The present invention relates generally to wireless communication, and more particularly to local oscillators in multiple channel transceivers.
Implementations of a multiple-antenna beamformer may require the use of multiple radio circuits that feed these antennas. Some implementations are based on an array of discrete mixers controlled by a common LO (Local Oscillator) where the number of radio circuits is unlimited, but cost, power consumption, real estate and reliability are not optimal. Some other implementations offer an integrated RFIC (Radio-Frequency-Integrated-Circuit) controlled by a common integrated LO, yet, the number of radios is typically to few limited combinations e.g. 2 or 4 or 8 integrated radio circuits in a commercially available RFICs. Hence when a larger number of radio circuits is required, staking an array of RFICs together may be a preferable approach, provided the LOs in each of the RFICs can be locked to each other via external circuitry and procedures.
Such an array of RFICs may maintain frequency lock when all LOs are using a common crystal reference, yet in some cases phase lock mechanism must be implemented each time the radios are retuned, as well on a periodic basis that will counter the effect of phase drift.
In accordance with embodiments of the present invention, a system for compensating phase differences between multiple local oscillators is provided. The system may include for example: an antenna array; a plurality of transceivers connected to the antennas and operatively associated each with a local oscillator (LO), wherein at least some of the transceivers do not share a common LO (e.g. connected to the same LO), and wherein at least some of the LOs are using a common reference oscillator; a common digital beamformer circuit connected to the transceivers; a baseband processor configured to operate the system at a specified communication scheme; and a calibration circuit and software modules executed by the baseband processor and configured to eliminate or reduce mismatches and phase deviations between the different transceivers, wherein the calibration circuit and software modules are incorporated in system such that the elimination or reduction of mismatches and phase deviations is non-interrupting with a continuous operation of the system at the specified communication scheme. In some embodiments, reduction of mismatches, phase deviations, etc., may include elimination of these phenomena.
Embodiments of the present invention includes a phase calibration apparatus and procedure that guarantees phase lock across an array of multiple separated radios, and a method of performing such calibration in multiple radios systems that operate in Time-Domain-Duplex (TDD).
Embodiments of the present invention include a digital beamforming array, serving a TDD air-protocol Base Station or User Equipment, where an antenna array of N antennas is fed by an array of N radio circuits, which in turn are digitized and fed into a common digital beamformer entity. The radio circuits may include an array of integrated RFICs or modules where their LOs are hooked into a common crystal reference. The phase of each integrated radio which may be different, is calibrated on a system level via a disclosed phase correction auxiliary circuitry and calibration procedure.
Embodiments of a phase correction system and method may calibrate the array of down-converting radio circuits' signals so that phase variations created at the receive circuitries are known before received digital beamforming is performed; it may also calibrate the array of up-converting radio circuits so that phase variation created in the transmit circuitries are known before transmitted digital beamforming is performed.
Acquiring knowledge of the receiving radio circuits' phase variations may be done by injection of a common known pilot signal via an auxiliary up-converter to each of the radios inputs, where the pilot is originated at the common digital beamforming entity, and measuring the output of each radio circuits' receivers by the common digital beamforming entity, which then compares the input and output phases, to derive receive radio circuitries phase variation knowledge.
Acquiring knowledge of the transmission radio circuits' phase variations may be done by feeding each of the transmission radio circuitries' input with a common known pilot signal originated at the common digital beamforming entity, and injecting the outputs of the transmission radio circuitries into input an auxiliary down-converter circuitry that is digitized and fed back into the common digital beamforming entity, which then compares the input and output phases, to derive transmit radio circuitries phase variation knowledge.
Embodiments of the present invention further provide a method for TDD systems, where the up-converters' and down-converters' phase variations calibration, is done in way that does not require extra spectrum or extra bandwidth, via using the time gap between TDD transmission and reception for the injection of the calibration signals.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be more fully understood by reference to the following detailed description when read with the accompanying drawings in which:
In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
According to some embodiments of the present invention, the calibration circuit and baseband processor executing software modules may include hardware and software, enabling the common digital beamformer to generate calibration pilot signals injected to the inputs of receiving parts of the transceivers, via a digital-to-analog converter and an additional RF up-converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' receivers, based on the digital output of the receivers across the bandwidth of the transceiver. The specified communication scheme may be Time-Domain-Duplex (TDD) exhibiting a time gap between transmit and receive
According to other embodiments of the present invention the calibration circuitry and software modules may be based on auxiliary hardware and auxiliary software, enabling the common digital beamformer entity to pick up its own downlink signal from each transmitting part of the transceivers, via a calibration RF down-converter and an analog-to-digital converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' transmitters, based on the digital output of the transmitters across the bandwidth of the transceiver, where the down-converter input may be sequentially switched between each of the transmitting part of the transceivers. In some embodiments, the calibration pilot may include a narrowband signal.
According to some embodiments of the present invention the baseband processor may be configured to avoid interruption of the operation of the system for calibration purposes, for example by using the transmit-receive time gap for switching the receivers array away from the antenna array, and connecting them to outputs of the calibration RF up-converter, and feeding the input of the up-converter with a calibration pilot signal generated by the common digital beamformer, for a partial part of the time gap, and further measuring the digitized output of the receivers array by the common digital beamformer.
According to some embodiments of the present invention the baseband processor may be further configured to avoid interruption of the operation of the system for calibration purposes by sequentially feeding the transmitting part of the transceivers via an RF splitter to the input of the calibration down-converter and measure the down-converter digitized output during the time gap between transmit and receive.
According to other embodiments of the present invention, the time gap between transmit and receive may be divided up into several fields, so that the first field is left unused for guard time purposes, then the next field may be used for receivers calibration, then the next one is used for calibration processing by the common digital beamformer, then the next one may be used to apply phase adjustment to RF or digital parts of the system, and then the last field is not used to allow for guard time before switching back to active mode is taking place.
According to other embodiments of the present invention, the down-link RF output of a given transceiver may be fed into the calibration RF down-converter for at least few μsecs before the transmit timeslot is ending, and after transmission may be turned off, the digital output of the down-converter may be captured and processed by the common digital beamformer, and phase adjustment may be subsequently applied.
According to other embodiments of the present invention, a selection of a specific time period for wideband calibration may be based on measurements of temperature fluctuation and current fluctuations at the power amplifiers array, and the setting of thresholds that will increase sampling rate per increased fluctuation magnitude. Alternatively, the selection of specific time period for narrow band calibration addressing the LO phase alignment, may be based on factory measurements (e.g. calibration process during production) that determine inter-transceiver phase uncertainty over time.
Using a narrowband sine wave pilot tone may allow accurate phase measurement for a given subcarrier, and it may be sufficient to gain knowledge of the LO phase shift versus a reference. Phase comparison may be implemented via correlations or via FFT.
Using a broadband pilot like a 64 QAM modulation which occupies the entire bandwidth, provides also wideband calibration, addressing the non-flat transfer function of the various RF components. The correction value can be computed using the following calculation:
The time gap is assumed to be 285 μsec.
Starting with a guard time e.g. 50 μsec.
Continue with a simultaneous measurement of all receiving parts of the radio array, e.g. over 100 μsec.
Process the measurements in the common digital beamforming entity e.g. over 30 μsec.
Apply the weights according to the beamforming calibration lookup table, for example, over 5 μsec.
Leave approximately 100 μsec for a guard time before switching takes place.
The transmission calibrations may alternate with the reception calibrations.
Measure via the auxiliary down-converter live transmission of data during subframe 0 which includes Sequential TX Measurement Using Normal DL Signal.
During the 1 ms time period of subframe 0, alternating through the M<15 antennas so that each is allocated with at least one full symbol; Calculate Relative phase adjustments based on factory calibration table and then apply phase. It should be noted that in
As long as the number antennas M does not exceed 45, then 3 switching cycles cover the transmission circuitry calibration within 3×10 ms intervals while the receiving circuitry calibration may be done each interval. The 4th can be used for reception circuitry calibration, yielding a total of 40 ms which is under the 50 ms assumed max duration;
When M>45, then the embodiment in the
The calibration goals of the downlink circuitry may be to guarantee sufficient compliance of the RF system with the digital processing system, e.g. that signals received by multiple antennas and fed into the inputs of a multichannel RF system, will be transformed into digital signals without distortion of each signal and its inter-relations with other signals, or that such distortions will be made know to the digital system.
Similarly, the calibration goals of the uplink circuitry, may be to guarantee that digital signals fed into the inputs of multichannel RF systems, are transferred to the antennas inputs without distortion of each signal and its inter-relations with other signals.
In one embodiment, metrics for a sufficient calibration may be based on estimating the RF and digital systems combined capabilities to create a deep enough null, e.g. to guarantee a minimum null depth.
For example, in an 8 arm multichannel beamforming system, with calibration that eliminates amplitude variations, and provides phase uncertainty of 2 degree or less, a null depth can be calculated as for example 20*log 10(1/57.30)=−35 dB.
The factors that govern RF circuitry phase uncertainty are temperature drifts, power supply voltage fluctuations, and loading; such variations may be slow or fast, e.g. may require calibration frequency of once per second or 20 times per second.
The factors that govern LOs coherency across the various RF channels are phase noise and LO frequency re-tuning rate. The fastest change may occur in the latter case every frame, therefore calibration must take place at the switching gap between transmit and receive.
Referring to
Operation 1002 outlines a second operation calibration where the wideband calibration, for both the receive circuitry and transmitting circuitry, takes place, every T2 millisecond, e.g. 50-1,000 milliseconds, where the specific T2 value may be calculated based on continuous sensing of Power Amplifier's (PA's) temperature and nonlinearity versus temperature factory measurements of the PAs, and further, on continuous measurement for current fluctuation thru the PAs current fluctuation and nonlinearity versus current factory measurements of the PAs.
Operation 1003 outlines the third stage of calibration, for the receive circuitry only, where narrowband calibration takes place during every frame's gap T1 of for example 5 or 10 milliseconds. Operation 1004 describes the application of calibration data derived from above three stages to RX channel for calculating reciprocal TX channel. Operation 1005, and operation 1006 describe the T1 and T2 counters.
Advantageously, embodiments of the present invention may be implemented as a part of a base station or a subscriber unit. In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.
Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.
Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions. It will further be recognized that the aspects of the invention described hereinabove may be combined or otherwise coexist in embodiments of the invention.
The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.
It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.
Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.
It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.
If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element. It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.
Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described. The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.
Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.
The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein. While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.
This application claims benefit from U.S. provisional patent application Ser. No. 61/898,802 filed Nov. 1, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4044359 | Applebaum et al. | Aug 1977 | A |
4079318 | Kinoshita | Mar 1978 | A |
4359738 | Lewis | Nov 1982 | A |
4540985 | Clancy et al. | Sep 1985 | A |
4628320 | Downie | Dec 1986 | A |
5162805 | Cantrell | Nov 1992 | A |
5363104 | Richmond | Nov 1994 | A |
5444762 | Frey et al. | Aug 1995 | A |
5732075 | Tangemann et al. | Mar 1998 | A |
5915215 | Williams et al. | Jun 1999 | A |
5936577 | Shoki et al. | Aug 1999 | A |
5940033 | Locher et al. | Aug 1999 | A |
6018317 | Dogan et al. | Jan 2000 | A |
6026081 | Hamabe | Feb 2000 | A |
6046655 | Cipolla | Apr 2000 | A |
6094165 | Smith | Jul 2000 | A |
6101399 | Raleigh et al. | Aug 2000 | A |
6163695 | Takemura | Dec 2000 | A |
6167286 | Ward et al. | Dec 2000 | A |
6215812 | Young et al. | Apr 2001 | B1 |
6226507 | Ramesh et al. | May 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6321077 | Saitoh et al. | Nov 2001 | B1 |
6335953 | Sanderford et al. | Jan 2002 | B1 |
6370378 | Yahagi | Apr 2002 | B1 |
6377783 | Lo et al. | Apr 2002 | B1 |
6393282 | Iimori | May 2002 | B1 |
6584115 | Suzuki | Jun 2003 | B1 |
6647276 | Kuwahara et al. | Nov 2003 | B1 |
6697622 | Ishikawa et al. | Feb 2004 | B1 |
6697633 | Dogan et al. | Feb 2004 | B1 |
6735182 | Nishimori et al. | May 2004 | B1 |
6834073 | Miller et al. | Dec 2004 | B1 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6914890 | Tobita et al. | Jul 2005 | B1 |
6927646 | Niemi | Aug 2005 | B2 |
6934541 | Miyatani | Aug 2005 | B2 |
6975582 | Karabinis et al. | Dec 2005 | B1 |
6987958 | Lo et al. | Jan 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7154960 | Liu et al. | Dec 2006 | B2 |
7177663 | Axness et al. | Feb 2007 | B2 |
7190964 | Damnjanovic et al. | Mar 2007 | B2 |
7257425 | Wang et al. | Aug 2007 | B2 |
7299072 | Ninomiya | Nov 2007 | B2 |
7391757 | Haddad et al. | Jun 2008 | B2 |
7392015 | Farlow et al. | Jun 2008 | B1 |
7474676 | Tao et al. | Jan 2009 | B2 |
7499109 | Kim et al. | Mar 2009 | B2 |
7512083 | Li | Mar 2009 | B2 |
7606528 | Mesecher | Oct 2009 | B2 |
7634015 | Waxman | Dec 2009 | B2 |
7646744 | Li | Jan 2010 | B2 |
7719993 | Li et al. | May 2010 | B2 |
7742000 | Mohamadi | Jun 2010 | B2 |
7769107 | Sandhu et al. | Aug 2010 | B2 |
7876848 | Han et al. | Jan 2011 | B2 |
7881401 | Kraut et al. | Feb 2011 | B2 |
7898478 | Niu et al. | Mar 2011 | B2 |
7904086 | Kundu et al. | Mar 2011 | B2 |
7904106 | Han et al. | Mar 2011 | B2 |
7933255 | Li | Apr 2011 | B2 |
7970366 | Arita et al. | Jun 2011 | B2 |
8078109 | Mulcay | Dec 2011 | B1 |
8103284 | Mueckenheim et al. | Jan 2012 | B2 |
8111782 | Kim et al. | Feb 2012 | B2 |
8115679 | Falk | Feb 2012 | B2 |
8155613 | Kent et al. | Apr 2012 | B2 |
8194602 | van Rensburg et al. | Jun 2012 | B2 |
8275377 | Nanda et al. | Sep 2012 | B2 |
8280443 | Tao et al. | Oct 2012 | B2 |
8294625 | Kittinger et al. | Oct 2012 | B2 |
8306012 | Lindoff et al. | Nov 2012 | B2 |
8315671 | Kuwahara et al. | Nov 2012 | B2 |
8369436 | Stirling-Gallacher | Feb 2013 | B2 |
8504098 | Khojastepour | Aug 2013 | B2 |
8509190 | Rofougaran | Aug 2013 | B2 |
8520657 | Rofougaran | Aug 2013 | B2 |
8526886 | Wu et al. | Sep 2013 | B2 |
8571127 | Jiang et al. | Oct 2013 | B2 |
8588844 | Shpak | Nov 2013 | B2 |
8599955 | Kludt et al. | Dec 2013 | B1 |
8599979 | Farag et al. | Dec 2013 | B2 |
8605658 | Fujimoto | Dec 2013 | B2 |
8611288 | Zhang et al. | Dec 2013 | B1 |
8644413 | Harel et al. | Feb 2014 | B2 |
8649458 | Kludt et al. | Feb 2014 | B2 |
8666319 | Kloper et al. | Mar 2014 | B2 |
8670504 | Naguib | Mar 2014 | B2 |
8744511 | Jones et al. | Jun 2014 | B2 |
8754810 | Guo et al. | Jun 2014 | B2 |
8767862 | Abreu et al. | Jul 2014 | B2 |
8780743 | Sombrutzki et al. | Jul 2014 | B2 |
8797969 | Harel et al. | Aug 2014 | B1 |
8891598 | Wang et al. | Nov 2014 | B1 |
8928528 | Harel et al. | Jan 2015 | B2 |
8942134 | Kludt et al. | Jan 2015 | B1 |
8976845 | O'Keeffe et al. | Mar 2015 | B2 |
8995416 | Harel et al. | Mar 2015 | B2 |
9014066 | Wang et al. | Apr 2015 | B1 |
9035828 | O'Keeffe et al. | May 2015 | B2 |
20010029326 | Diab et al. | Oct 2001 | A1 |
20010038665 | Baltersee et al. | Nov 2001 | A1 |
20020024975 | Hendler | Feb 2002 | A1 |
20020051430 | Kasami et al. | May 2002 | A1 |
20020065107 | Harel et al. | May 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020107013 | Fitzgerald | Aug 2002 | A1 |
20020115474 | Yoshino et al. | Aug 2002 | A1 |
20020181426 | Sherman | Dec 2002 | A1 |
20020181437 | Ohkubo et al. | Dec 2002 | A1 |
20030087645 | Kim et al. | May 2003 | A1 |
20030114162 | Chheda et al. | Jun 2003 | A1 |
20030153322 | Burke et al. | Aug 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030186653 | Mohebbi et al. | Oct 2003 | A1 |
20030203717 | Chuprun et al. | Oct 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20040023693 | Okawa et al. | Feb 2004 | A1 |
20040056795 | Ericson et al. | Mar 2004 | A1 |
20040063455 | Eran et al. | Apr 2004 | A1 |
20040081144 | Martin et al. | Apr 2004 | A1 |
20040121810 | Goransson et al. | Jun 2004 | A1 |
20040125899 | Li et al. | Jul 2004 | A1 |
20040125900 | Liu et al. | Jul 2004 | A1 |
20040142696 | Saunders et al. | Jul 2004 | A1 |
20040147266 | Hwang et al. | Jul 2004 | A1 |
20040156399 | Eran | Aug 2004 | A1 |
20040166902 | Castellano et al. | Aug 2004 | A1 |
20040198292 | Smith et al. | Oct 2004 | A1 |
20040228388 | Salmenkaita | Nov 2004 | A1 |
20040235527 | Reudink et al. | Nov 2004 | A1 |
20040264504 | Jin | Dec 2004 | A1 |
20050068230 | Munoz et al. | Mar 2005 | A1 |
20050068918 | Mantravadi et al. | Mar 2005 | A1 |
20050075140 | Famolari | Apr 2005 | A1 |
20050085266 | Narita | Apr 2005 | A1 |
20050129155 | Hoshino | Jun 2005 | A1 |
20050147023 | Stephens et al. | Jul 2005 | A1 |
20050163097 | Do et al. | Jul 2005 | A1 |
20050245224 | Kurioka | Nov 2005 | A1 |
20050250544 | Grant et al. | Nov 2005 | A1 |
20050254513 | Cave et al. | Nov 2005 | A1 |
20050265436 | Suh et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20050287962 | Mehta et al. | Dec 2005 | A1 |
20060041676 | Sherman | Feb 2006 | A1 |
20060092889 | Lyons et al. | May 2006 | A1 |
20060094372 | Ahn et al. | May 2006 | A1 |
20060098605 | Li | May 2006 | A1 |
20060111149 | Chitrapu et al. | May 2006 | A1 |
20060135097 | Wang et al. | Jun 2006 | A1 |
20060183503 | Goldberg | Aug 2006 | A1 |
20060203850 | Johnson et al. | Sep 2006 | A1 |
20060227854 | McCloud et al. | Oct 2006 | A1 |
20060264184 | Li et al. | Nov 2006 | A1 |
20060270343 | Cha et al. | Nov 2006 | A1 |
20060271969 | Takizawa et al. | Nov 2006 | A1 |
20060285507 | Kinder et al. | Dec 2006 | A1 |
20070041398 | Benveniste | Feb 2007 | A1 |
20070058581 | Benveniste | Mar 2007 | A1 |
20070076675 | Chen | Apr 2007 | A1 |
20070093261 | Hou et al. | Apr 2007 | A1 |
20070097918 | Cai et al. | May 2007 | A1 |
20070115882 | Wentink | May 2007 | A1 |
20070115914 | Ohkubo et al. | May 2007 | A1 |
20070152903 | Lin et al. | Jul 2007 | A1 |
20070217352 | Kwon | Sep 2007 | A1 |
20070223380 | Gilbert et al. | Sep 2007 | A1 |
20070249386 | Bennett | Oct 2007 | A1 |
20070298742 | Ketchum et al. | Dec 2007 | A1 |
20080043867 | Blanz et al. | Feb 2008 | A1 |
20080051037 | Molnar et al. | Feb 2008 | A1 |
20080081671 | Wang et al. | Apr 2008 | A1 |
20080095163 | Chen et al. | Apr 2008 | A1 |
20080108352 | Montemurro et al. | May 2008 | A1 |
20080125120 | Gallagher et al. | May 2008 | A1 |
20080144737 | Naguib | Jun 2008 | A1 |
20080165732 | Kim et al. | Jul 2008 | A1 |
20080238808 | Arita et al. | Oct 2008 | A1 |
20080240314 | Gaal et al. | Oct 2008 | A1 |
20080247370 | Gu et al. | Oct 2008 | A1 |
20080267142 | Mushkin et al. | Oct 2008 | A1 |
20080280571 | Rofougaran et al. | Nov 2008 | A1 |
20080285637 | Liu et al. | Nov 2008 | A1 |
20090003299 | Cave et al. | Jan 2009 | A1 |
20090028225 | Runyon et al. | Jan 2009 | A1 |
20090046638 | Rappaport et al. | Feb 2009 | A1 |
20090058724 | Xia et al. | Mar 2009 | A1 |
20090121935 | Xia et al. | May 2009 | A1 |
20090137206 | Sherman et al. | May 2009 | A1 |
20090154419 | Yoshida et al. | Jun 2009 | A1 |
20090187661 | Sherman | Jul 2009 | A1 |
20090190541 | Abedi | Jul 2009 | A1 |
20090227255 | Thakare | Sep 2009 | A1 |
20090239486 | Sugar et al. | Sep 2009 | A1 |
20090268616 | Hosomi | Oct 2009 | A1 |
20090279478 | Nagaraj et al. | Nov 2009 | A1 |
20090285331 | Sugar et al. | Nov 2009 | A1 |
20090322610 | Hants et al. | Dec 2009 | A1 |
20090322613 | Bala et al. | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002656 | Ji et al. | Jan 2010 | A1 |
20100037111 | Ziaja et al. | Feb 2010 | A1 |
20100040369 | Zhao et al. | Feb 2010 | A1 |
20100067473 | Cave et al. | Mar 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100111039 | Kim et al. | May 2010 | A1 |
20100117890 | Vook et al. | May 2010 | A1 |
20100135420 | Xu et al. | Jun 2010 | A1 |
20100150013 | Hara et al. | Jun 2010 | A1 |
20100172429 | Nagahama et al. | Jul 2010 | A1 |
20100195560 | Nozaki et al. | Aug 2010 | A1 |
20100195601 | Zhang | Aug 2010 | A1 |
20100208712 | Wax et al. | Aug 2010 | A1 |
20100222011 | Behzad | Sep 2010 | A1 |
20100232355 | Richeson et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100278063 | Kim et al. | Nov 2010 | A1 |
20100283692 | Achour et al. | Nov 2010 | A1 |
20100285752 | Lakshmanan et al. | Nov 2010 | A1 |
20100291931 | Suemitsu et al. | Nov 2010 | A1 |
20100303170 | Zhu et al. | Dec 2010 | A1 |
20100316043 | Doi et al. | Dec 2010 | A1 |
20110019639 | Karaoguz et al. | Jan 2011 | A1 |
20110032849 | Yeung et al. | Feb 2011 | A1 |
20110032972 | Wang et al. | Feb 2011 | A1 |
20110085465 | Lindoff et al. | Apr 2011 | A1 |
20110085532 | Scherzer et al. | Apr 2011 | A1 |
20110105036 | Rao et al. | May 2011 | A1 |
20110116489 | Grandhi | May 2011 | A1 |
20110134816 | Liu et al. | Jun 2011 | A1 |
20110150050 | Trigui et al. | Jun 2011 | A1 |
20110150066 | Fujimoto | Jun 2011 | A1 |
20110151826 | Miller et al. | Jun 2011 | A1 |
20110163913 | Cohen et al. | Jul 2011 | A1 |
20110205883 | Mihota | Aug 2011 | A1 |
20110205998 | Hart et al. | Aug 2011 | A1 |
20110228742 | Honkasalo et al. | Sep 2011 | A1 |
20110249576 | Chrisikos et al. | Oct 2011 | A1 |
20110250884 | Brunel et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110281541 | Borremans | Nov 2011 | A1 |
20110299437 | Mikhemar et al. | Dec 2011 | A1 |
20110310827 | Srinivasa et al. | Dec 2011 | A1 |
20110310853 | Yin et al. | Dec 2011 | A1 |
20120014377 | Joergensen et al. | Jan 2012 | A1 |
20120015603 | Proctor et al. | Jan 2012 | A1 |
20120020396 | Hohne et al. | Jan 2012 | A1 |
20120027000 | Wentink | Feb 2012 | A1 |
20120028638 | Mueck et al. | Feb 2012 | A1 |
20120028655 | Mueck et al. | Feb 2012 | A1 |
20120028671 | Niu et al. | Feb 2012 | A1 |
20120033761 | Guo et al. | Feb 2012 | A1 |
20120034952 | Lo et al. | Feb 2012 | A1 |
20120045003 | Li et al. | Feb 2012 | A1 |
20120051287 | Merlin et al. | Mar 2012 | A1 |
20120064838 | Miao et al. | Mar 2012 | A1 |
20120069828 | Taki et al. | Mar 2012 | A1 |
20120076028 | Ko et al. | Mar 2012 | A1 |
20120076229 | Brobston et al. | Mar 2012 | A1 |
20120088512 | Yamada et al. | Apr 2012 | A1 |
20120092217 | Hosoya et al. | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120115523 | Shpak | May 2012 | A1 |
20120155349 | Bajic et al. | Jun 2012 | A1 |
20120155397 | Shaffer et al. | Jun 2012 | A1 |
20120163257 | Kim et al. | Jun 2012 | A1 |
20120163302 | Takano | Jun 2012 | A1 |
20120170453 | Tiwari | Jul 2012 | A1 |
20120170672 | Sondur | Jul 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120207256 | Farag et al. | Aug 2012 | A1 |
20120212372 | Petersson et al. | Aug 2012 | A1 |
20120213065 | Koo et al. | Aug 2012 | A1 |
20120218962 | Kishiyama et al. | Aug 2012 | A1 |
20120220331 | Luo et al. | Aug 2012 | A1 |
20120230380 | Keusgen et al. | Sep 2012 | A1 |
20120251031 | Suarez et al. | Oct 2012 | A1 |
20120270531 | Wright et al. | Oct 2012 | A1 |
20120270544 | Shah | Oct 2012 | A1 |
20120281598 | Struhsaker et al. | Nov 2012 | A1 |
20120314570 | Forenza et al. | Dec 2012 | A1 |
20120321015 | Hansen et al. | Dec 2012 | A1 |
20120327870 | Grandhi et al. | Dec 2012 | A1 |
20130010623 | Golitschek | Jan 2013 | A1 |
20130012134 | Jin et al. | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130023225 | Weber | Jan 2013 | A1 |
20130044877 | Liu et al. | Feb 2013 | A1 |
20130051283 | Lee et al. | Feb 2013 | A1 |
20130058239 | Wang et al. | Mar 2013 | A1 |
20130070741 | Li et al. | Mar 2013 | A1 |
20130079048 | Cai et al. | Mar 2013 | A1 |
20130094437 | Bhattacharya | Apr 2013 | A1 |
20130094621 | Luo et al. | Apr 2013 | A1 |
20130095780 | Prazan et al. | Apr 2013 | A1 |
20130101073 | Zai et al. | Apr 2013 | A1 |
20130150012 | Chhabra et al. | Jun 2013 | A1 |
20130156016 | Debnath et al. | Jun 2013 | A1 |
20130156120 | Josiam et al. | Jun 2013 | A1 |
20130170388 | Ito et al. | Jul 2013 | A1 |
20130172029 | Chang et al. | Jul 2013 | A1 |
20130188541 | Fischer | Jul 2013 | A1 |
20130190006 | Kazmi et al. | Jul 2013 | A1 |
20130208587 | Bala et al. | Aug 2013 | A1 |
20130208619 | Kudo et al. | Aug 2013 | A1 |
20130223400 | Seo et al. | Aug 2013 | A1 |
20130229996 | Wang et al. | Sep 2013 | A1 |
20130229999 | Da Silva et al. | Sep 2013 | A1 |
20130235720 | Wang et al. | Sep 2013 | A1 |
20130242853 | Seo et al. | Sep 2013 | A1 |
20130242899 | Lysejko et al. | Sep 2013 | A1 |
20130242965 | Horn et al. | Sep 2013 | A1 |
20130242976 | Katayama et al. | Sep 2013 | A1 |
20130252621 | Dimou et al. | Sep 2013 | A1 |
20130272437 | Eidson et al. | Oct 2013 | A1 |
20130301551 | Ghosh et al. | Nov 2013 | A1 |
20130304962 | Yin et al. | Nov 2013 | A1 |
20130331136 | Yang et al. | Dec 2013 | A1 |
20130343369 | Yamaura | Dec 2013 | A1 |
20140010089 | Cai et al. | Jan 2014 | A1 |
20140010211 | Asterjadhi et al. | Jan 2014 | A1 |
20140029433 | Wentink | Jan 2014 | A1 |
20140071873 | Wang et al. | Mar 2014 | A1 |
20140079016 | Dai et al. | Mar 2014 | A1 |
20140086077 | Safavi | Mar 2014 | A1 |
20140086081 | Mack et al. | Mar 2014 | A1 |
20140098681 | Stager et al. | Apr 2014 | A1 |
20140119288 | Zhu et al. | May 2014 | A1 |
20140185501 | Park et al. | Jul 2014 | A1 |
20140185535 | Park et al. | Jul 2014 | A1 |
20140192820 | Azizi et al. | Jul 2014 | A1 |
20140204821 | Seok et al. | Jul 2014 | A1 |
20140241182 | Smadi | Aug 2014 | A1 |
20140242914 | Monroe | Aug 2014 | A1 |
20140269409 | Dimou et al. | Sep 2014 | A1 |
20140307653 | Liu et al. | Oct 2014 | A1 |
20150016438 | Harel et al. | Jan 2015 | A1 |
20150018042 | Radulescu et al. | Jan 2015 | A1 |
20150085777 | Seok | Mar 2015 | A1 |
20150139212 | Wang et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1 189 303 | Mar 2002 | EP |
1 867 177 | May 2010 | EP |
2 234 355 | Sep 2010 | EP |
2 498 462 | Sep 2012 | EP |
2009-182441 | Aug 2009 | JP |
2009-278444 | Nov 2009 | JP |
WO 03047033 | Jun 2003 | WO |
WO 03073645 | Sep 2003 | WO |
WO 2010085854 | Aug 2010 | WO |
WO 2011060058 | May 2011 | WO |
WO 2013192112 | Dec 2013 | WO |
Entry |
---|
Office Action issued for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014. |
Office Action issued for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014. |
Office Action issued for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015. |
Office Action issued for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015. |
Notice of Allowance issued for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015. |
Notice of Allowance issued for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064346 dated Jan. 29, 2015. |
Mitsubishi Electric, “Discussion on Antenna Calibration in TDD”, 3GPP Draft; R1-090043, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. Ljubljana; Jan. 7, 2009, pp. 1-4. |
Alcatel-Lucent Shanghai Bell et al., “Antenna Array Calibration for TDD CoMP”, 3GPP Draft; R1-100427, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Valencia, Spain; Jan. 12, 2010, pp. 1-5. |
Notice of Allowance issued for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015. |
Office Action issued for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064185 dated Feb. 5, 2015. |
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 4095-4099. |
Songtao et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers, Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/065635 dated Feb. 13, 2015. |
Notice of Allowance issued for U.S. Appl. No. 14/171,736 mailed Feb. 20, 2015. |
Office Action issued for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015. |
Office Action issued for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015. |
Notice of Allowance issued for U.S. Appl. No. 14/449,431 dated Mar. 23, 2015. |
Notice of Allowance issued for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015. |
Office Action issued for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015. |
Notice of Allowance issued for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015. |
Office Action issued for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015. |
Office Action issued for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015. |
Office Action issued for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015. |
Office Action issued for U.S. Appl. No. 14/181,844 dated May 13, 2015. |
Office Action issued for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013. |
Office Action issued for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013. |
Office Action issued for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013. |
Office Action issued for U.S. Appl. No. 13/762,191 dated May 2, 2013. |
Office Action issued for U.S. Appl. No. 13/762,188 dated May 15, 2013. |
Office Action issued for U.S. Appl. No. 13/776,204 dated May 21, 2013. |
Office Action issued for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013. |
Office Action issued for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013. |
Notice of Allowance issued for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013. |
Office Action issued for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013. |
Notice of Allowance issued for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013. |
Notice of Allowance issued for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013. |
Notice of Allowance issued for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013. |
Notice of Allowance issued for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013. |
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677. |
Office Action issued for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013. |
Office Action issued for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013. |
Office Action issued for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013. |
Office Action issued for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013. |
Office Action issued for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013. |
Office Action issued for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013. |
Office Action issued for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013. |
Office Action issued for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013. |
Office Action issued for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013. |
Office Action issued for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013. |
Office Action issued for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013. |
Office Action issued for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014. |
Office Action issued for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014. |
Office Action issued for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014. |
Office Action issued for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014. |
Office Action issued for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014. |
Office Action issued for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014. |
Notice of Allowance issued for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014. |
Office Action issued for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014. |
Notice of Allowance issued for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014. |
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299. |
Office Action issued for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014. |
Office Action issued for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014. |
Office Action issued for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014. |
Office Action issued for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014. |
Office Action issued for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014. |
Notice of Allowance issued for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014. |
Office Action issued for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/087,376 dated May 9, 2014. |
Office Action issued for U.S. Appl. No. 14/143,580 dated May 9, 2014. |
Notice of Allowance issued for U.S. Appl. No. 13/776,068 dated May 13, 2014. |
Office Action issued for U.S. Appl. No. 14/013,190 dated May 20, 2014. |
Office Action issued for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014. |
Office Action issued for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014. |
Office Action issued for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014. |
Notice of Allowance issued for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014. |
Office Action issued for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014. |
Office Action issued for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014. |
Office Action issued for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014. |
Office Action issued for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014. |
Office Action issued for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014. |
Office Action issued for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014. |
Office Action issued for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014. |
Office Action issued for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014. |
Office Action issued for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014. |
Office Action issued for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014. |
Office Action issued for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014. |
Office Action issued for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014. |
Notice of Allowance issued for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014. |
Office Action issued for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014. |
Notice of Allowance issued for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014. |
Office Action for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014. |
Office Action issued for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014. |
Office Action issued for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014. |
Office Action issued for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated May 26, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated May 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Jun. 12, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/472,759 dated Jun. 18, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jun. 19, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Jun. 22, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/062116 dated Jun. 22, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Jun. 30, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/063304 dated Jul. 8, 2015. |
Bandyopadhyay, S. et al., “An Adaptive MAC Protocol for Wireless Ad Hoc Community Network (WACNet) Using Electronically Steerable Passive Array Radiator Antenna”, Globecom '01 : IEEE Global Telecommunications Conference; San Antonio, Texas, USA, Nov. 25-29, 2001, IEEE Operations Center, Piscataway, NJ, vol. 5, Nov. 25, 2001, pp. 2896-2900. |
Du, Yongjiu et al., “iBeam: Intelligent Client-Side Multi-User Beamforming in Wireless Networks”, IEEE INFOCOM 2014—IEEE Conference on Computer Communications, IEEE, Apr. 27, 2014, pp. 817-825. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Jul. 9, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Jul. 16, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Jul. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/672,634 dated Aug. 12, 2015. |
Number | Date | Country | |
---|---|---|---|
20150124634 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61898802 | Nov 2013 | US |