This invention pertains to methods and systems for distributing electrical power and data. In particular, the invention relates to a method and system for transmitting power and data using a single set of wires.
Microprocessors are found in almost every electronic device that we use in our day-to-day lives. One important application of microprocessors has been in the control of electronic devices installed in vehicles, including automobiles, buses, and airplanes. In the past, many critical automobile functions have been accomplished mechanically. Automobile functions such as wheel differential adjustments and engine timing are now controlled using sensors and actuators electrically connected to microprocessors.
Microprocessors provide well-known advantages, including making diagnostics and repairs easier in complicated machines. Microprocessors have also been used to improve the efficiency of machines when used with sensors and actuators in a feedback loop, thereby obtaining more efficient modes of operation. There are, however, some disadvantages to the use of microprocessors.
A look under the hood of a newer automobile may be enough to see one disadvantage to microprocessor use. Before microprocessors became small enough and reliable enough to be installed in automobiles, it was possible to see how separate engine parts were connected, and even to see the road underneath. Nowadays engine parts are covered by wires and cables that run from sensors and actuators attached to the mechanical parts to microprocessors used for control. Extra wires and cables are disadvantageous: every extra wire installed consumes power and adds weight. More wires also make maintenance harder.
Unfortunately, it has been largely impossible for wires to be eliminated from most microprocessor system designs. Conventionally, a separate wire has been required for power, ground, and each of a plurality of data transmission lines between a microprocessor and one or more sensors or actuators attached thereto.
U.S. Pat. No. 6,906,618, which was granted to the present inventors in 2005 and is herein incorporated by reference, discloses a method and system for bidirectional power and data transmission. The disclosed method and system reduce the number of wires used in power and data systems.
A continued need exists however for further improvements to conventional power and data systems.
In an embodiment, a network power controller in a system for bidirectional data and power transmission is provided. In an embodiment, the network power controller includes a power input for receiving positive power and negative power from a DC power source; a power output for transmitting power and data to nodes in the system; a short-circuit circuit protection circuit coupled to the power input and the power output; and a microcontroller for controlling the transmission of power and data to the system and for processing data sent and received by the network power controller. In an embodiment, the short-circuit protection circuit includes a short-circuit detection circuit coupled to the power input and a short-circuit switch coupled to the power output and controlled by the microcontroller.
In an embodiment of the present invention, the short-circuit detection circuit in the network power controller includes a current sensor for sensing the current on a power line and a current comparison circuit for determining whether the current is too high and providing feedback to the microcontroller. In an embodiment of the present invention, the current sensor circuit includes an amplifier having a sense resistor across its input terminals and an output resistor having a high side at which an output voltage can be measured. In an embodiment, the current comparison circuit is a comparator, and the output voltage and a reference voltage are coupled to the comparator's inputs. In an embodiment, a potentiometer is used to set the reference voltage at a level between the negative power input and the positive power input levels.
In an embodiment of a short-circuit switch, a power control signal is input into the base of a transistor through an input resistor. The transistor's emitter is tied to the negative power and the collector is coupled to the input of a buffer circuit. The output of the buffer circuit is coupled to the gate of a second transistor that couples the power input and the power output. The second transistor is switched off and on by the microcontroller through the power control signal.
In an embodiment, the network power controller also includes an H-bridge driver and a line switch.
In various embodiments of the present invention, the network power controller is coupled to at least one node in the system via a conduit for transferring power and data. In various embodiments, the conduit has two wires. In additional embodiments, the conduit has three or more wires.
Various embodiments of the present invention provide a bidirectional data and power transmission system that has a network power controller that transmits power to the system, at least one node that receives power from and exchanges data with the network power controller, and a power and data conduit. In an embodiment, the conduit has three wires. In an embodiment, the first wire carries positive power, the second wire carries negative power, and the third wire decreases a voltage shifting range by emulating a chassis ground. The third wire may also reduce EMI effects on the system. Various embodiments of the network power controller include a microcontroller, a power current-limit circuit, a power switch circuit, a communications short control switch circuit, and a communications driver circuit. In an embodiment, the communications driver circuit notifies the microcontroller when a communication error occurs and has a Talk/Listen line controlled by the microcontroller. In an embodiment, the microcontroller holds the Talk/Listen line low unless it needs to send data via the conduit.
In an embodiment, the present invention provides a system for bidirectional data and power transmission using an optical fiber. In various embodiments, the system includes a network power controller that has a microcontroller and a transceiver, at least one node that also has a microcontroller and a transceiver, a two-wire conduit through which the network power controller provides power to the node, and an optical fiber coupling the transceivers. Data may be transmitted bidirectionally between the transceivers via the optical fiber. In an embodiment, the system also includes circuitry for converting signals received by the transceiver into electrical signals for input to the microcontroller. In an embodiment, the transceivers each include a light source, e.g., an LED, and a light sensor, e.g., a photo-diode.
In various embodiments, an advantage of the present invention is that it provides an improved system for bidirectional data and power transmission. Another advantage of various embodiments of the present invention is a network power controller that includes circuit protection circuitry. Yet another advantage of the present invention is that various embodiments of the present invention mitigate the effects of EMI on a bidirectional data and power transmission system.
These and other advantages of the invention will be apparent from the description of the invention provided herein.
Various embodiments of the present invention provide a digital current system. Various embodiments of the system provide for bidirectional communications and power transmission between a network power controller and nodes on the network. In an embodiment, the system includes two wires for the transmission of data and power. In another embodiment, the system includes three wires for the transmission of data and power. In still another embodiment, the system includes two wires for the transmission of power and an optical fiber for the transmission of communications.
In an embodiment, the present invention provides a two-wire digital current system. In an embodiment of the two-wire digital current system, a two-wire conduit such as a twisted pair or coaxial cable is used to link elements in a system for bidirectional communication and power transport.
In an embodiment, a two-wire conduit is used to link a network power controller (NPC) and at least one node. The NPC and node communicate bi-directionally over the two-wire conduit through which the node also receives power from the NPC. In an embodiment, the NPC and each node include a microcontroller, e.g., a 68HC908GP32, that sends and receives analog and digital signals to and from the NPC and nodes. The digital and analog inputs to the microcontrollers may be translated into data at the NPC and the nodes for transmission to their respective outputs.
In an embodiment, a network power controller (NPC) powers and controls three separate nodes. The NPC could power and control greater or fewer nodes as the system has been designed to accommodate any number of nodes and is expandable to the limits of its components. In an embodiment, the NPC and nodes within the network are arranged in a loop circuit, as shown in
In an embodiment, the NPC comprises a communication and current sense portion 100, an H-Bridge driver 200, a microcontroller, and an NPC line switch 300. In an embodiment, system power is provided to the NPC via a two-lead power connection, e.g., a positive and negative battery power. In an embodiment, as shown in
In an embodiment, each node comprises a microcontroller, a node switch, and a node switch power and communications section 400. In another embodiment, a node includes a node output control 500.
In an embodiment, as shown in
In an embodiment, the power control signal is output from the microcontroller to a short-circuit protection circuit. In an embodiment, the short-circuit protection circuit comprises a short-circuit switch coupled to the p-channel power FET through which the battery power flows to the H-Bridge driver 200. In an embodiment, as shown in
In an embodiment, a resistor R1120, e.g., a 100 Ohm resistor, is coupled to the power FET Q2118. When the NPC is in the communications mode and the power FET Q2118 is turned off, the resistor R1120 attempts to hold Comm. I-Sense high. Communications signals from the nodes to the NPC are felt across resistor R1120. The low side of resistor R1120 and a voltage signal from potentiometer R4122 are input to a comparator U1A 130. An output signal for received communications R×D is generated by comparator U1A 130. The voltage on resistor R1120 will drop as the loads at the nodes pull down the capacitors at each node. Accordingly, the speed of communications should be as high as possible to prevent as much of this drop as possible.
In an embodiment of the present invention, the NPC may send a response to a node from which it has received a communication. In an embodiment, the NPC may also contact the node before the node has contacted the NPC. To communicate with a node, the microcontroller in the NPC is manipulated and a response is sent out via a T×D line. In an embodiment, as shown in
In an embodiment, as shown in
In an embodiment, as shown in
In an embodiment, as shown in
In an embodiment, upon connection to the battery, the NPC receives power, and a 5-volt regulator in the NPC generates a 5 volt signal that is provided to the microcontroller. Upon receipt of the 5-volt signal, the microcontroller begins sending and receiving electronic signals to portions of the NPC.
As described above with reference to
The T×D signal from the NPC's microcontroller controls the H-Bridge 200. In an embodiment, the H-Bridge 200 includes resistor R1202, transistor Q1204, resistor R2206, amplifier U1 (shown as U1A-U1F 208, 232, 234, 210, 214, 212), transistors Q2-Q5216, 236, 218, 238, transistors M1-M2220, 240, transistors Q6-Q7222, 242, resistors R3-R4224, 244, capacitors C1-C2226, 246, and transistors Q8-Q11230, 250, 228, 248. Transistor Q1204 is controlled by the signal T×D through resistor R1202. Q1204, turning off and on under control, will pull the collector side of R2206 high and low with respect to the positive battery power. U1A 208 acts as a buffer, inverting this signal. The output of U1A 208 goes directly into U1B 232 and U1C 234, which are, again, inverted, going to the buffers Q3236 and Q5238. These, in turn, turn M2240 and Q7242 on or off, respectively, where M2240 is off when Q7242 is on, and vice-versa. This drives the output drivers Q11248 and Q9250, respectively, and controls the polarity of the signal −PC Nominal H-Bridge. In a similar manner, the signal output of U1A 208 is inverted by U1D 210, and sent to the IC Inverters U1E 214 and U1F 212, which drive the buffers Q2216 and Q4218, along with M1220 and Q6222, in a similar manner as M2240 and Q7242, above, which, in turn, drive Q10228 and Q8230, producing the signal +PC Nominal H-Bridge. In an embodiment, +PC Nominal H-Bridge and −PC Nominal H-Bridge are always of opposite polarity.
As shown in
When Line 1 Control goes high, transistors Q5318 and Q15316 are turned on via resistors R4312 and R17314. When transistor Q5318 turns on, it pulls-on transistor Q3310, through resistor R3308, sending positive battery power through diodes D1340 and D2342 to the gates of the FETs Q1356 and Q2358, turning them on. Transistor Q15316 turns off transistor Q4320, allowing the cathodes of diodes D6344 and D5346 to float. If Line 1 Control goes low, transistors Q5318 and Q15316 respectively, are turned off. Transistor Q5318 turns off, or allows transistor Q3310 to turn off, allowing diodes D1340 and D2342 to float and transistor Q15316 allows transistor Q4320 to turn on, causing diodes D5346 and D6344 to pull the gates of transistors Q1356 and Q2358 low, thereby turning off transistors Q1356 and Q2358.
Line 2 Control similarly controls FETS Q7360 and Q8362 through its associated circuitry.
The NPC's microcontroller receives signals Short and R×D.
Under operating conditions, the Power Control line will go high, sending power out the Comm. I-Sense line to the H-Bridge Driver 200, which is under control of the T×D line. The output of the H-Bridge driver 200, +PC Nominal H-Bridge and −PC Nominal H-Bridge, goes to the NPC Line Switch 300 which is, in turn, controlled by Line 1 Control and Line 2 Control. The signals generated by the microcontroller's T×D line go out to all the nodes via the two-wire lines, e.g. twisted-pair lines, +Nominal Line and −Nominal Line. Thus, the flow of power and data from the NPC are controlled by the T×D line and the Power Control Line of the NPC.
The nodes each receive their power from either of the two +Nominal Lines and −Nominal Lines, which are the two-wire lines carrying data and power from the NPC. Local power for the node is generated from the received power at each node. Local power includes Node+Power, Node−Power, and Vdd.
As shown in
In an embodiment, the NPC communicates with a select node by sending a message containing that node's address. The node will recognize its address, and the NPC, at the proper time, will drop power via the Power Control signal. The node will receive data sent by the NPC via its input R×D. The node will then take directed or programmed actions, as dictated by the NPC and/or internode communications received via the NPC. In an embodiment, the node gathers data (i.e. sensors, analog/digital, and/or error messages) and communicates the data back to the NPC. The NPC receives and accepts the data and then conducts appropriate analysis. The NPC then may cause commands and data to be sent to appropriate nodes in order to accomplish programmed functions. During node communication time, all nodes may receive information from any sending node.
In an embodiment, the present invention provides a three-wire digital current system. In an embodiment of the three-wire digital current system, elements in a system for bidirectional communication and power transport are linked via a three-wire conductor such as a twisted pair plus ground or a coaxial cable plus ground.
The loop structures disclosed above with reference to a two-wire digital current system may also be used, with minor modification, in a three-wire iteration of the technology. Again, depending upon use, the network may be laid out in a variety of ways, including, for example, as a loop, a single branch, or as multiple branches.
In an embodiment, the NPC in a three-wire implementation of the system provides current-limiting control to determine the maximum amount of current that is allowed into any portion of the system. This allows each node to have a short-circuit protection capability such that the node prevents system collapse due to a short at or between nodes. In an embodiment, the third wire is used, in conjunction with the main power wire, to mediate incoming and outgoing EMI. This communication wire also has full short protection from ground to high voltage. While the basic form of communications does not change from that disclosed by the current inventors in U.S. Pat. No. 6,906,618, the third wire allows for much higher communications speeds than previously attained. Also, the addition of the third wire assists and enhances the abilities of the system by emulating a chassis ground throughout the system. This allows a strong grounding capability, regardless of the position of the node or its accessibility to a chassis ground. The two main wires (+ and −) may still reverse polarity in order to communicate, but shift only a fraction of the full power level, e.g., 3 to 5 volts, instead of the full power level, e.g., 12 to 24 volts. This reduced voltage shift helps to mitigate EMI generated by a high voltage shift. Thus, advantages of the three-wire system include the ability to handle a higher voltage, provide a central and constant ground, and reduce EMI. Additionally, it carries the advantages of “open” and “short” protection.
In an embodiment, as shown in the NPC Power I-Sense circuit 600 of
The microcontroller in the NPC may control the +Power to the system via the signal Power Control. If the signal Power Control goes high, this turns on transistor Q5604 through resistor R6602, which then pulls the output of the buffer comprised of transistors Q3608 and Q4610 low, thereby turning on the p-channel FET Q2622 and allowing power out to the system.
In an embodiment, the NPC's microcontroller monitors the current and voltage of the system. In an embodiment, power resistor R2616 senses the current of the system and high-side current sense amplifier U3614 relays this information to the microcontroller via the analog signal Current Sense A/D. In an embodiment, a comparator U1B 620 senses whether there is an over-current or short condition in the system. The inputs to the comparator U1B 620 are the signals output from the current sense amplifier U3614 and a potentiometer R11612. The comparator U1B 620 notifies the microcontroller of any shorts via the signal Short. In an embodiment, the voltage of the system is measured by a voltage divider comprised of resistors R13630, R14632 and is relayed to the microcontroller via the analog signal V Sense A/D.
In an embodiment, the NPC and each of the system's nodes include a Power Switch circuit 700. One embodiment of a Power Switch circuit 700 will now be described with reference to
In the NPC, power comes into the Power Switch circuit 700 via the +Power line from the NPC Power I-Sense circuit 600. This power may be translated through to the outputs +Power 1 and +Power 2 via the transistors Q1704 and Q2724, respectively. Transistor Q1704 may be turned-on via Power Switch 1, which turns-on transistor Q4716 through resistor R1714. Transistor Q4716 may then pull the gate of transistor Q1704 low, through resistor R9712 and diode D1710, thereby turning on transistor Q1704. In the embodiment illustrated in
Transistor Q2724 may be controlled in a similar manner to transistor Q1704, via the microcontroller signal Power Switch 2, which, in-turn, may turn on or turn off transistor Q3736 through resistor R2734. Transistor Q2724 may bet turned on via transistor Q3736, resistor R6732 and diode D2730 and may be turned off via resistor R8728. Zener diode D4726 provides gate protection to transistor Q2724. The signal Short 2 is the microcontroller's input to detect whether power is on +Power 2.
In a node, power is received into the Power Switch circuit 700 via either +Power 1 or +Power 2. The intrinsic diodes of transistors Q1704 and Q2724 may transport power for the node to the node's +Power line. This power then goes to voltage regulator U1746 to produce power for the node's microcontroller. Once power is generated to the node, the microcontroller may power-up and initialize, which, in-turn, allows it to turn on Power Switch 1 or Power Switch 2, allowing full voltage and power to the node and passing this power on to the next node.
In an embodiment, the NPC and each of the system's nodes include a Communications Switch circuit 800. One embodiment of a Communications Switch circuit 800 will now be described with reference to
In the NPC, the signal Comm. Line R×D/T×D comes from the signal lines R×D and T×D of the NPC's microcontroller. This signal goes out to between the transistors M2852 and M3804. Under microcontroller control, Line 1 Control may go high, which turns on transistor Q9824 through resistor R6822. This, in turn, pulls down the gates of transistors M1802 and M3804 via transistor Q9824, diode D5816 and resistor R20814, thereby connecting Comm. Line R×D/T×D to the network's Comm. Line 1, and on to a node on the network.
In the same manner, Line 2 Control may go high, turning on transistor Q8874 through resistor R5872, which turns-on transistors M2852 and M4854 via transistor Q8874, resistor R22864 and diode D6866. This connects Comm. Line R×D/T×D to Comm. Line 2 and on to another node on the network. When transistors M1-M4802, 804, 852, 854 are all on, Comm. Line 1, Comm. Line 2 and Comm. Line R×D/R×T are all connected together.
If Comm. Line 1 is shorted to a high voltage line, such as +Power 1, this condition will be felt by transistor Q2826 via diode D4812, which in turn will turn on transistor Q1836 through resistor R3832. This will pull down the signal High Short 1, which will indicate a high-side short on Comm. Line 1. If this occurs, the source area between transistor M1802 and transistor M3804 will also go high, which will turn on transistor Q7810 through resistor R14820 and diode D1818, which will turn-off transistors M1802 and M3804. This acts as a protection against high-side shorts on the Comm. Line R×D/T×D, which is connected to the microcontroller. A similar circuit consisting of diode D3862, transistor Q4876, transistor Q3886, and resistor R9882 produce the signal High Short 2 if Comm. Line 2 goes high. In addition, transistor Q10860, diode D2868, and resistor R13870 will turn off transistors M2852 and M4854 under this condition in order to protect the microcontroller. If only Comm. Line 1 or Comm. Line 2 is shorted, the Comm. Line R×D/T×D is still connected to the unaffected line.
In an embodiment, transistors M1-M4802, 804, 852, 854 are FETs. In alternative embodiments, relays, IGBTs, bipolar transistors or other devices may be used instead of FETs.
In an embodiment, the NPC and each of the system's nodes include a Communications Driver circuit 900. One embodiment of a Communications Driver circuit 900 will now be described with reference to
In an embodiment, the Communications Driver circuit 900 comprises the T×D driver for the Comm. Line R×D/T×D line associated with the NPC and each of the system's nodes. A microcontroller holds the Talk/Listen line low, allowing the Comm. Line R×D to float. This is done by turning off transistor Q6918 through resistor R5914, which in turn turns off transistor Q5908 through resistor R4916, thereby not allowing the +5 Vdd voltage and current to flow into the circuit. At the same time, the T×D Bar signal, through the buffer comprised of transistors Q3912 and Q4910, turns off transistor Q1938 through diode D2928 and resistor R6936. This, in turn, allows the Comm. Line R×D/T×D to float (high impedance).
When a microcontroller needs to talk on the network, it will pull the Talk/Listen line high, turning on transistor Q6918 through resistor R5914, which turns on transistor Q5908 through resistor R4916. This, in turn, supplies power to the emitter of transistor Q7932. At this time, the T×D Bar signal is low, which turns on transistor Q7932 through resistor R7934, diode D1926, and the buffer comprised of transistors Q3912 and Q4910, thereby pulling the Comm. Line R×D/T×D high. When T×D Bar signal goes low, the buffer comprised of transistors Q3912 and Q4910 turn on transistor Q1938 through resistor R6936 and diode D2928 and turn off transistor Q7932 via diode D1926 and resistor R7934. This, in turn, pulls the Comm. Line R×D/T×D low. This continues throughout a communications session.
If another microcontroller begins its communication during this time, and it pulls the Comm. Line R×D/T×D low, and this micro-controller tries to pull the Comm. Line R×D/T×D high, high current will be pulled through resistor R1904, which will turn on transistor Q8906 and transistor Q2902. Transistor Q8906 will turn off or pull down transistor Q5908, lowering the current and transistor Q2902 will turn on, pulling the signal Communications Conflict high, thereby signaling the microcontroller that a communications error has occurred.
In an embodiment, the present invention provides another three-wire digital current system. In an embodiment of the three-wire digital current system, elements in a system for bidirectional communication and power transport are linked via a three-wire conductor such as a twisted pair plus ground or a coaxial cable plus ground.
In an embodiment, the present invention includes a controller comprising a Power Current-Limit circuit 1000 (the “Power I-limit circuit”), a Power Switch circuit 1100, a Communications Short Control Switch (“Comm. Switch”) circuit 1200, and a T×D pull-down circuit 1300.
In an embodiment, system power is provided to the NPC via a two-lead power connection, e.g., a positive and negative battery power. System power is non-restricted in voltage, but components should be rated properly for the voltage used.
In an embodiment of a Power I-Limit circuit 1000, as shown in
The positive battery power flows through power resistor R21018, resistor R11030, and transistor Q11032 to provide system power via the signal +Power. Power resistor R21018 is the primary sense resistor for the system. Power for the communications line (“Comm. Line”) is provided from the positive battery power via resistor R31022. Resistor R31022 also provides resistance signal control for the communications line for the system.
In an embodiment, the NPC includes circuit protection circuitry, as illustrated in
In an embodiment, as shown in
The output of comparator U1B 1020, in conjunction with resistor R121024 and transistors Q61028 and Q71026, control the power transistor Q11032 such that full power is allowed throughout the system until the set point at R111012 is reached.
When a short or high current condition occurs and the microcontroller receives a Current Sense signal or a Short signal, transistor Q11032 turns off. Power resistors R11030 and R21018 then hold the full power of the system. When the short or high current condition is removed, the current drops and comparator U1B 1020 and amplifier U31014 restore the system to full power.
In an embodiment, the NPC includes a Power Switch circuit 1100 such as that shown in
In an embodiment, the Power Switch circuit 1100 controls ancillary shorts on the system outside the NPC via controlling the on or off condition of transistors Q11102 and Q21122. During normal operation, the +Power signal, in conjunction with the 15 volt Zener diode D31142 and resistor R91144, produce a −15 volt signal, used to turn on the p-channel power FETs Q11102 and Q21122 through resistors R51134 and R61114.
If a short to ground or high current load occurs between +Power 1 or +Power 2 and ground, it is sensed by diodes D1138 or D21108, which will turn on transistors Q31126 or Q41106 through resistors R11116 or R21136, with respect to the −5 volts generated by voltage regulator U21008 of the Power I-Limit Circuit 1000 shown in
When either of these transistors Q31126 and Q41106 turn on, they will pull down current through resistors R31104 or R41124 to turn on transistors Q51112 or Q61132, which, in turn, turn off the power transistors Q11102 or Q21122. The power to turn off FETs Q11102 and Q21122 is generated from the +Power through Schotky diode D41128 and capacitor C11140 (Shutoff Power signal).
In an embodiment, if a short occurs on +Power 1 line, the result will be that power FET Q11102 will turn off, but not power FET Q21122, thereby allowing power to go out to the system on +Power 2 line.
In an embodiment, the NPC also contains a Comm. Switch circuit 1200, an embodiment of which is shown in
The Comm. Switch circuit 1200 detects shorts on the Comm. Lines to ground and/or to a +Power line. This circuit also passes the communications signals from the microcontroller to this circuit via the Comm. Power Pull-down Line.
The microcontroller has sense lines High Short 1 and High Short 2 for detecting high-side shorts at lines Comm. Line 1 and Comm. Line 2. It also has analog inputs called Short Detect 1 and Short Detect 2, which measure the voltage levels on the Comm. Lines for detecting high-side shorts. In addition, Comm. Line 1 Control and Comm. Line 2 Control are used as part of software control of the Comm. Lines during high-side short testing. Low side shorts are handled automatically, without software control via transistor Q31258 and Q41218 in conjunction with diodes D21262 and D11222 and resistors R11216 and R21256.
During normal operation, when power to the NPC is brought-up, the power FETs (M11202, M31204 and M21244, M41242) are turned on via diodes D31214 and D41254 and resistors R81210 and R71250. The power generated by the zener diode D31142 and resistor R91144 of the Power Switch Circuit 1100 (see
In the case of a short or over current condition on Comm. Line 1 (i.e. to the +Power 1 line), this condition is detected by diode D51224, resistor R131226 and transistor Q91228, in conjunction with resistor R61212 and transistor Q11208. If the Comm. Power Pull-down Line is activated and pulled to a −5 volts, as in standard T×D communications, this will turn on Q91228 and, in turn, turn on transistor Q11208, turning off the power FETs M11202 and M31204.
High Short 1 signal line will also go low, signaling the microcontroller that a short has occurred on Comm. Line 1. The microcontroller then pulls Line 1 Control signal high, turning off Q1 and allowing FETs M11202 and M31204 to again conduct. The microcontroller measures the analog voltage at Short Detect 1 and compares it against an internal standard to determine the location of the short. If it is determined that the short has occurred on Comm. Line 1, immediately adjacent to the node, Line 1 Control is released by the processor and High Short 1 Control is pulled low to hold off FETs M11202 and M31204, thus isolating the node from Comm. Line 1.
The same sequence occurs on any node or any Comm. Line when the Comm. Power Pull-down Lines are activated.
In the case of a short or over current condition on Comm. Line 1 (i.e. to ground) the condition is detected by diode D11222, turning on transistor Q41218 and in turn turning on transistor Q11208 through resistor R11216 in conjunction with resistor R31220. This will turn off power FETs M11202 and M31204, thereby blocking communications signals on Comm. Line 1. The same condition is true on Comm. Line 2 through diode D21262, transistors Q31258 and Q21248, and resistors R21256 and R41260.
In an embodiment, the NPC includes a Transmit Power Pull-down circuit 1300 (“T×D Pull-down”). As shown in
Each node has a microcontroller that may accomplish several functions, including the receipt of data, storage of data, transmission of data and preprogrammed actions determined by data.
In an embodiment, the present invention includes a fully variable voltage node system with output control. An embodiment of such output control will now be described with reference to
In the case of multiple actuation outputs, the five output control circuit illustrates how this action is performed. The microcontroller sends signals to Output Control 1 through Output Control 5, as required, to turn on or off Power FETs M11424 through M51432, and out to the actuators placed on +Out1 through +Out5. In addition, Brake Control 1 and Brake Control 2 signals from the processor, activate power FETs Q91434 and Q101436 to control bidirectionality of motors and/or other polarity specific components.
Power resistor R61460 monitors the overall current of this output setup in conjunction with high side amplifier U11462 and resistor R71464. The output of this combination is an analog signal, Output Current Sense. Any time the Output Current Sense signal rises above a preprogrammed level, a diagnostic program is run to determine which line (+Out1 through +Out5) is experiencing such overcurrent condition.
In an embodiment, the NPC includes a communications reflecting circuit 1500. An embodiment of a communications reflecting circuit 1500 is shown in
In an embodiment of the present invention, communications between a NPC and nodes on a network are handled via transceivers and an optical fiber. Various embodiments of the present invention provide a digital current system including an optical fiber, wherein a communications circuit comprising the optical fiber and transceivers replace the communications aspects of the two-wire and three-wire systems described above.
In an embodiment, dual power conduits are used for power transmission and communications are transmitted via the optical fiber. Exemplary dual power conduits include a twisted pair wire, a coaxial cable, or a wire and a chassis ground.
Using an optical fiber or third wire to carry data separate from system power allows for a 100% duty cycle on the power and thus eliminates the need for circuitry to accommodate a less than 100% duty cycle power supply to the system at all times. Also, under some conditions, communications via a metal wire may not be appropriate due to EM1 or communications speed requirements. Various embodiments of the present invention eliminate most transmitted EM1 and are very resistant to external EM1. Also, when proper components are selected, using an optical fiber to transfer data can result in a significantly increased communications speed. For example, in an embodiment, communications speeds may reach into the multiple giga-baud range.
In an embodiment of the present invention, the NPC and each node on the network have a bidirectional fiber optic cable transceiver 1600. One embodiment of such a transceiver will now be described with reference to
Power is provided to the transceiver via the +Power feed from the NPC. A voltage regulator, resistor R21602, Zener diode D11604, and transistors Q81610, Q91606 provide main power to the fiber optic transceiver 1600. An additional voltage regulator U81626, e.g., a 5 volt regulator, provides power, e.g., +5 volts, to the remainder of the fiber optic transceiver 1600 and to the associated microcontroller.
Under normal operations, outgoing communications from the transceiver come from the T×D signal of the microcontroller in either the NPC or the node, depending on the location of the transceiver, into resistor R151612 and transistor Q71614. The signal is translated though U4A 1618 and U5B 1616 and out to the signal R×D and back to the receive side of the microcontroller. Hence when there is no signal being transmitted out, the T×D signal is held low and the collector of transistor Q71614 is allowed to float to the setting of potentiometer R101682.
When transistor Q7's 1614 line goes low, via signals from T×D, the negative inputs of comparators U6A 1648 and U7A 1678 go low, with respect to the positive inputs. The outputs of U6A 1648 and U7A 1678 go to resistors R141650 and R131680, respectively, and to transistors Q61676 and Q51646, respectively.
In an embodiment, light goes out Fiber A via LED 11630 and out Fiber B via LED 21660. When transistor Q51646 is turned on by comparator U7A 1678, LED 11630 turns on and emits light. When Q51646 turns on, forward-biased current flows through resistor R11634 and turns on transistor Q11638, thereby turning on LED 11630. LED 21660 turns on in the same manner via transistors Q61676 and Q21668 through resistor R71664.
Under normal operations, incoming communications are detected by the LED associated with the fiber carrying the communications via the LED's ability to act as a photo-diode. When light from the fiber strikes the PN junction of the LED, a receivable signal is produced.
When light from fiber A is detected by LED 11630, the resulting signal is amplified by amplifier U2A 1636, its associated resistor R51632, and the reference at the +input of the amplifier U2A 1636. Under dark conditions, the off condition of comparators U6A 1648 and U7A 1678 is adjusted by potentiometer R101682 and the output of amplifier U2A 1636 and U3A 1666. U6A 1648, U7A 1678, U4A 1618 and U5B 1616 are normally in a dark condition (biased off).
When a signal (light) comes through fiber A and strikes LED11630, LED 11630 begins to conduct, causing the output of amplifier U2A 1636 to rise. As it rises, this signal rises above the set point of potentiometer R101682, controlling the inputs to U6A 1648, U7A 1678, U4A 1618 and U5B 1616, turning on U6A 1616+ and turning U5B 1616 low. When U6A 1648 goes +, Q61676 turns on and is pulled to +12 volts, turning on LED 21660 through R71664 and Q21668, which also turns on, thereby sending the signal (light) down fiber B to the next associated node.
Under normal operations, incoming communications via fiber B is conducted in similar, yet opposite, manner from fiber A, while still controlling the R×D output.
Therefore, any signal coming from either direction into the node or NPC shall be in turn sent out via the opposite fiber of the node or NPC, thereby completing loop communications.
In an embodiment, a light source other than an LED is paired with a light sensor, e.g., a photo-detector, for sending and receiving communications. Various light sources including LEDs, laser diodes and micro-cavity lasers may be used to send signals across an optic fiber.
In various embodiment of the present invention, both plastic and glass optic fibers are used. While plastic optic fibers are able to transmit a broad range of colors or frequencies, signals with a mid-range wavelength, e.g., green and colors spectrally close to green, or signals in the infra-red range work particularly well. With respect to glass fibers, lower range wavelengths, e.g., 1.2 to 1.5 microns, corresponding to deep-infra-red light work well.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
This patent application claims the benefit of U.S. Provisional Patent Application No. 60/606,311, filed Sep. 1, 2004, herein incorporated by reference in its entirety, and U.S. Provisional Patent Application No. 60/659,447, filed Mar. 8, 2005, herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60606311 | Sep 2004 | US | |
60659447 | Mar 2005 | US |