feb 2003 B1
6729103 Hartness et al. May 2004 B1
6868984 Griesbach, III et al. Mar 2005 B2
6886563 Bostock et al. May 2005 B2
7052006 Stauber May 2006 B2
7125216 Grewe Oct 2006 B2
7703260 Watkins Apr 2010 B1
8061356 Bowen Nov 2011 B2
8061960 Hopwood Nov 2011 B2
8700214 Fortman Apr 2014 B2
9126348 Meyer Sep 2015 B2
9150382 Allen Oct 2015 B2
10227202 Pamperin et al. Mar 2019 B2
10492547 Weber et al. Dec 2019 B2
20020095913 Honegger Jul 2002 A1
20030000805 Wild et al. Jan 2003 A1
20030010422 Starkey Jan 2003 A1
20040121107 Bell et al. Jun 2004 A1
20040144619 Ohiro et al. Jul 2004 A1
20040262127 Harnish et al. Dec 2004 A1
20050166733 Piscitello Aug 2005 A1
20060070353 Van Dam Apr 2006 A1
20060096003 Plaatje et al. May 2006 A1
20080008509 Hamers Jan 2008 A1
20080072721 Kern Mar 2008 A1
20080251210 Chen Oct 2008 A1
Foreign Referenced Citations (45)
Number Date Country
828007 Nov 1969 CA
2 325 975 May 2002 CA
104872866 Sep 2015 CN
104939377 Sep 2015 CN
3736868 May 1989 DE
0 257 852 Mar 1988 EP
0 622 298 Nov 1994 EP
0 640 526 Mar 1995 EP
0 791 537 Aug 1997 EP
0 806 343 Nov 1997 EP
0 894 752 Feb 1999 EP
1 048 595 Nov 2000 EP
1 757 552 Feb 2007 EP
1 840 033 Oct 2007 EP
2 484 611 Aug 2012 EP
2 757 062 Jul 2014 EP
2 801 790 Nov 2014 EP
1.588.621 Apr 1970 FR
364557 Dec 1931 GB
1 216 310 Dec 1970 GB
1 232 053 May 1971 GB
1 361 496 Jul 1974 GB
2 092 090 Aug 1982 GB
2436728 Oct 2007 GB
S 62103536 Jul 1987 JP
H04311405 Nov 1992 JP
H05-78007 Mar 1993 JP
H05170209 Jul 1993 JP
H06211214 Aug 1994 JP
2000198600 Jul 2000 JP
2002052487 Feb 2002 JP
2005272512 Oct 2005 JP
2006206085 Aug 2006 JP
2007084309 Apr 2007 JP
2008055035 Mar 2008 JP
2009286490 Dec 2009 JP
2011178459 Sep 2011 JP
2011200510 Oct 2011 JP
2012201409 Oct 2012 JP
2013230380 Nov 2013 JP
100550225 Feb 2006 KR
WO 9732494 Sep 1997 WO
WO 9924119 May 1999 WO
WO 0228760 Apr 2002 WO
WO 2005054106 Jun 2005 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion for PCT/US2015/055882, dated Jun. 27, 2016, 14 pages.
Related Publications (1)
Number Date Country
20200189777 A1 Jun 2020 US