This invention relates to a method and apparatus for processing event and activity data of a process. In particular, the method and apparatus of the present invention is concerned with processing event and activity data of any type and number of systems.
A process takes place over a period of time. During the process various events and activities occur and various parameters vary in value. There is a need to monitor a process in order to analyze its performance or of any parameters thereof, whether the process is an industrial one for the handling, treatment or flow of material or other process, such as the tracking of the weather or of commodities or other financial instruments and the like.
An event is something that happens at a specific point in time, e.g., an alarm becoming active, an operator message being confirmed, a parameter download, recordation of a lab measurement, and the like. An activity is something that happens over a period of time, e.g., a movement of material, a batch, a phase inside a batch, an alarm being in an active state, and the like. An activity has a time span, interval or period. In contrast, an event occurs at a specific point in time.
In the operational environment of a process, large quantities of historical data can be generated by different data sources. Capturing, storing and making this data available to applications for viewing, analysis and reporting is a challenge. Prior solutions for event and activity data are partial at best. For event and activity data, this problem has mostly been addressed on a system (data source) by system basis, each system supporting a well defined, limited set of event and activity types.
Capturing event and activity data is a challenge because the data that needs to be captured for each event and/or activity depends on the event and activity type. For each event and activity type, a different set of (attribute) values may have to be recorded. Another challenge is the fact that the data can come from any number of data sources. Storing the data is a challenge because each data source tends to come with its own solution for historizing the data, which makes the administration task of archiving, recovering and distributing the data very difficult.
Making the data available is a challenge because of the multitude of event and activity types that need to be handled and the need to be able to handle new event and activity types by simple configuration, without requiring a new release of the product. Traditionally, different visualization tools have been used for limited, well defined sets of events. The challenge is to combine all this data into a single stream that can be displayed in a single view.
Thus, there is a need for a flexible and efficient method and system for processing event and activity data of any type and any number of systems.
The method of the present invention processes data of a process in a manner that can be used for a variety of different processes without a custom design effort for each process. The method identifies one or more events and/or one or more activities of the process. The method also identifies one or more attributes of each event and/or activity. A generic data structure is used to classify the events, activities and attributes. The data structure comprises an event and/or activity type and a plurality of attribute types. The classification procedure provides defined event and/or activity types for the events and activities and defined attribute types for the attributes. One or more storage volumes are allocated to each of the defined event and/or activity types for storage and retrieval of the process data by attribute type.
According to one aspect of the invention, at least one storage volume is allocated to each of the defined attribute types. According to another aspect of the invention, the data structure further comprises a time stamp. The at least one storage volume is accessed according to the time stamp of an event for storage and retrieval of the data of the attributes thereof.
According to another aspect of the invention, the attributes of a plurality of the events and/or activities are common to one of the defined attribute types. One storage volume is allocated to all of the common attributes.
According to another aspect of the invention, the data storage in a storage volume is compressed according to the identity of the values of common attributes of consecutive events and/or activities. According to another aspect of the invention, the data structure further comprises a time stamp. The storage volume is accessed according to the time stamp for storage and retrieval of the values. The values of a first event are retrieved from the storage volume by using the value of a first time stamp for the first event or of a second time stamp value of a second one of the events that is earlier in time than the first time stamp value.
According to another aspect of the invention, for the case where the values of the attributes of a first defined attribute type are static, the data storage is compressed by omitting storage of a static value in the attribute volume.
According to another aspect of the invention, the same generic data structure is used for the definition of event types, activity types and attribute types of each of a plurality of processes, where some processes are different than others.
According to still another aspect of the invention, the data values of events and/or activities that are defined as different event and/or activity types are presented in a single view in any one of a plurality of formats. These formats can be selected from the group consisting of: row format, column format and chart format.
Other and further objects, advantages and features of the present invention will be understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference characters denote like elements of structure and:
Referring to
Database 26 may be a part of the memory of computer 22 or a separate database, as shown in
Client device 32 may be any suitable computer entry device with a capability to communicate with computer 22 via network 30. For example, if network 30 is the Internet, client device 32 has a browser capability for Internet communications. As such, client device 32 may be a personal computer (PC), a workstation, a phone or other suitable device. Similarly, computer 22 would be equipped with Internet capability to serve files and/or otherwise communicate via the Internet.
Referring to
Process data handling program 44, when run, permits a client to operate client device 32 to identify process 28 in terms of events, time variable parameters and activities. An event is something that happens at a specific time, for example, the triggering of an alarm. Time series data is continuous data of a time variable parameter, such as temperature, pressure, flow rate and the like. An activity is a time interval of the process, for example, the operation of a pump during the process.
Process data handling program 44, when run, identifies event data and activity data and classifies it according to a generic data structure for storage and retrieval based on the identified event or activity and/or attributes thereof.
For the purpose of describing the apparatus and method of the invention, an exemplary process that unloads a material, such as oil, from a ship will be initially described. It is understood, of course, that the system and method of the invention can be used with any process that has events, time variable parameters and/or activities.
Referring to
In system 50, the following constraints apply:
Referring to
Activity Pumpout1 stops when Tank 1 is full. Activity Pumpout2 pumps material from ship 52 to Tank 2. Activity Pumpout2 stops when pump P101 fails. Activity Pumpout3 uses pump P102 and continues pumping material to Tank 2 until ship 52 is empty.
These activities can be expressed in a hierarchical order of activity, sub-activity and sub-sub-activity as shown in Table 1.
Referring to
The process data shows a plurality of events 74, 75, 76, 77, 78 and 79 that occur during the pump out process. Event 74 represents a flow change initiated by the operator to increase the flow rate during sub-activity Pumpout1. This flow rate change is monitored by sensor FI1001. Event 76 represents a temperature alarm detected when the ambient air temperature drops below a safe pump operating range during sub-activity Pumpout2. Event 78 represents a failure of pump P101 during sub-activity Pumpout2. Event 75 represents a failure off of pump P101 at the end of activity PumpOut2. Event 79 represents a red tag out of service at the start of the pump 1 repair activity. Event 77 represents a red tag in service at the end of the pump 1 repair activity. As a result of the failure of pump P101, the process switches to the second pump P102.
Process 28 is initially defined according to a generic data structure that has a data framework for activities and events and attributes of each. The data structure is generic in that it is useable for a plurality of different processes, so that a totally new custom design for each process is unnecessary.
Process data handling program 44 identifies activities and attributes of each for process 28. The identification step is performed in response to an interactive session with a user operating client device 32. Alternatively, events and activities may be identified by process data handling program 44 as data from process 28 is gathered.
Referring to
Process data handling program 44 classifies the events and activities of process 28 and their attributes identified by the identification step according to frameworks 82 and 84 of data structure 80. Thus, the unit operation activity type, the alarm event type and the operator change event type are shown in
Referring to
There is one alarm event for temperature sensor T101 and two alarm events for pump P101. For example, the alarm event for temperature sensor T101 has a time stamp of Aug. 17, 2000 at 11:35AM, a message of low temperature and a state of ON.
There is one operator change event for a resource, pump P101 that has a time stamp of Aug. 17, 2000 at 10:20AM, a message of Speed and an operator named Joe. There are also two operator change events for a device, PMP101. Process 28 includes various systems that use diverse external names, e.g., device or resource, for the same field or attribute name. Also, the diverse systems may also use different field contents for the same operational mechanism. In this case, pump P101 and pump PMP101 are the same pump.
Process data handling program 44 includes a global dictionary or map structure that is used to map or transform (1) external field names, such as resource and device, to an internal field name or attribute of resource and (2) external field contents, such as P101 and PMP101, to internal attribute fields of P101.
Referring to
In a preferred embodiment of the invention, storage is optimized by using compression. If a current value is identical to the last stored value of an attribute type, then the current value does not need to be stored. This is called equality compression. The double border boxes in
If a value of an attribute type always has the same value for a specific event and/or activity type, optimization is achieved by defining it as a static attribute and the storing the attribute value as a part of the event and/or activity type definition. For example, boxes 92 in
These optimization rules or policy can be summarized as follows:
Referring to
Referring to
Referring to
Step 106 identifies event types. Step 108 identifies event type attributes. Step 110 classifies event types defined by step 106 and the attributes defined by step 108 according to data structure 80. Step 110 also interprets these events and attributes to build the global dictionary maps required to map diverse (but equivalent) external names and field contents to a common internal field name and field content. Step 112 identifies tags for sensors that monitor time series data. Step 114 accepts the tags defined by step 112. Step 116 stores the definitional data accepted by steps 104, 110 and 114 in data base 26 in a manner that permits access by activity, event, attributes of either and/or tags. For example, database 26 may be physically or logically organized by activity, event and attributes of either. If logically organized, a storage access translator would be used to translate the activity, event, attributes of either and/or tag access data into physical storage volumes.
Referring to
Step 126 creates an activity history record, such as attribute values (e.g., start time). Step 128 collects event happenings, time stamps and the like for events. Step 130 closes an activity history record, such as attribute values (end time). Step 132 processes the event happenings and links them to activities of any tier. Step 134 collects time series data monitored by the various sensors of the process.
Step 136 stores the activity, event and time series data in database 26 for retrieval by activity, attribute thereof and/or tag. Step 138 retrieves the data activity, event, attribute and/or sensor tag for processing or analysis.
The present invention having been thus described with particular reference to the preferred forms thereof, it will be obvious that various changes and modifications may be made therein without departing from the spirit and scope of the present invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4130867 | Bachman et al. | Dec 1978 | A |
5006992 | Skeirik | Apr 1991 | A |
5325522 | Vaughn | Jun 1994 | A |
5561796 | Sakamoto et al. | Oct 1996 | A |
5590325 | Kolton et al. | Dec 1996 | A |
5603024 | Goldring | Feb 1997 | A |
5613113 | Goldring | Mar 1997 | A |
5648900 | Bowen et al. | Jul 1997 | A |
5732401 | Conway | Mar 1998 | A |
5848395 | Edgar et al. | Dec 1998 | A |
5856931 | McCasland | Jan 1999 | A |
5890134 | Fox | Mar 1999 | A |
5909672 | Madore et al. | Jun 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5974457 | Wacawsky et al. | Oct 1999 | A |
6073110 | Rhodes et al. | Jun 2000 | A |
6341283 | Yamakawa et al. | Jan 2002 | B1 |
6480830 | Ford et al. | Nov 2002 | B1 |
6526405 | Mannila et al. | Feb 2003 | B1 |
6590507 | Burns | Jul 2003 | B2 |
6606606 | Starr | Aug 2003 | B2 |
6622116 | Skinner et al. | Sep 2003 | B2 |
6625567 | McMahan | Sep 2003 | B1 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6647370 | Fu et al. | Nov 2003 | B1 |
20020107841 | Hellerstein et al. | Aug 2002 | A1 |
20020133490 | Conkwright et al. | Sep 2002 | A1 |
20020165733 | Pulkkinen et al. | Nov 2002 | A1 |
20030014498 | Kreedler et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
0 472 736 | Mar 1992 | EP |
0 592 921 | Oct 1993 | EP |
0 621 522 | Oct 1994 | EP |
0 740 241 | Oct 1996 | EP |
WO 0173666 | Oct 2001 | WO |
WO 0173666 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030120461 A1 | Jun 2003 | US |