Method and system for calibrating a transceiver array

Information

  • Patent Grant
  • 9172454
  • Patent Number
    9,172,454
  • Date Filed
    Friday, October 3, 2014
    10 years ago
  • Date Issued
    Tuesday, October 27, 2015
    9 years ago
  • CPC
  • Field of Search
    • US
    • 370 215-216
    • 370 241-252
    • 370 463-469
    • CPC
    • H01Q3/22
    • H01Q3/24
    • H01Q3/26
    • H01Q3/30
    • H01Q3/36
    • H01Q3/42
    • H01Q3/267
    • H01Q3/2605
    • H01Q21/24
    • H04B1/0475
    • H04B1/0483
    • H04B1/10
    • H04B1/126
    • H04B1/408
    • H04B1/7107
    • H04B7/024
    • H04B7/0408
    • H04B7/0413
    • H04B7/0452
    • H04B7/0617
    • H04B7/0682
    • H04B7/0671
    • H04B7/0695
    • H04B7/086
    • H04B7/088
    • H04B7/0848
    • H04B7/10
    • H04B7/15585
    • H04B15/00
    • H04B17/11
    • H04B17/12
    • H04B17/21
    • H04B17/309
    • H04B17/336
    • H03B5/18
    • H03B5/1212
    • H03B5/1228
    • H03B5/1243
    • H03B5/1841
    • H03B5/1852
    • H03B9/00
    • H03B19/00
    • H03B2200/0084
    • H03L7/081
    • H03L7/099
    • H03L7/18
    • H03L7/183
    • H04L25/0204
    • H04L25/0328
    • H04L25/08
    • H04L2025/03426
    • H04W16/28
    • H04W24/02
    • H04W28/04
    • H04W52/42
    • H04W72/1231
    • G01S3/023
    • G01S3/043
    • G01S5/0215
    • G01S7/024
    • G01S7/40-41
    • G01S7/411
    • G01S7/4021
    • G01S19/13
    • G01S19/21-22
    • G01S19/36
    • G01S2007/406
    • G01S2007/4069
    • G01S2013/0245
    • G01S2013/0263
  • International Classifications
    • G06F11/00
    • H04L1/00
    • H04L12/26
    • H04B7/06
    • H04L5/14
    • H04W24/08
Abstract
A system and method for compensating phase differences between multiple local oscillators and group delay differences between multiple transceivers. The system may include; an antenna array; a plurality of transceivers connected to said antennas and operatively associated each with a local oscillator (LO), wherein at least some of the transceivers do not share a common LO, and wherein at least some of the LOs are using a common reference oscillator; a common digital beamformer circuit connected to the transceivers; a baseband processor configured to operate the system at a specified communication scheme; and a calibration circuit and software modules configured to eliminate or reduce mismatches and phase deviations between the different transceivers, wherein the calibration circuit and software modules are incorporated in system such that the elimination or reduction of mismatches and phase deviations is non-interrupting with a continuous operation of the system at the specified communication scheme.
Description
FIELD OF THE INVENTION

The present invention relates generally to wireless communication, and more particularly to local oscillators in multiple channel transceivers.


BACKGROUND OF THE INVENTION

Implementations of a multiple-antenna beamformer may require the use of multiple radio circuits that feed these antennas. Some implementations are based on an array of discrete mixers controlled by a common LO (Local Oscillator) where the number of radio circuits is unlimited, but cost, power consumption, real estate and reliability are not optimal. Some other implementations offer an integrated RFIC (Radio-Frequency-Integrated-Circuit) controlled by a common integrated LO, yet, the number of radios is typically to few limited combinations e.g. 2 or 4 or 8 integrated radio circuits in a commercially available RFICs. Hence when a larger number of radio circuits is required, staking an array of RFICs together may be a preferable approach, provided the LOs in each of the RFICs can be locked to each other via external circuitry and procedures.


Such an array of RFICs may maintain frequency lock when all LOs are using a common crystal reference, yet in some cases phase lock mechanism must be implemented each time the radios are retuned, as well on a periodic basis that will counter the effect of phase drift.



FIG. 1 depicts a beamforming TD-LTE base station according to the prior art which includes multiple radio circuits 120-1, 120-2, up to 120-M, that feed or provide input to an antenna array of M elements 110-1, 110-2, up to 110-M, where the multiple radio circuits and antennas are used for beamforming FIG. 1 further illustrates an example where the aforementioned beamforming capability may be used for the implementation of Multi-User MIMO, where up to N data streams are simultaneously served (e.g. in data communication with) by N baseband entities 140-1, 140-2, up to 140-N, where N<M. FIG. 1 further depicts an example implementation using a common local oscillator 150 configured to feed or provide input to the multiple radio circuits, so that digital beamformer 130 weights applied to baseband signals, are routed through the multiple radio frequency (RF) chains with a wells controlled resultant phases.



FIG. 2 depicts another possible block diagram similar to the one in FIG. 1, also in accordance with the prior art, where the radio circuits used are integrated Radio-Frequency-Integrated-Circuits (RFICs) 220-1, 220-2, up to 220-M, and where the LO are implemented inside and fed by a common reference clock 250; however, such a solution guarantees frequency lock but does not provide phase lock across the array, which makes it unfit for beamforming. The problem stems from the fact that while LOs are frequency locked, their relative phases may drift. Therefore, for beam forming purposes, the architecture shown in FIGS. 1 and 2 will not work properly.


SUMMARY OF THE INVENTION

In accordance with embodiments of the present invention, a system for compensating phase differences between multiple local oscillators is provided. The system may include for example: an antenna array; a plurality of transceivers connected to the antennas and operatively associated each with a local oscillator (LO), wherein at least some of the transceivers do not share a common LO (e.g. connected to the same LO), and wherein at least some of the LOs are using a common reference oscillator; a common digital beamformer circuit connected to the transceivers; a baseband processor configured to operate the system at a specified communication scheme; and a calibration circuit and software modules executed by the baseband processor and configured to eliminate or reduce mismatches and phase deviations between the different transceivers, wherein the calibration circuit and software modules are incorporated in system such that the elimination or reduction of mismatches and phase deviations is non-interrupting with a continuous operation of the system at the specified communication scheme. In some embodiments, reduction of mismatches, phase deviations, etc., may include elimination of these phenomena.


Embodiments of the present invention includes a phase calibration apparatus and procedure that guarantees phase lock across an array of multiple separated radios, and a method of performing such calibration in multiple radios systems that operate in Time-Domain-Duplex (TDD).


Embodiments of the present invention include a digital beamforming array, serving a TDD air-protocol Base Station or User Equipment, where an antenna array of N antennas is fed by an array of N radio circuits, which in turn are digitized and fed into a common digital beamformer entity. The radio circuits may include an array of integrated RFICs or modules where their LOs are hooked into a common crystal reference. The phase of each integrated radio which may be different, is calibrated on a system level via a disclosed phase correction auxiliary circuitry and calibration procedure.


Embodiments of a phase correction system and method may calibrate the array of down-converting radio circuits' signals so that phase variations created at the receive circuitries are known before received digital beamforming is performed; it may also calibrate the array of up-converting radio circuits so that phase variation created in the transmit circuitries are known before transmitted digital beamforming is performed.


Acquiring knowledge of the receiving radio circuits' phase variations may be done by injection of a common known pilot signal via an auxiliary up-converter to each of the radios inputs, where the pilot is originated at the common digital beamforming entity, and measuring the output of each radio circuits' receivers by the common digital beamforming entity, which then compares the input and output phases, to derive receive radio circuitries phase variation knowledge.


Acquiring knowledge of the transmission radio circuits' phase variations may be done by feeding each of the transmission radio circuitries' input with a common known pilot signal originated at the common digital beamforming entity, and injecting the outputs of the transmission radio circuitries into input an auxiliary down-converter circuitry that is digitized and fed back into the common digital beamforming entity, which then compares the input and output phases, to derive transmit radio circuitries phase variation knowledge.


Embodiments of the present invention further provide a method for TDD systems, where the up-converters' and down-converters' phase variations calibration, is done in way that does not require extra spectrum or extra bandwidth, via using the time gap between TDD transmission and reception for the injection of the calibration signals.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be more fully understood by reference to the following detailed description when read with the accompanying drawings in which:



FIG. 1: A TDD multi antenna base station using discrete radio implementation in accordance with the prior art;



FIG. 2: A TDD base station with separate local oscillators using a common reference clock accordance with the prior art;



FIG. 3: Injecting a common pilot into TDD base station's receivers array's inputs in accordance with embodiments of present invention;



FIG. 4: An example of injecting a pilot into a TDD base station's receivers, via an auxiliary up converter circuitry in accordance with embodiments of present invention;



FIG. 5: An example of feeding a pilot into TDD base station's Tx array and measuring the output signals in accordance with embodiments of present invention;



FIG. 6: An example of a calibration signal's modulation in accordance with embodiments of present invention;



FIG. 7: A TD-LTE frame structure accordance with embodiments of present invention;



FIG. 8: An example of Rx Mode Phase Compensation Timing Example for TD-LTE in accordance with embodiments of present invention;



FIG. 9: An example of Tx Mode Phase Compensation Timing for TD-LTE with M LO's in accordance with embodiments of present invention; and



FIG. 10: An example of three-stage calibration for TD-LTE with M LO's and radios in accordance with embodiments of present invention.





DETAILED DESCRIPTION OF THE INVENTION

In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention.


Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.



FIG. 3 depicts an upgraded block diagram, where the circuitry of FIG. 2, including all of its components, is augmented by an auxiliary Tx/Rx RFIC 320-(M+1) which feeds or provides input to an RF switch 370, and is further augmented by an array of RF switches 360-1, 360-2, up to 360-M. The auxiliary radio circuit may be used to inject a calibration pilot signal into the RFICs inputs, as well as to receive another calibration pilot signal from the RFICs outputs, so that phases variations created by each of the integrated LOs, together with other phase deflection contributions, are measured in both transmission and receptions paths.



FIG. 4 depicts an example of a TDD base station with two antennas 410-1, 410-2. The corresponding two down-converter parts of the radios 430-1, 430-2 are connected to their respective antennas via switches 420-1, 420-2, where the switches may also be implemented as couplers; an auxiliary up-converter 430-3 and its front end RF splitter 440 are connected to the switches or couplers; both the down-converters and the auxiliary up-converter are fed by a common reference clock 450; the down-converters feed or provide input to the common digital beamformer entity, which compares it with the pilot's phase via phase comparisons 460-1, 460-2, calculates phase variations per subcarrier (460-5), and stores the results in a calibration lookup table 460-6.



FIG. 5 depicts an example of a TDD base station with two antennas 510-1, 510-2. The corresponding two up-converter parts of the radios 530-1, 530-2 are connected to their respective antennas via switches 520-1, 520-2, where the switches may also be implemented as couplers. An auxiliary down-converter 530-3 and its front end RF switch 540 are connected to the switches or couplers. Both the up-converters and the auxiliary down-converter are fed by a common reference clock 550; note that the reference 550 is the same one depicted in FIG. 4 as reference clock 450; the common digital beamforming entity injects a Tx calibration pilot 560-2 via a selector 560-1 into each of the up-converters part of the 530-1 and 530-2 radios in a sequential order, and each time the output of the up-converters is fed into the input of the auxiliary down-converter 530-3, which feeds or provides input to the resultant digital signal into a phase comparator 560-5 that calculates the phase difference between each up-converter path and the pilot signal, per subcarrier (560-4), to be stored at the Tx calibration lookup table. Note: FIG. 5 is applicable for an apparatus with up to 48 antennas, as explained with respect to FIG. 9.


According to some embodiments of the present invention, the calibration circuit and baseband processor executing software modules may include hardware and software, enabling the common digital beamformer to generate calibration pilot signals injected to the inputs of receiving parts of the transceivers, via a digital-to-analog converter and an additional RF up-converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' receivers, based on the digital output of the receivers across the bandwidth of the transceiver. The specified communication scheme may be Time-Domain-Duplex (TDD) exhibiting a time gap between transmit and receive


According to other embodiments of the present invention the calibration circuitry and software modules may be based on auxiliary hardware and auxiliary software, enabling the common digital beamformer entity to pick up its own downlink signal from each transmitting part of the transceivers, via a calibration RF down-converter and an analog-to-digital converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' transmitters, based on the digital output of the transmitters across the bandwidth of the transceiver, where the down-converter input may be sequentially switched between each of the transmitting part of the transceivers. In some embodiments, the calibration pilot may include a narrowband signal.


According to some embodiments of the present invention the baseband processor may be configured to avoid interruption of the operation of the system for calibration purposes, for example by using the transmit-receive time gap for switching the receivers array away from the antenna array, and connecting them to outputs of the calibration RF up-converter, and feeding the input of the up-converter with a calibration pilot signal generated by the common digital beamformer, for a partial part of the time gap, and further measuring the digitized output of the receivers array by the common digital beamformer.


According to some embodiments of the present invention the baseband processor may be further configured to avoid interruption of the operation of the system for calibration purposes by sequentially feeding the transmitting part of the transceivers via an RF splitter to the input of the calibration down-converter and measure the down-converter digitized output during the time gap between transmit and receive.


According to other embodiments of the present invention, the time gap between transmit and receive may be divided up into several fields, so that the first field is left unused for guard time purposes, then the next field may be used for receivers calibration, then the next one is used for calibration processing by the common digital beamformer, then the next one may be used to apply phase adjustment to RF or digital parts of the system, and then the last field is not used to allow for guard time before switching back to active mode is taking place.


According to other embodiments of the present invention, the down-link RF output of a given transceiver may be fed into the calibration RF down-converter for at least few μsecs before the transmit timeslot is ending, and after transmission may be turned off, the digital output of the down-converter may be captured and processed by the common digital beamformer, and phase adjustment may be subsequently applied.


According to other embodiments of the present invention, a selection of a specific time period for wideband calibration may be based on measurements of temperature fluctuation and current fluctuations at the power amplifiers array, and the setting of thresholds that will increase sampling rate per increased fluctuation magnitude. Alternatively, the selection of specific time period for narrow band calibration addressing the LO phase alignment, may be based on factory measurements (e.g. calibration process during production) that determine inter-transceiver phase uncertainty over time.



FIG. 6 describes several examples of pilot modulation: A) depicts a sinusoidal waveform, B) depicts a 64 QAM modulation.


Using a narrowband sine wave pilot tone may allow accurate phase measurement for a given subcarrier, and it may be sufficient to gain knowledge of the LO phase shift versus a reference. Phase comparison may be implemented via correlations or via FFT.


Using a broadband pilot like a 64 QAM modulation which occupies the entire bandwidth, provides also wideband calibration, addressing the non-flat transfer function of the various RF components. The correction value can be computed using the following calculation:

    • Given an input signal Sin, a measured output signal Sout, and an unknown circuit transfer function T, then Sout=T*Sin.
    • For each subcarrier i by applying a fast Fourier transform (FFT) of above equation, it becomes sout(i)=t(i)*sin(i)
    • Phase of the transfer function {circumflex over (t)}t(i) for subcarrier i can be estimated by Zero Forcing, e.g., {circumflex over (t)}(i)=sout(i)/sin(i), or MMSE in frequency domain.



FIG. 7 depicts the structure of a TD-LTE air protocol frame. In one embodiment the frame can be for example a 5 ms or a 10 ms switch point periodicity, and in both there is a time gap labeled GP. Embodiments of the present invention disclose a system and a method to use the GP gap for phase calibration of both transmission and reception parts of the transceivers in a periodic regime.



FIG. 8 describes an example of using the TD-LTE time gap between transmissions of down and up links for calibration of the receiving parts of the radios array, illustrated for the case of a 10 ms switch point (as with other embodiments described herein, other specific parameters may be used):


The time gap is assumed to be 285 μsec.


Starting with a guard time e.g. 50 μsec.


Continue with a simultaneous measurement of all receiving parts of the radio array, e.g. over 100 μsec.


Process the measurements in the common digital beamforming entity e.g. over 30 μsec.


Apply the weights according to the beamforming calibration lookup table, for example, over 5 μsec.


Leave approximately 100 μsec for a guard time before switching takes place.



FIG. 9 describes an example of using the TD-LTE time gap between transmissions of down link and uplink for calibration of the transmitting parts of the radios array, illustrated for the case of a 10 ms switch point:


The transmission calibrations may alternate with the reception calibrations.


Measure via the auxiliary down-converter live transmission of data during subframe 0 which includes Sequential TX Measurement Using Normal DL Signal.


During the 1 ms time period of subframe 0, alternating through the M<15 antennas so that each is allocated with at least one full symbol; Calculate Relative phase adjustments based on factory calibration table and then apply phase. It should be noted that in FIG. 9 maximum of 10 antennas are assumed so each is allocated with 100 μsecs. In case the number of antennas is larger than 15, continue calibrating the next batch of antennas during the next gap.


As long as the number antennas M does not exceed 45, then 3 switching cycles cover the transmission circuitry calibration within 3×10 ms intervals while the receiving circuitry calibration may be done each interval. The 4th can be used for reception circuitry calibration, yielding a total of 40 ms which is under the 50 ms assumed max duration;


When M>45, then the embodiment in the FIG. 5 block diagram may require augmentation by an additional auxiliary down-converter, which allows calibrations of Tx RF circuitries in pair, and so on and so forth.



FIG. 10 Depicts three stages calibration for TDD multiple LOs and radios.


The calibration goals of the downlink circuitry may be to guarantee sufficient compliance of the RF system with the digital processing system, e.g. that signals received by multiple antennas and fed into the inputs of a multichannel RF system, will be transformed into digital signals without distortion of each signal and its inter-relations with other signals, or that such distortions will be made know to the digital system.


Similarly, the calibration goals of the uplink circuitry, may be to guarantee that digital signals fed into the inputs of multichannel RF systems, are transferred to the antennas inputs without distortion of each signal and its inter-relations with other signals.


In one embodiment, metrics for a sufficient calibration may be based on estimating the RF and digital systems combined capabilities to create a deep enough null, e.g. to guarantee a minimum null depth.


For example, in an 8 arm multichannel beamforming system, with calibration that eliminates amplitude variations, and provides phase uncertainty of 2 degree or less, a null depth can be calculated as for example 20*log 10(1/57.30)=−35 dB.


The factors that govern RF circuitry phase uncertainty are temperature drifts, power supply voltage fluctuations, and loading; such variations may be slow or fast, e.g. may require calibration frequency of once per second or 20 times per second.


The factors that govern LOs coherency across the various RF channels are phase noise and LO frequency re-tuning rate. The fastest change may occur in the latter case every frame, therefore calibration must take place at the switching gap between transmit and receive.


Referring to FIG. 10, operation 1001 outlines a first stage calibration performed after initial installation, and later on at periodical maintenance. This stage is based on over-the-air transmission of one of the base station's antennas towards the others, in a round robin sequence, measuring wideband antennas coupling and mismatch, Power Amplifiers wideband non-linearity, and RF circuitry misalignments.


Operation 1002 outlines a second operation calibration where the wideband calibration, for both the receive circuitry and transmitting circuitry, takes place, every T2 millisecond, e.g. 50-1,000 milliseconds, where the specific T2 value may be calculated based on continuous sensing of Power Amplifier's (PA's) temperature and nonlinearity versus temperature factory measurements of the PAs, and further, on continuous measurement for current fluctuation thru the PAs current fluctuation and nonlinearity versus current factory measurements of the PAs.


Operation 1003 outlines the third stage of calibration, for the receive circuitry only, where narrowband calibration takes place during every frame's gap T1 of for example 5 or 10 milliseconds. Operation 1004 describes the application of calibration data derived from above three stages to RX channel for calculating reciprocal TX channel. Operation 1005, and operation 1006 describe the T1 and T2 counters.


Advantageously, embodiments of the present invention may be implemented as a part of a base station or a subscriber unit. In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.


Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.


Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions. It will further be recognized that the aspects of the invention described hereinabove may be combined or otherwise coexist in embodiments of the invention.


The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.


It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.


Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.


It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.


If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element. It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.


Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described. The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.


Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.


The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein. While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

Claims
  • 1. A system comprising: an antenna array comprising antennas;a plurality of transceivers connected to said antennas and each transceiver operatively associated with a local oscillator (LO), wherein at least some of the transceivers are not associated with the same LO, and wherein at least some of the LOs use a common reference oscillator;a common digital beamformer circuit connected to said transceivers;a baseband processor configured to operate the transceivers and beamformer circuit at a specified communication scheme; anda calibration circuit,wherein said calibration circuit and said baseband processor executing software modules are configured to reduce mismatches and phase deviations between the transceivers in a non-interrupting manner with a continuous operation of the system at the specified communication scheme.
  • 2. The system according to claim 1, wherein said calibration circuit and said baseband processor executing software are configured to enable the common digital beamformer to generate calibration pilot signals injected to the inputs of the transceivers, via a digital-to-analog converter and an additional RF up-converter, and wherein the calibration circuit and said baseband processor are further configured to determine phase and amplitude differences between the plurality of transceivers' receivers, based on the digital output of said receivers across the bandwidth of the transceiver.
  • 3. The system according to claim 2, wherein the calibration pilot comprises a narrowband signal.
  • 4. The system according to claim 1, wherein said calibration circuitry and software modules are based on auxiliary hardware and auxiliary software, enabling the common digital beamformer entity to pick up its own downlink signal from each transmitting part of the said transceivers, via a calibration RF down-converter and an analog-to-digital converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' transmitters, based on the digital output of said transmitters across the bandwidth of the transceiver, where said down-converter input is sequentially switched between each said transmitting part of the transceivers.
  • 5. The system according to claim 1, wherein the specified communication scheme is Time-Domain-Duplex (TDD) exhibiting a time gap between transmit and receive.
  • 6. The system according to claim 5, wherein the baseband processor is configured to avoid interruption of the operation of the system for calibration purposes, by using the transmit-receive time gap for switching the receivers array away from the antenna array, and connecting them to outputs of the calibration RF up-converter, and feeding the input of said up-converter with a calibration pilot signal generated by the common digital beamformer, for a partial part of said time gap, and further measuring the digitized output of the receivers array by the said common digital beamformer.
  • 7. The system according to claim 5, wherein the baseband processor is further configured to avoid interruption of the operation of the system for calibration purposes by sequentially feeding the transmitting part of the transceivers via an RF splitter to the input of the calibration down-converter and measure the said down-converter digitized output during the time gap between transmit and receive.
  • 8. The system according to claim 5, wherein said time gap between transmit and receive is divided up into several fields, so that the first field is left unused for guard time purposes, then the next field is used for receivers calibration, then the next one is used for calibration processing by the common digital beamformer, then the next one is used to apply phase adjustment to RF or digital parts of the system, and then the last field is not used to allow for guard time before switching back to active mode is taking place.
  • 9. The system according to claim 5, wherein the down-link RF output of a given transceiver is fed into the calibration RF down-converter for a plurality of μsecs before the transmit timeslot is ending, and after transmission is turned off, the digital output of the said down-converter is being capture and processed by the common digital beamformer, and phase adjustment is subsequently applied.
  • 10. The system according to claim 9, wherein selection of specific time period for wideband calibration is based on measurements of temperature fluctuation and current fluctuations at the power amplifiers array, and the setting of thresholds that will increase sampling rate per increased fluctuation magnitude.
  • 11. The system according to claim 10, wherein the selection of specific time period for narrow band calibration addressing the LO phase alignment, is based on factory measurements that determine inter-transceiver phase uncertainty over time.
  • 12. The system according to claim 1, wherein the system is implemented as a part of a base station or a subscriber unit.
  • 13. A method comprising: providing a plurality of transceivers connected to an antenna array and operatively associated each with a local oscillator (LO), wherein at least some of the transceivers do not share a common LO, and wherein at least some of the LOs are using a common reference oscillator;digitally beamforming signals coming and going to the transceivers;operating the transceivers at a specified communication scheme using a baseband processor; andeliminating or reducing mismatches and phase deviations between the different transceivers using a calibration circuit and software modules executed on the baseband processor,wherein said calibration circuit is incorporated in transceivers such that the elimination or reduction of mismatches and phase deviations is non-interrupting with a continuous operation of the transceivers at the specified communication scheme.
  • 14. The method according to claim 13, wherein said calibration circuit and software modules are based on auxiliary hardware and auxiliary software, enabling the common digital beamformer to generate calibration pilot signals injected to the inputs of the receiving part of the transceivers, via a digital-to-analog converter and an additional RF up-converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' receivers, based on the digital output of said receivers across the bandwidth of the transceiver.
  • 15. The method according to claim 14, wherein the calibration pilot comprises a narrowband signal.
  • 16. The method according to claim 13, wherein said calibration circuitry and software modules are based on auxiliary hardware and auxiliary software, enabling the common digital beamformer entity to pick up its own downlink signal from each transmitting part of the said transceivers, via a calibration RF down-converter and an analog-to-digital converter, and further configured to determine phase and amplitude differences between the plurality of transceivers' transmitters, based on the digital output of said transmitters across the bandwidth of the transceiver, where said down-converter input is sequentially switched between each said transmitting part of the transceivers.
  • 17. The method according to claim 13, wherein the specified communication scheme is Time-Domain-Duplex (TDD) exhibiting a time gap between transmit and receive.
  • 18. The method according to claim 17, wherein the baseband processor is further configured to avoid interruption of the operation of the system for calibration purposes, by using the transmit-receive time gap for switching the receivers array away from the antenna array, and connecting them to outputs of the calibration RF up-converter, and feeding the input of said up-converter with a calibration Pilot signal generated by the common digital beamformer, for a partial part of said time gap, and further measuring the digitized output of the receivers array by the said common digital beamformer.
  • 19. The method according to claim 17, wherein the baseband processor is further configured to avoid interruption of the operation of the system for calibration purposes by sequentially feeding the transmitting part of the transceivers via an RF splitter to the input of the calibration down-converter and measure the said down-converter digitized output during the time gap between transmit and receive.
  • 20. The method according to claim 17, wherein said time gap between transmit and receive is divided up into a plurality of fields, so that the first field is left unused for guard time purposes, the next field is used for receiver calibration, the next one is used for calibration processing by the common digital beamformer, the next one is used to apply phase adjustment to RF or digital parts of the system, and the last field is not used to allow for guard time before switching back to active mode takes place.
  • 21. The method according to claim 17, wherein the down-link RF output of a given transceiver is fed into the calibration RF down-converter for a plurality of μsecs before the transmit timeslot is ending, and after transmission is turned off, the digital output of the said down-converter is captured and processed by the common digital beamformer, and phase adjustment is subsequently applied.
  • 22. The method according to claim 21, wherein selection of specific time period for wideband calibration is based on measurements of temperature fluctuation and current fluctuations at the power amplifiers array, and the setting of thresholds that will increase sampling rate per increased fluctuation magnitude.
  • 23. The method according to claim 21, wherein the selection of specific time period for narrow band calibration addressing the LO phase alignment is based on factory measurements that determine inter-transceiver phase uncertainty over time.
  • 24. The method according to claim 13, wherein the method is implemented as a part of a base station or a subscriber unit.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit from U.S. provisional patent application Ser. No. 61/898,802 filed Nov. 1, 2013, which is incorporated herein by reference in its entirety.

US Referenced Citations (345)
Number Name Date Kind
4044359 Applebaum et al. Aug 1977 A
4079318 Kinoshita Mar 1978 A
4359738 Lewis Nov 1982 A
4540985 Clancy et al. Sep 1985 A
4628320 Downie Dec 1986 A
5162805 Cantrell Nov 1992 A
5363104 Richmond Nov 1994 A
5444762 Frey et al. Aug 1995 A
5732075 Tangemann et al. Mar 1998 A
5915215 Williams et al. Jun 1999 A
5936577 Shoki et al. Aug 1999 A
5940033 Locher et al. Aug 1999 A
6018317 Dogan et al. Jan 2000 A
6026081 Hamabe Feb 2000 A
6046655 Cipolla Apr 2000 A
6094165 Smith Jul 2000 A
6101399 Raleigh et al. Aug 2000 A
6163695 Takemura Dec 2000 A
6167286 Ward et al. Dec 2000 A
6215812 Young et al. Apr 2001 B1
6226507 Ramesh et al. May 2001 B1
6230123 Mekuria et al. May 2001 B1
6259683 Sekine et al. Jul 2001 B1
6297772 Lewis Oct 2001 B1
6321077 Saitoh et al. Nov 2001 B1
6335953 Sanderford et al. Jan 2002 B1
6370378 Yahagi Apr 2002 B1
6377783 Lo et al. Apr 2002 B1
6393282 Iimori May 2002 B1
6584115 Suzuki Jun 2003 B1
6647276 Kuwahara et al. Nov 2003 B1
6697622 Ishikawa et al. Feb 2004 B1
6697633 Dogan et al. Feb 2004 B1
6735182 Nishimori et al. May 2004 B1
6834073 Miller et al. Dec 2004 B1
6842460 Olkkonen et al. Jan 2005 B1
6914890 Tobita et al. Jul 2005 B1
6927646 Niemi Aug 2005 B2
6934541 Miyatani Aug 2005 B2
6975582 Karabinis et al. Dec 2005 B1
6987958 Lo et al. Jan 2006 B1
7068628 Li et al. Jun 2006 B2
7154960 Liu et al. Dec 2006 B2
7177663 Axness et al. Feb 2007 B2
7190964 Damnjanovic et al. Mar 2007 B2
7257425 Wang et al. Aug 2007 B2
7299072 Ninomiya Nov 2007 B2
7391757 Haddad et al. Jun 2008 B2
7392015 Farlow et al. Jun 2008 B1
7474676 Tao et al. Jan 2009 B2
7499109 Kim et al. Mar 2009 B2
7512083 Li Mar 2009 B2
7606528 Mesecher Oct 2009 B2
7634015 Waxman Dec 2009 B2
7646744 Li Jan 2010 B2
7719993 Li et al. May 2010 B2
7742000 Mohamadi Jun 2010 B2
7769107 Sandhu et al. Aug 2010 B2
7876848 Han et al. Jan 2011 B2
7881401 Kraut et al. Feb 2011 B2
7898478 Niu et al. Mar 2011 B2
7904086 Kundu et al. Mar 2011 B2
7904106 Han et al. Mar 2011 B2
7933255 Li Apr 2011 B2
7970366 Arita et al. Jun 2011 B2
8078109 Mulcay Dec 2011 B1
8103284 Mueckenheim et al. Jan 2012 B2
8111782 Kim et al. Feb 2012 B2
8115679 Falk Feb 2012 B2
8155613 Kent et al. Apr 2012 B2
8194602 van Rensburg et al. Jun 2012 B2
8275377 Nanda et al. Sep 2012 B2
8280443 Tao et al. Oct 2012 B2
8294625 Kittinger et al. Oct 2012 B2
8306012 Lindoff et al. Nov 2012 B2
8315671 Kuwahara et al. Nov 2012 B2
8369436 Stirling-Gallacher Feb 2013 B2
8504098 Khojastepour Aug 2013 B2
8509190 Rofougaran Aug 2013 B2
8520657 Rofougaran Aug 2013 B2
8526886 Wu et al. Sep 2013 B2
8571127 Jiang et al. Oct 2013 B2
8588844 Shpak Nov 2013 B2
8599955 Kludt et al. Dec 2013 B1
8599979 Farag et al. Dec 2013 B2
8605658 Fujimoto Dec 2013 B2
8611288 Zhang et al. Dec 2013 B1
8644413 Harel et al. Feb 2014 B2
8649458 Kludt et al. Feb 2014 B2
8666319 Kloper et al. Mar 2014 B2
8670504 Naguib Mar 2014 B2
8744511 Jones et al. Jun 2014 B2
8754810 Guo et al. Jun 2014 B2
8767862 Abreu et al. Jul 2014 B2
8780743 Sombrutzki et al. Jul 2014 B2
8797969 Harel et al. Aug 2014 B1
8891598 Wang et al. Nov 2014 B1
8928528 Harel et al. Jan 2015 B2
8942134 Kludt et al. Jan 2015 B1
8976845 O'Keeffe et al. Mar 2015 B2
8995416 Harel et al. Mar 2015 B2
9014066 Wang et al. Apr 2015 B1
9035828 O'Keeffe et al. May 2015 B2
20010029326 Diab et al. Oct 2001 A1
20010038665 Baltersee et al. Nov 2001 A1
20020024975 Hendler Feb 2002 A1
20020051430 Kasami et al. May 2002 A1
20020065107 Harel et al. May 2002 A1
20020085643 Kitchener et al. Jul 2002 A1
20020107013 Fitzgerald Aug 2002 A1
20020115474 Yoshino et al. Aug 2002 A1
20020181426 Sherman Dec 2002 A1
20020181437 Ohkubo et al. Dec 2002 A1
20030087645 Kim et al. May 2003 A1
20030114162 Chheda et al. Jun 2003 A1
20030153322 Burke et al. Aug 2003 A1
20030153360 Burke et al. Aug 2003 A1
20030186653 Mohebbi et al. Oct 2003 A1
20030203717 Chuprun et al. Oct 2003 A1
20030203743 Sugar et al. Oct 2003 A1
20040023693 Okawa et al. Feb 2004 A1
20040056795 Ericson et al. Mar 2004 A1
20040063455 Eran et al. Apr 2004 A1
20040081144 Martin et al. Apr 2004 A1
20040121810 Goransson et al. Jun 2004 A1
20040125899 Li et al. Jul 2004 A1
20040125900 Liu et al. Jul 2004 A1
20040142696 Saunders et al. Jul 2004 A1
20040147266 Hwang et al. Jul 2004 A1
20040156399 Eran Aug 2004 A1
20040166902 Castellano et al. Aug 2004 A1
20040198292 Smith et al. Oct 2004 A1
20040228388 Salmenkaita Nov 2004 A1
20040235527 Reudink et al. Nov 2004 A1
20040264504 Jin Dec 2004 A1
20050068230 Munoz et al. Mar 2005 A1
20050068918 Mantravadi et al. Mar 2005 A1
20050075140 Famolari Apr 2005 A1
20050085266 Narita Apr 2005 A1
20050129155 Hoshino Jun 2005 A1
20050147023 Stephens et al. Jul 2005 A1
20050163097 Do et al. Jul 2005 A1
20050245224 Kurioka Nov 2005 A1
20050250544 Grant et al. Nov 2005 A1
20050254513 Cave et al. Nov 2005 A1
20050265436 Suh et al. Dec 2005 A1
20050286440 Strutt et al. Dec 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060041676 Sherman Feb 2006 A1
20060092889 Lyons et al. May 2006 A1
20060094372 Ahn et al. May 2006 A1
20060098605 Li May 2006 A1
20060111149 Chitrapu et al. May 2006 A1
20060135097 Wang et al. Jun 2006 A1
20060183503 Goldberg Aug 2006 A1
20060203850 Johnson et al. Sep 2006 A1
20060227854 McCloud et al. Oct 2006 A1
20060264184 Li et al. Nov 2006 A1
20060270343 Cha et al. Nov 2006 A1
20060271969 Takizawa et al. Nov 2006 A1
20060285507 Kinder et al. Dec 2006 A1
20070041398 Benveniste Feb 2007 A1
20070058581 Benveniste Mar 2007 A1
20070076675 Chen Apr 2007 A1
20070093261 Hou et al. Apr 2007 A1
20070097918 Cai et al. May 2007 A1
20070115882 Wentink May 2007 A1
20070115914 Ohkubo et al. May 2007 A1
20070152903 Lin et al. Jul 2007 A1
20070217352 Kwon Sep 2007 A1
20070223380 Gilbert et al. Sep 2007 A1
20070249386 Bennett Oct 2007 A1
20070298742 Ketchum et al. Dec 2007 A1
20080043867 Blanz et al. Feb 2008 A1
20080051037 Molnar et al. Feb 2008 A1
20080081671 Wang et al. Apr 2008 A1
20080095163 Chen et al. Apr 2008 A1
20080108352 Montemurro et al. May 2008 A1
20080125120 Gallagher et al. May 2008 A1
20080144737 Naguib Jun 2008 A1
20080165732 Kim et al. Jul 2008 A1
20080238808 Arita et al. Oct 2008 A1
20080240314 Gaal et al. Oct 2008 A1
20080247370 Gu et al. Oct 2008 A1
20080267142 Mushkin et al. Oct 2008 A1
20080280571 Rofougaran et al. Nov 2008 A1
20080285637 Liu et al. Nov 2008 A1
20090003299 Cave et al. Jan 2009 A1
20090028225 Runyon et al. Jan 2009 A1
20090046638 Rappaport et al. Feb 2009 A1
20090058724 Xia et al. Mar 2009 A1
20090121935 Xia et al. May 2009 A1
20090137206 Sherman et al. May 2009 A1
20090154419 Yoshida et al. Jun 2009 A1
20090187661 Sherman Jul 2009 A1
20090190541 Abedi Jul 2009 A1
20090227255 Thakare Sep 2009 A1
20090239486 Sugar et al. Sep 2009 A1
20090268616 Hosomi Oct 2009 A1
20090279478 Nagaraj et al. Nov 2009 A1
20090285331 Sugar et al. Nov 2009 A1
20090322610 Hants et al. Dec 2009 A1
20090322613 Bala et al. Dec 2009 A1
20090323608 Adachi et al. Dec 2009 A1
20100002656 Ji et al. Jan 2010 A1
20100037111 Ziaja et al. Feb 2010 A1
20100040369 Zhao et al. Feb 2010 A1
20100067473 Cave et al. Mar 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100111039 Kim et al. May 2010 A1
20100117890 Vook et al. May 2010 A1
20100135420 Xu et al. Jun 2010 A1
20100150013 Hara et al. Jun 2010 A1
20100172429 Nagahama et al. Jul 2010 A1
20100195560 Nozaki et al. Aug 2010 A1
20100195601 Zhang Aug 2010 A1
20100208712 Wax et al. Aug 2010 A1
20100222011 Behzad Sep 2010 A1
20100232355 Richeson et al. Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100278063 Kim et al. Nov 2010 A1
20100283692 Achour et al. Nov 2010 A1
20100285752 Lakshmanan et al. Nov 2010 A1
20100291931 Suemitsu et al. Nov 2010 A1
20100303170 Zhu et al. Dec 2010 A1
20100316043 Doi et al. Dec 2010 A1
20110019639 Karaoguz et al. Jan 2011 A1
20110032849 Yeung et al. Feb 2011 A1
20110032972 Wang et al. Feb 2011 A1
20110085465 Lindoff et al. Apr 2011 A1
20110085532 Scherzer et al. Apr 2011 A1
20110105036 Rao et al. May 2011 A1
20110116489 Grandhi May 2011 A1
20110134816 Liu et al. Jun 2011 A1
20110150050 Trigui et al. Jun 2011 A1
20110150066 Fujimoto Jun 2011 A1
20110151826 Miller et al. Jun 2011 A1
20110163913 Cohen et al. Jul 2011 A1
20110205883 Mihota Aug 2011 A1
20110205998 Hart et al. Aug 2011 A1
20110228742 Honkasalo et al. Sep 2011 A1
20110249576 Chrisikos et al. Oct 2011 A1
20110250884 Brunel et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110281541 Borremans Nov 2011 A1
20110299437 Mikhemar et al. Dec 2011 A1
20110310827 Srinivasa et al. Dec 2011 A1
20110310853 Yin et al. Dec 2011 A1
20120014377 Joergensen et al. Jan 2012 A1
20120015603 Proctor et al. Jan 2012 A1
20120020396 Hohne et al. Jan 2012 A1
20120027000 Wentink Feb 2012 A1
20120028638 Mueck et al. Feb 2012 A1
20120028655 Mueck et al. Feb 2012 A1
20120028671 Niu et al. Feb 2012 A1
20120033761 Guo et al. Feb 2012 A1
20120034952 Lo et al. Feb 2012 A1
20120045003 Li et al. Feb 2012 A1
20120051287 Merlin et al. Mar 2012 A1
20120064838 Miao et al. Mar 2012 A1
20120069828 Taki et al. Mar 2012 A1
20120076028 Ko et al. Mar 2012 A1
20120076229 Brobston et al. Mar 2012 A1
20120088512 Yamada et al. Apr 2012 A1
20120092217 Hosoya et al. Apr 2012 A1
20120100802 Mohebbi Apr 2012 A1
20120115523 Shpak May 2012 A1
20120155349 Bajic et al. Jun 2012 A1
20120155397 Shaffer et al. Jun 2012 A1
20120163257 Kim et al. Jun 2012 A1
20120163302 Takano Jun 2012 A1
20120170453 Tiwari Jul 2012 A1
20120170672 Sondur Jul 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jain et al. Aug 2012 A1
20120207256 Farag et al. Aug 2012 A1
20120212372 Petersson et al. Aug 2012 A1
20120213065 Koo et al. Aug 2012 A1
20120218962 Kishiyama et al. Aug 2012 A1
20120220331 Luo et al. Aug 2012 A1
20120230380 Keusgen et al. Sep 2012 A1
20120251031 Suarez et al. Oct 2012 A1
20120270531 Wright et al. Oct 2012 A1
20120270544 Shah Oct 2012 A1
20120281598 Struhsaker et al. Nov 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20120321015 Hansen et al. Dec 2012 A1
20120327870 Grandhi et al. Dec 2012 A1
20130010623 Golitschek Jan 2013 A1
20130012134 Jin et al. Jan 2013 A1
20130017794 Kloper et al. Jan 2013 A1
20130023225 Weber Jan 2013 A1
20130044877 Liu et al. Feb 2013 A1
20130051283 Lee et al. Feb 2013 A1
20130058239 Wang et al. Mar 2013 A1
20130070741 Li et al. Mar 2013 A1
20130079048 Cai et al. Mar 2013 A1
20130094437 Bhattacharya Apr 2013 A1
20130094621 Luo et al. Apr 2013 A1
20130095780 Prazan et al. Apr 2013 A1
20130101073 Zai et al. Apr 2013 A1
20130150012 Chhabra et al. Jun 2013 A1
20130156016 Debnath et al. Jun 2013 A1
20130156120 Josiam et al. Jun 2013 A1
20130170388 Ito et al. Jul 2013 A1
20130172029 Chang et al. Jul 2013 A1
20130188541 Fischer Jul 2013 A1
20130190006 Kazmi et al. Jul 2013 A1
20130208587 Bala et al. Aug 2013 A1
20130208619 Kudo et al. Aug 2013 A1
20130223400 Seo et al. Aug 2013 A1
20130229996 Wang et al. Sep 2013 A1
20130229999 Da Silva et al. Sep 2013 A1
20130235720 Wang et al. Sep 2013 A1
20130242853 Seo et al. Sep 2013 A1
20130242899 Lysejko et al. Sep 2013 A1
20130242965 Horn et al. Sep 2013 A1
20130242976 Katayama et al. Sep 2013 A1
20130252621 Dimou et al. Sep 2013 A1
20130272437 Eidson et al. Oct 2013 A1
20130301551 Ghosh et al. Nov 2013 A1
20130304962 Yin et al. Nov 2013 A1
20130331136 Yang et al. Dec 2013 A1
20130343369 Yamaura Dec 2013 A1
20140010089 Cai et al. Jan 2014 A1
20140010211 Asterjadhi et al. Jan 2014 A1
20140029433 Wentink Jan 2014 A1
20140071873 Wang et al. Mar 2014 A1
20140079016 Dai et al. Mar 2014 A1
20140086077 Safavi Mar 2014 A1
20140086081 Mack et al. Mar 2014 A1
20140098681 Stager et al. Apr 2014 A1
20140119288 Zhu et al. May 2014 A1
20140185501 Park et al. Jul 2014 A1
20140185535 Park et al. Jul 2014 A1
20140192820 Azizi et al. Jul 2014 A1
20140204821 Seok et al. Jul 2014 A1
20140241182 Smadi Aug 2014 A1
20140242914 Monroe Aug 2014 A1
20140269409 Dimou et al. Sep 2014 A1
20140307653 Liu et al. Oct 2014 A1
20150016438 Harel et al. Jan 2015 A1
20150018042 Radulescu et al. Jan 2015 A1
20150085777 Seok Mar 2015 A1
20150139212 Wang et al. May 2015 A1
Foreign Referenced Citations (11)
Number Date Country
1 189 303 Mar 2002 EP
1 867 177 May 2010 EP
2 234 355 Sep 2010 EP
2 498 462 Sep 2012 EP
2009-182441 Aug 2009 JP
2009-278444 Nov 2009 JP
WO 03047033 Jun 2003 WO
WO 03073645 Sep 2003 WO
WO 2010085854 Aug 2010 WO
WO 2011060058 May 2011 WO
WO 2013192112 Dec 2013 WO
Non-Patent Literature Citations (127)
Entry
Office Action issued for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014.
Office Action issued for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014.
Office Action issued for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015.
Office Action issued for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015.
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015.
Notice of Allowance issued for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015.
Notice of Allowance issued for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064346 dated Jan. 29, 2015.
Mitsubishi Electric, “Discussion on Antenna Calibration in TDD”, 3GPP Draft; R1-090043, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. Ljubljana; Jan. 7, 2009, pp. 1-4.
Alcatel-Lucent Shanghai Bell et al., “Antenna Array Calibration for TDD CoMP”, 3GPP Draft; R1-100427, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Valencia, Spain; Jan. 12, 2010, pp. 1-5.
Notice of Allowance issued for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015.
Office Action issued for U.S. Appl. No. 14/173,640 dated Feb. 3, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064185 dated Feb. 5, 2015.
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 4095-4099.
Songtao et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers, Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/065635 dated Feb. 13, 2015.
Notice of Allowance issued for U.S. Appl. No. 14/171,736 mailed Feb. 20, 2015.
Office Action issued for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015.
Office Action issued for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015.
Notice of Allowance issued for U.S. Appl. No. 14/449,431 dated Mar. 23, 2015.
Notice of Allowance issued for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015.
Office Action issued for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015.
Notice of Allowance issued for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015.
Office Action issued for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015.
Office Action issued for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015.
Office Action issued for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015.
Office Action issued for U.S. Appl. No. 14/181,844 dated May 13, 2015.
Office Action issued for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013.
Office Action issued for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013.
Office Action issued for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013.
Office Action issued for U.S. Appl. No. 13/762,191 dated May 2, 2013.
Office Action issued for U.S. Appl. No. 13/762,188 dated May 15, 2013.
Office Action issued for U.S. Appl. No. 13/776,204 dated May 21, 2013.
Office Action issued for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013.
Office Action issued for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013.
Notice of Allowance issued for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013.
Office Action issued for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013.
Notice of Allowance issued for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013.
Notice of Allowance issued for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013.
Notice of Allowance issued for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013.
Notice of Allowance issued for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013.
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677.
Office Action issued for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013.
Office Action issued for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013.
Office Action issued for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013.
Office Action issued for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013.
Office Action issued for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013.
Office Action issued for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013.
Office Action issued for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013.
Office Action issued for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013.
Office Action issued for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013.
Office Action issued for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013.
Office Action issued for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013.
Office Action issued for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014.
Office Action issued for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014.
Office Action issued for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014.
Office Action issued for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014.
Office Action issued for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014.
Office Action issued for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014.
Office Action issued for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014.
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299.
Office Action issued for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014.
Office Action issued for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014.
Office Action issued for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014.
Office Action issued for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014.
Office Action issued for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014.
Office Action issued for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/087,376 dated May 9, 2014.
Office Action issued for U.S. Appl. No. 14/143,580 dated May 9, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/776,068 dated May 13, 2014.
Office Action issued for U.S. Appl. No. 14/013,190 dated May 20, 2014.
Office Action issued for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014.
Office Action issued for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014.
Office Action issued for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014.
Office Action issued for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014.
Office Action issued for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014.
Office Action issued for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014.
Office Action issued for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014.
Office Action issued for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014.
Office Action issued for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014.
Office Action issued for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014.
Office Action issued for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014.
Office Action issued for U.S. Appl. No. 14/173,640 dated Oct. 6, 2014.
Office Action issued for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014.
Office Action issued for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014.
Office Action issued for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014.
Notice of Allowance issued for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014.
Office Action issued for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014.
Notice of Allowance issued for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014.
Office Action for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014.
Office Action issued for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014.
Office Action issued for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014.
Office Action issued for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated May 26, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated May 29, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Jun. 12, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/472,759 dated Jun. 18, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jun. 19, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Jun. 22, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/062116 dated Jun. 22, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Jun. 30, 2015.
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/063304 dated Jul. 8, 2015.
Bandyopadhyay, S. et al., “An Adaptive MAC Protocol for Wireless Ad Hoc Community Network (WACNet) Using Electronically Steerable Passive Array Radiator Antenna”, Globecom '01 : IEEE Global Telecommunications Conference; San Antonio, Texas, USA, Nov. 25-29, 2001, IEEE Operations Center, Piscataway, NJ, vol. 5, Nov. 25, 2001, pp. 2896-2900.
Du, Yongjiu et al., “iBeam: Intelligent Client-Side Multi-User Beamforming in Wireless Networks”, IEEE INFOCOM 2014—IEEE Conference on Computer Communications, IEEE, Apr. 27, 2014, pp. 817-825.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Jul. 9, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/173,640 dated Jul. 16, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Jul. 28, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/672,634 dated Aug. 12, 2015.
Related Publications (1)
Number Date Country
20150124634 A1 May 2015 US
Provisional Applications (1)
Number Date Country
61898802 Nov 2013 US