The present invention relates generally to mobile wireless networks which includes general packet radio service (GPRS) networks, UMTS and LTE. Specifically, this invention relates to a method for automatic provisioning of a private network over a macro mobile wireless network while maintaining private identities used in the private network.
The GPRS or universal mobile telecommunications system (UMTS) is an evolution of the global system for mobile communications (GSM) standard to provide packet switched data services to GSM mobile stations. Packet-switched data services are used for transmitting chunks of data or for data transfers of an intermittent or bursty nature. Typical applications for 3GPP packet service include Internet browsing, wireless e-mail, video streaming, and credit card processing, etc. used by human users. The 3GPP packet service could also be used to connect mobile devices to packet data networks owned by organization such as government and enterprises.
The mobile network uses a few identities such as MSISDN (Mobile Station International Subscriber Directory Number), IMSI (International Mobile Subscriber Identity), IMEI (International Mobile Equipment Identity), or P-TMSI (packet network temporary mobile subscriber identity), etc. These identities are owned by Mobile Network Operator and exist in order to fulfill protocol needs, addressability or identification needs. The MSISDN commonly known as the phone number is a public identity that is used to reach the subscriber from the mobile network and PSTN (Public Switched Telephone Network). In packet communication IP address represents the network address nevertheless the MSISDN is still used more for protocol compatibility rather than for any real need. The IMSI is a private identity used by mobile network to identify a subscriber inside the network. Similarly IMEI is used to identify a device itself, i.e. the IMEI is tied to the handset. The IMSI is permanently programmed into the SIM (Subscriber Identity Module). Since IMSI is private identity, a temporary identity called TMSI (Temporary Mobile Subscriber Identity) or P-TMSI (Packet TMSI) is used to minimize the use of IMSI in the network signaling protocols over the air. The identities and their relative association to physical entity are shown in
Organizations both private & government that are Local & Global are looking for new and innovative ways to manage their business & operations at an optimum cost structure. There are many use-cases including disaster management, lifestyle, telematics, performance management and remote monitoring where sensors with communication capability could be effectively used. Similarly Enterprises could you computing devices like tablets, PCs, eBook etc. for sharing and disseminating enterprise content for business reasons or for productivity gains. Whenever a large entity such as government or corporation wants to use mobile network for connecting the devices that they own, there is a desire and need for these devices to be seen as virtual private network. Such private network is then seen as the extension of respective organization's own network. The organizations can manage and communicate with these devices exclusively with the identities they own and understand. For data applications, device identity and IP address should be sufficient.
In early days of mobile wireless technology, the voice was the main service and MSIDN was the only identity that was needed externally for users and businesses. Moreover, the subscriber and service relationship was exclusively between the mobile user and the mobile network operator. With advent of mobile data, this started to change, for many data applications the same user has subscription relationship with third parties. The data services are typically built on Internet Protocol (IP) and therefore the user devices needs an IP address an identity. If the mobile device connects with more than one packet data network, it will have multiple IP addresses. A Smartphone that is used both for traditional voice calling and for data applications uses all these identities. There are several “data only” devices such as PC cards, USB dongles, kindle, tablet and M2M (machine to machine) modem that are not involved in traditional voice calling. These devices do not need a phone number (MSISDN). They almost always have a subscription/service relationship beyond mobile network operator. Such third party entities will like to address and communicate with devices exactly they do over any other public IP network including Internet. Thus the enterprise that owns the M2M modems in the vending machines and smartmeters would want to assign it an identity as per their scheme and make it part of their private IP network. In other word they would want to overlay a Virtual Private Network (VPN) over the mobile wireless network. As the nature and scope of mobile communications has evolved (from voice to data apps, from handset to M2M modem) the need for identities has changed as well. Some identities are not required in some cases while in some other cases, more flexibility with identities is needed. Traditional network is carrying the burden and cost of provisioning unnecessary identities and at the same time is unable to provide flexibility in order to support frequently occurring use cases. For example, enterprises use static private IP addresses for devices that need to be reached at any time. Today's traditional mobile wireless network cannot support this use case. It can only support static IP address when they are public. Public IP addresses are expensive and may not help with private networking that Enterprise wants to have. This invention solves such problems.
A structured information storage in a packet core network is defined. First level of the hierarchical structure stores the common attribute in a set of devices or subscribers, such has devices belonging to an organization. This common association attribute becomes a handle that is used to create constructs of private virtual network for a set of devices. This group level attribute has a group ID as an identifier. A subgroup level common attribute can also be present can be used to create further subnets. The device and subscriber information in the repository exist as per 3GPP requirements.
Some of the identities used need to be unique only within the private network e.g. IP address or device identifier The above said private network provides organizations complete freedom how to use such identities. This invention provides a mapping between identities that organizations want to use and the unique private identity like IMSI.
By virtue of the above capability, this invention allows network initiated communication using any identity that is known to connected organizations.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
In the following description, numerous details are set forth to provide a more thorough explanation of embodiments of the present invention. It will be apparent, however, to one skilled in the art, that embodiments of the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring embodiments of the present invention.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
According to one embodiment, a system Virtual Optimized Core (VOC) 310 is augmented with a mechanism to automatically tag the persistent data associated with a subscriber or a device with one or more handles representing the responsible organization 312 or subgroup 313. (e.g. for all modems integrated in smart vending machines belonging to Coke is tagged with “Coke” or “Coke-vending-machine”.) The tag serves as a handle to define a private data network at any time needed. This is illustrated in
According to one embodiment, the existence of above-said handle is used to create exclusive connection and information exchange between these devices and private enterprise network. In
In one embodiment the binding association inside the Id mapping function can be created at the provisioning time. In some other embodiment such association can be created dynamically.
In one embodiment, mechanism is provided to create or assign private static IP addresses to the device. The group or subgroup handle create unique address space. The mechanism allows for use of IETF private IP addresses 10.0.0.0, 172.16.0.0, or 192.168.0.0 in each private network identified by the handle. Such address space is confined to VLAN/Tunnel specific to each group or subgroup. The Id mapping module 510 associates IP address to IMSI.
In one embodiment of this invention, a mechanism is provided for assigning Static private IP addresses to mobile devices belonging to group or subgroup owned by external organization. The VOC accepts private static IP address to IMSI mapping defining the association and makes it persistent.
In some embodiment a mechanism is provided to initiate the communication from the external network. The external network must direct communication to the Id mapping function or to an address known to Id mapping function.
Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Embodiments of the present invention also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable medium. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine (e.g., computer) readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.)), etc.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method operations. The required structure for a variety of these systems will appear from the description above. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of embodiments of the invention as described herein.
In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
The present application claims the benefit of U.S. Provisional Application No. 61/596,738, filed on Feb. 9, 2012 by the present inventors, which is herein incorporated by reference.