Method and system for centralized distributed transceiver management

Information

  • Patent Grant
  • 11133903
  • Patent Number
    11,133,903
  • Date Filed
    Thursday, April 18, 2019
    5 years ago
  • Date Issued
    Tuesday, September 28, 2021
    3 years ago
Abstract
A master application device comprises a plurality of distributed transceivers, a central baseband processor, and a network management engine that manages operation of the master application device and end-user application devices. The master application device communicates data streams to the end-user devices utilizing one or more distributed transceivers selected from the plurality of distributed transceivers. The selected distributed transceivers are dynamically configured to switch between spatial diversity mode, frequency diversity mode, multiplexing mode and MIMO mode based on corresponding link quality and propagation environment. Digital signal processing needed for the selected distributed transceivers is performed by the central baseband processor. The network management engine continuously monitors communication environment information to configure beamforming settings and/or antenna arrangement for the selected distributed transceivers. Connection types, communication protocols, and/or transceiver operation modes are determined for the selected distributed transceivers. Resources are allocated to the selected distributed transceivers to continue subsequent data communication.
Description
FIELD OF THE INVENTION

Certain embodiments of the invention relate to signal processing for communication systems. More specifically, certain embodiments of the invention relate to a method and system for centralized distributed transceiver management.


BACKGROUND OF THE INVENTION

Millimeter Wave (mmWave) devices are being utilized for high throughput wireless communications at very high carrier frequencies. There are several standards bodies such as 60 GHz wireless standard, WirelessHD, WiGig, and WiFi IEEE 802.11ad that utilize high frequencies such as the 60 GHz frequency spectrum for high throughput wireless communications. In the US, the 60 GHz spectrum band may be used for unlicensed short range data links such as, for example, data links within a range of 1.7 km, with data throughputs up to 6 Gbits/s. These higher frequencies may provide smaller wavelengths and enable the use of small high gain antennas. However, these higher frequencies may experience high propagation loss.


Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.


BRIEF SUMMARY OF THE INVENTION

A method and/or system for centralized distributed transceiver management, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.


These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an exemplary communication system that support centralized distributed transceiver management, in accordance with an embodiment of the invention.



FIG. 2 is a diagram that illustrates an exemplary usage scenario where distributed transceivers are centrally managed to create a high-performance link between a transmitting device and one receiving device, in accordance with an embodiment of the invention.



FIG. 3 is a diagram that illustrates an exemplary transceiver module, in accordance with an embodiment of the invention.



FIG. 4 is a diagram illustrating an exemplary master device with a collection of distributed transceivers that are implemented in a star topology, in accordance with an embodiment of the invention.



FIG. 5 is a diagram illustrating an exemplary master device with a collection of distributed transceivers that are implemented in a ring topology, in accordance with an embodiment of the invention.



FIG. 6 is a diagram illustrating an exemplary transceiver module with a single antenna that has fixed directionality, in accordance with an embodiment of the invention.



FIG. 7 is a diagram illustrating an exemplary transceiver module with a configurable phased antenna array, in accordance with an embodiment of the invention.



FIG. 8 is a diagram illustrating exemplary steps utilized by a master device with a collection of distributed transceivers to configure and coordinate operation of the distributed transceivers for data transmission, in accordance with an embodiment of the invention.



FIG. 9 is a diagram illustrating exemplary steps utilized by a master device with a collection of distributed transceivers to enable communication sessions in-between corresponding data centric application devices, in accordance with an embodiment of the invention.



FIG. 10 is a diagram illustrating exemplary steps utilized by a device master with a collection of distributed transceivers for communication session transfer, in accordance with an embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Certain embodiments of the invention may be found in a method and system for centralized distributed transceiver management. In accordance with various exemplary embodiments of the invention, a single network management engine is utilized to manage operation of a master application device and a plurality of end-user application devices that are served or managed by the master application device in a communication network. The master application device comprises a plurality of distributed transceivers, a central baseband processor, and the network management engine. An end-user application device served by the master application device does not comprise the network management engine and has no access to manage the network management engine. The master application device may communicate data streams utilizing one or more distributed transceivers selected from the plurality of the distributed transceivers to one or more end-user devices. The network management engine may dynamically configure the selected one or more distributed transceivers to switch between different operation modes, for example, spatial diversity mode, frequency diversity mode, multiplexing mode and MIMO mode, based on corresponding link quality and propagation environment. The central baseband processor may perform digital signal processing needed for transmit and receive operations for each of the selected one or more distributed transceivers. The network management engine may continuously monitor communication environment information such as propagation environment conditions, link quality, device capabilities, usage of resources, available resources, device locations, target throughput, and/or application Quality of Service (QoS) requirements. Beamforming settings and/or antenna arrangement may be configured for the selected one or more distributed transceivers based on the communication environment information. The network management engine may determine connection types, communication protocols, and/or transceiver operation modes for the selected one or more distributed transceivers and may allocate resources such as frequencies, time slots, processor, and/or storage to the selected one or more distributed transceivers to continue subsequent data communication. The allocated resources may be shared among the distributed transceivers by session transferring, for example.



FIG. 1 is a block diagram illustrating an exemplary communication system that support centralized distributed transceiver management, in accordance with an embodiment of the invention. Referring to FIG. 1, there is shown a communication network 100 comprising a plurality of application devices, of which application devices 111-119 are displayed.


The application devices 111-119 may comprise suitable logic, circuitry, code, and/or interfaces that may be operable to communicate voice and data with one to another over wired and/or wireless connections. In an exemplary embodiment of the invention, each of the application devices 111-119 in the communication network 100 may comprise one or more distributed transceivers (DTs) for communication in the communication network 100. For example, distributed transceivers 111a through 119a may be integrated in the application devices 111 through 119, respectively, and utilized for receiving and transmitting signals. Each distributed transceiver may be equipped with an independently configurable antenna or antenna array that is operable to transmit and receive signals over the air. For example, the distributed transceivers 111a each may be equipped with an independently configurable antenna array 111b, and the distributed transceiver 118a, however, may be equipped with a single independently configurable antenna 118b to transmit and receive signals over the air. Depending on device capabilities and user preferences, distributed transceivers such as the distributed transceivers 111a within the application device 111, for example, may comprise radios such as a millimeter Wave (mmWave), a WLAN, WiMax, Bluetooth, Bluetooth Low Energy (BLE), cellular radios, WiMAX radio, or other types of radios. In this regard, radios such as mmWave radios may be utilized at very high carrier frequencies for high throughput wireless communications.


In an exemplary operation, the distributed transceivers 111a through 119a in the communication network 100 are physically positioned and oriented at different locations within corresponding application devices such like laptop, TV, gateway and/or set-top box. The distributed transceivers 111a through 119a may be centrally managed by a single network management engine (NME) 120 of the communication network 100. In an exemplary embodiment of the invention, the network management engine 120 may reside within a specific application device in the communication network 100. The network management engine 120 may be centralized as a full software implementation on a separate network microprocessor, for example. In an exemplary embodiment of the invention, an application device in the communication network 100 may act or function as a master application device or an end-user application device. An application device that comprises the network management engine 120 and/or may have access to manage or control the network management engine 120 to dynamically configure and manage operation of the entire distributed transceivers in the communication network 100 is referred to a master application device. An application device that does not comprise the network management engine 120 and/or may have no access to manage or control the network management engine 120 is referred to as an end-user application device.


In some instances, the application device 111 acts as a master application device in the communication network 100. In an exemplary embodiment of the invention, the network management engine 120 in the master application device 111 may be utilized to configure, control, and manage the entire distributed transceivers 111a through 119a in the communication network 100 to optimize network performance. The application devices 111-119 each may operate in a transmission mode or in a receiving mode. In instances where the master application device 111 is transmitting multimedia information such as images, video, voice, as well as any other form of data to one or more receiving devices such as the end-user application devices 112-116, the network management engine 120 in the master application device 111 may be enabled to monitor and collect corresponding communication environment information from the end-user application devices 112-116. The collected communication environment information may comprise propagation environment conditions, link quality, device capabilities, antenna polarization, radiation pattern, antenna spacing, array geometry, device locations, target throughput, and/or application QoS requirements reported. The network management engine 120 may be operable to dynamically configure the distributed transceivers 111a-116a and associated antenna or antenna array 111b-116b, and to coordinate and manage the operation of the distributed transceivers 111a-116a and associated antenna or antenna array 111b-116b based on the collected communication environment information supplied from the end-user application devices 112-116. In this regard, the network management engine 120 may configure a single application device such as the application device 117 to maintain continuous connection with multiple different application devices such as the application devices 111-113. The application device capabilities may comprise battery life, number of transceivers, number of antennas per transceiver, device interface types, processing protocols, service types, service classes and/or service requirements. The interface types for the application devices 111-119 may comprise access interface types such as Multimedia over Coax Alliance (MoCa), WiFi, Bluetooth, Ethernet, Femtocell, and/or cordless. The processing protocols may comprise service layer protocols, IP layer protocols and link layer protocols, as specified, for example, in the Open Systems Interconnect (OSI) model. The service layer protocols may comprise secure protocols such as Secure Socket Layer (SSL) and control protocols such as Spanning Tree Protocol (STP). The IP layer protocols may comprise IP signaling protocols such as SIP and H.323, and IP media transport protocols such as TCP, UDP, RTP, RTC and RTCP. The link layer protocols may comprise technology-specific PHY and MAC layer protocols such as, for example, Multimedia over Coax Alliance (MoCa), WiFi, Ethernet, Femtocell, and/or cordless.


Although communication among the application devices 111-119 with one or more distributed transceivers is illustrated in FIG. 1, the invention may not be so limited. Accordingly, an application device may be operable to utilize one or more associated distributed transceivers to communicate with one or more application devices with normal transceivers without departing from the spirit and scope of various embodiments of the invention.



FIG. 2 is a diagram that illustrates an exemplary usage scenario where utilizes distributed transceivers to create a high-performance link between a transmitting device and one receiving device, in accordance with an embodiment of the invention. Referring to FIG. 2, there is shown a master application device 210 and an end-user application device 220.


The master application device 210 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to communicate multimedia information such as images, video, voice, as well as any other forms of data with one or more application devices such as the end-user application device 220. The master application device 210 may comprise a collection of distributed transceivers 212a through 212e, and a central processor 217 that comprises a central baseband processor 214, a network management engine 216 and a memory 218. In an exemplary embodiment of the invention, each of the collection of distributed transceivers 212a through 212e may be physically positioned and oriented at different locations within an application device such as a laptop, TV, gateway, and set-top box. In this regard, the collection of distributed transceivers 212a through 212e may be implemented in various ways such as, for example, a single distributed transceiver integrated in a single chip package; multiple silicon dies on one single chip; and multiple distributed transceivers on a single silicon die. Depending on device capabilities and user preferences, the distributed transceivers 212a-212e may be oriented in a fixed direction or multiple different directions. In another exemplary embodiment of the invention, the collection of distributed transceivers 212a-212e may be operable to receive and/or transmit radio frequency signals from and/or to the end-user application device 220 using air interface protocols specified in UMTS, GSM, LTE, WLAN, 60 GHz/mmWave, and/or WiMAX, for example.


The central baseband processor 214 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to perform baseband digital signal processing needed for transmission and receiving operation of the entire collection of distributed transceivers 212a through 212e. For example, the central baseband processor 214 may be operable to perform waveform generation, equalization, and/or packet processing associated with the operation of the collection of distributed transceivers 212a through 212e. In addition, the central baseband processor 224 may be operable to configure, manage and control orientations of the distributed transceivers 212a-212e.


The network management engine 216 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to monitor and collect communication environment information such as propagation environment conditions, link quality, application device capabilities, transmitter/receiver locations, target throughput, and/or application QoS requirements. The network management engine 216 may utilize the collected communication environment information to configure system, network and communication environment conditions as needed. For example, the network management engine 216 may be operable to perform high level system configurations such as the number of transceivers that are activated, the number of application devices that are being communicated with, adding/dropping application devices to the communication network 100. As shown in FIG. 2, the network management engine 216 is residing in the master application device 210. However, in some embodiments the network management engine 216 may reside on different network devices such as separate network microprocessors and servers on the communication network 100. The network management engine 216 may comprise a full software implementation, for example. In addition, the functionality of the network management engine 216 may be distributed over several devices in the communication network 100. In some embodiments the network management engine 216 may be operable to manage communication sessions over the communication network 100. In this regard, the network management engine 216 may be operable to coordinate operation of baseband processors in the communication network 100 such that various baseband processing may be split or shared among the baseband processors. For example, the network management engine 216 may enable multiple central baseband processors for parallel baseband processing in order to increase throughput if needed.


In some embodiments of the invention, a single device, the master application device 210 or the end-user application device 220, for example, may be configured to deploy a number of baseband processors to implement the system and data processing requirements/demands. For example, several baseband processors may be deployed within the single device to generate and/or decode different data streams transmitted/received by several distributed transceivers. In this configuration, the network management engine 216 may also be operable to control and/or coordinate the operation of the multiple baseband processors within the single device. In this regard, several internal connection topologies may be used or implemented. In some embodiments of the invention, each baseband processor in the single device may be dedicated to a subset of distributed transceivers and either ring/star topologies may be used. In this case, there may be no data transfer between the subsets of distributed transceivers. In another embodiment of the invention, the entire baseband processors and distributed transceivers within the single device may be connected together through a ring topology (using a single cable). In this regard, the baseband processors within the single device may be coordinated to share the cable by utilizing time-multiplexing at the same IF frequency or frequency-multiplexing at different IF frequencies. The baseband processors within the single device may have different power/processing/communication characteristics. In some embodiments of the invention, one or more baseband processors that are most suitable for a mode of operation (e.g., lower power consumption meeting the throughput requirement) may be activated and other baseband processors may be disabled for power saving.


The memory 218 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to store information such as executable instructions and data that may be utilized by the central baseband processor 214 and/or other associated component units such as, for example, the network management engine 216. The memory 218 may comprise RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.


In an exemplary operation, a wireless link may be established between the master application device 210 and the end-user application device 220 through a reflector 230. In an exemplary embodiment of the invention, the master application device 210 may be operable to continuously scan the propagation environment to identify the directions and antenna patterns that result in strong reflected signals at the end-user application device 220. Then, the master application device 210 may associate each strong reflector with one of the collection of distributed transceivers 212a through 212e so as to transmit an independent different data stream to the end-user application device 220 over each distributed transceiver and through each strong reflector. For example, the master application device 210 transmits two data streams to the end-user application device 220 using two different distributed transceivers 212a and 212d that may use the same frequency channel. In particular, the distributed transceivers 212a may choose a beam pattern 250 and orientation for a direct Line of Sight (LOS) to a transceiver 222, for example, of the end-user application device 220 (the receiving device) and transmit a first data stream over a carrier frequency RF1. On the other hand, the distributed transceivers 212d may choose a beam pattern 252 and orientation that is pointing towards the reflector 230 and transmit a second data stream also over the same carrier frequency RF1. The reflector 230 then may reflect the beam 252 towards a different transceiver 224 of the end-user application device 220. The selection of the beam patterns 250 and 252 may come from the central baseband processor 214 and the network management engine 216. In an exemplary embodiment of the invention, the central baseband processor 214 may profile channel energy for directions of arrival and other schemes. The network management engine 216 may know communication environment information such as the number of users, number of streams needed, and/or available frequency channels. For example, the central baseband processor 214 and the network management engine 216 may select narrow beams for close devices and may select wide beams for further devices, respectively.


In one embodiment of the invention, the master application device 210 may be operable to utilize the reflector 230 for the second data stream, for example, to lower the chances of an object blocking both the first and second data streams, simultaneously. In other words, if a big enough object blocks the LOS between the master application device 210 and the end-user application device 220, the second data stream may likely be intact and sustained by complete direct reflecting through a reflected path 252a. Although FIG. 2 shows one reflector 230, in one embodiment of the invention, several reflectors may be used to transmit one data stream or multiple data streams. The use of multiple reflectors may provide reflection diversification in case one reflector or a sub-set of reflectors are blocked. In other words, instead of directing all transmit power towards one reflector only, the total transmit power may be distributed to propagate over a set of “good” reflectors in the environment. This distribution of power over different reflectors may be done in a controlled, configurable, adaptive, and intelligent manner. For example, reflectors may be chosen and targeted that provide better orthogonality between the different paths. In FIG. 2, the master application device 210 may use a second reflector at a different location and another distributed transceiver 212c, for example, to communicate with the end-user application device 220 and send a third data stream. Also the reflected path 252a may be caused by more than one reflector where, for example, the distributed transceiver 212e transmits towards the reflector 230 and the reflection transmits towards a second reflector and the reflection of the second reflector reaches the end-user application device 220. In another embodiment of the invention, the first and second data streams in FIG. 2 may comprise the same data content and the use of LOS path and one or more reflector paths may provide link robustness for data content in case an obstacle blocks some of the paths.


In an exemplary embodiment of the invention, the master application device 210 may continuously monitor and collect propagation environment conditions, link quality, device capabilities, locations, target throughput, and/or application QoS requirements reported from the end-user application device 220. In this regard, a feedback or negotiation channel 240 may be utilized to exchange and negotiate system configurations such as number of transceivers within devices, number of antennas per transceivers, the measured channel responses, the sequence of antenna array coefficients being evaluated, and/or device location. The feedback or negotiation channel 240 may be implemented through a WLAN, Bluetooth, and/or 60 GHz link, for example.


In some embodiments of the invention, the distributed transceivers 212a-212e are mounted and installed on a surface. The surface may just be a flat plane or a parabolic surface. The transceivers' locations and orientations on the surface may either be deterministic (through a controlled process of installation) or determined in a calibration and/or optimizing phase. This set of distributed transceivers may then be configured jointly or concurrently in terms of their antenna patterns and/or beamforming weights so as to emulate and create a different effective antenna pattern (superposition of all individual antenna patterns). For example, the distributed transceivers 212a-212e may be configured jointly or concurrently to create a highly focused and directional antenna pattern. The direction and shape of the equivalent patterns may be adjusted by adjusting the individual antenna patterns accordingly.



FIG. 3 is a diagram that illustrates an exemplary transceiver module, in accordance with an embodiment of the invention. Referring to FIG. 3, there is shown a transceiver 300 comprising an antenna array 310, an antenna array with/without antenna combiner 320, down-converters 330, up-converters 340, and a multiplexer 350.


In an exemplary operation, the antenna array 310 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to transmit and receive radio frequency (RF) signals over the air. For transmission the transceiver 300 may be operable to receive a transmit signal from the central baseband processor 214. The transmit signal received from the central baseband processor 214 may be up-converted to RF frequency via the up-converters 340. For reception, the transceiver 300 may pass a receive signal from the antenna array 310 after down-conversion to the central baseband processor 214. The multiplexer 350 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to multiplex the transmit signal received from the central baseband processor 214 and the receive signal supplied from the antenna array 310. In this regard, the multiplexer 350 may utilize either time-division-multiplexing or frequency-domain-multiplexing to communicate the transmit signal and the receive signal over the same medium such as a cable.


The antenna array with/without antenna combiner 320 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to scale and/or phase-shift signals before the down-converters 330 and/or signals after the up-converters 340. For example, in transmission operation the signal provided by the up-converters 340 may be phase-shifted by the shifter by different values. The resulting phase-shifted signals may be fed to different antenna elements within the antenna array 310. In another embodiment of the invention, the antenna array 310 may be oriented in a fixed direction or multiple different directions depending on antenna types and user preferences. For example, the antenna array 310 may be implemented as a fixed directional antenna array to provide maximal directionality (with no explicit combiner). The same two modules, that is, the antenna array 310 and the antenna array with/without antenna combiner 320, may be correspondingly utilized in a reception operation for the transceiver 300. In an exemplary embodiment of the invention, the operation of the antenna array with/without antenna combiner 320 may be managed or programmed by the network management engine 216.


The down-converters 330 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to translate a radio frequency (RF) received from the antenna array 310 to an intermediate-frequency (IF) signal during reception. The up-converters 340 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to translate an intermediate-frequency (IF) signal of a corresponding baseband signal supplied from the central baseband processor 214, for example to a RF signal during transmission.



FIG. 4 is a diagram illustrating an exemplary master device with a collection of distributed transceivers that are implemented in a star topology, in accordance with an embodiment of the invention. Referring to FIG. 4, there is shown a central processor 400 that is connected to a collection of transceivers 410a through 410N. As shown, the collection of transceivers 410a through 410N are connected to the central processor 400 in a star topology with direct separate cables, for example, from the central processor 400 to each of the collection of transceivers 410a through 410N.


The central processor 400 comprises a baseband processor 420, a network management engine 430, down-converters 440, up-converters 446, a multiplxer 450 and a memory 460. The baseband processor 420 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to provide MODEM functionality. In this regard, the central processor 400 may be operable to perform various baseband digital processing such as MIMO, OFDM, channel coding, HARQ, channel estimation and equalization, Timing/Carrier recovery and synchronization. The network management engine 430 may operate in substantially the same manner as the network management engine 218 in FIG. 2. During transmission, a baseband signal supplied from the baseband processor 420 may be translated into an intermediate-frequency (IF) signal. The up-converters 446 may further translate the IF signal to a final radio-frequency (RF) and send it over the air through an antenna array such as the antenna array 411a. For reception, the transceiver 410a, for example, may pass a received RF signal from the antenna array 411a to the down-converters 440. The down-converters 440 may translate the RF signal into an IF signal. The IF signal may further be translated to a baseband signal to the baseband processor 420, for example. The multiplxer 450 may be responsible for multiplexing receive/transmit signals utilizing either time-division-multiplexing or frequency-domain-multiplexing. The memory 460 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to store information such as executable instructions and data that may be utilized by the baseband processor 420 and/or other associated component units such as, for example, the network management engine 430. The memory 360 may comprise RAM, ROM, low latency nonvolatile memory such as flash memory and/or other suitable electronic data storage.


In an exemplary embodiment of the invention, a different control channel between the baseband processor 420 and each of the distributed transceivers 410a through 410N may be utilized for configuring and managing corresponding transceivers. As shown, control channels 412a through 412N are utilized for configuring and managing the transceivers 410a through 410N, respectively.


In an exemplary embodiment of the invention, the distributed transceivers 410a through 410N may operate in various modes such as spatial diversity mode, frequency diversity mode, multiplexing mode and multiple-input-multiple-output (MIMO) mode. In spatial diversity mode, the central baseband processing 420 may be operable to utilize the distributed transceivers 410a through 410N to establish a spatial diversity link with intended end user device such as the end-user application device 220. For example, only a portion of the distributed transceivers 410a through 410N that may have strong propagation channel responses are activated and other transceivers are switched off for power saving. In another example, the distributed transceivers 410a through 410N may be arranged such that the master application device 210 (the transmitter) with available LOS towards the end-user device 220 (the receiver) may be configured to directly beam towards the receiver. In an exemplary embodiment of the invention, each active distributed transceiver may communicate data streams utilizing the same final carrier frequency. In frequency diversity mode, the central baseband processing 420 may manage the distributed transceivers 410a through 410N similar to spatial diversity mode except that each active distributed transceiver may utilize a different final carrier frequency if such frequency spectrum channel is available. In multiplexing mode, the central baseband processing 420 may manage the distributed transceivers 410a through 410N in such a way that different streams of data may be transmitted through different sets of the distributed transceivers 410a through 410N. For example, in multiplexing mode, different distributed transceivers of the distributed transceivers 410a through 410N may be dynamically programmed such that each transceiver's maximum pattern gain may be pointing to a different direction or reflector. As the environment changes (and hence location of reflectors and end user unit change), the antenna pattern of the distributed transceivers 410a through 410N may be re-adjusted. In MIMO mode, the central baseband processing 420 may manage the distributed transceivers 410a through 410N in such a way that different streams of data may be transmitted through different sets of the distributed transceivers 410a through 410N to a single receiver device such as the end-user application device 220. In an exemplary embodiment of the invention, the distributed transceivers 410a through 410N may be configured to switch between spatial diversity mode, frequency diversity mode, multiplexing mode and multiple-input-multiple-output (MIMO) mode based on corresponding propagation environment conditions, link quality, device capabilities, device locations, usage of resources, resource availability, target throughput, application QoS requirements.


In some embodiments of the invention, the interface between the baseband processor 420 and the distributed transceivers 410a through 410N may be different from an analog IF connection. In an exemplary embodiment of the invention, the distributed transceivers 410a through 410N may comprise analog-to-digital-converters (ADCs) and digital-to-analog-converters (DACs). In this case, a transceiver such as the distributed transceiver 410a may receive digital bits from the baseband processors 420 through a digital link and use its internal DAC to generate an analog waveform and then to perform the frequency up-conversion and beamforming steps for transmission. Similarly, a transceiver such as the distributed transceiver 410a may receive an RF waveform, down-convert it, and then use its internal ADC to digitize the waveform and send the digital bits over a digital connection/cable to the baseband processor 420. In other embodiments of the invention, the distributed transceivers 410a through 410N may comprise multiple digital processing blocks or units. In this case, a portion of processing within the baseband processor 420 may be moved (in terms of partitioning) to inside the transceivers boundary. In the above embodiments of the invention, one or more digital connections or interfaces between the baseband processor 420 and the distributed transceivers 410a through 410N may be implemented or deployed. The digital connections/interfaces may comprise Ethernet and various memory bus protocols.



FIG. 5 is a diagram illustrating an exemplary master device with a collection of distributed transceivers that are implemented in a ring topology, in accordance with an embodiment of the invention. As shown, the collection of transceivers 410a through 410N may be connected to the central processor 400 in a ring topology with a single direct cable from the central processor 400 to each of the collection of transceivers 410a through 410N. In this regard, a single control channel between the baseband processor 420 and each of the distributed transceivers 410a through 410N may be utilized for configuring the entire distributed transceivers 410a through 410N as needed. In some embodiments of the invention, the same date stream may be transported to all distributed transceivers 410a through 410N which requires only one IF channel for this communication. In other embodiments, different data streams are required to be transported to each transceiver 410a through 410N. In this usage case, each data stream may be modulated over a different IF frequency. In this regard, these IF channels may be adjacent or spaced by a gap. Each transceiver may then be configured or tuned to its corresponding/assigned IF frequency channel.


In some embodiments of the invention, the cable connection between the central processor 400 and the distributed transceivers 410a through 410N may be substituted with an optical connection, printed-board connection, Ethernet cable, or another wireless connection.



FIG. 6 is a diagram illustrating an exemplary transceiver module with a single antenna that has fixed directionality, in accordance with an embodiment of the invention. Referring to FIG. 6, there is shown a transceiver 600. The transceiver 600 comprises an antenna 610, a switcher 620, down-converters 630, up-converters 640, and a multiplexer 650. The down-converters 630, the up-converters 640, and the multiplexer 650 may operate in substantially the same manner as the down-converters 330, the up-converters 340, and the multiplexer 350, respectively.


In an exemplary operation, the antenna 610 may have fixed directionality. In this regard, the antenna 610 with fixed directionality may be utilized to generate a fixed beam pattern, which results in the minimized amount of power amplifier (Pas) and low noise amplifiers (LNAs) in the transceiver 600. The switcher 620 may comprise suitable logic, circuitry, interfaces and/or code that may be operable to switch on or off the transceiver 600. For example, the switcher 620 may be configured or programmed to switch on the transceiver 600 only orientated in the vicinity of the fixed directionality of the antenna 610 for power saving.



FIG. 7 is a diagram illustrating an exemplary transceiver module with a configurable phased antenna array, in accordance with an embodiment of the invention. As shown a transceiver 700 that comprises an antenna array 710, a switcher 620, down-converters 630, up-converters 640, and a multiplexer 650.


In an exemplary operation, the antenna array 710 may be a configurable phased antenna array. In this regard, the configurable phased antenna array 710 may have various orientations. Accordingly, the configurable phased antenna array 710 may be utilized to generate a steerable beam pattern to maximize coverage. In an exemplary embodiment of the invention, the switcher 620 may be configured to switch on only the transceivers that have strong propagation channel responses and are activated. Other transceivers may be switched off for power saving. For example, in some instances, the system identifies that transceiver 711a of the configurable phased antenna array 710 has the best LOS link to the receiver end (due to blocking objects in the room or nature of reflectors in the room). In this case, only the transceiver 711a may be switched on by the switcher 620 to transmit data to the receiver end and all other transceivers 711a through 711N of the configurable phased antenna array 710 are switched off for power saving.



FIG. 8 is a diagram illustrating exemplary steps utilized by a master device with a collection of distributed transceivers to configure and coordinate operation of the distributed transceivers for data transmission, in accordance with an embodiment of the invention. Referring to FIG. 8, in step 802, the master application device 210 with one or more distributed transceivers 212a through 212e is transmitting data to one or more receiving devices such as the end-user application device 220. The exemplary steps start with step 804, where the network management engine 216 of the master application device 210 may monitor and collect communication environment information such as propagation environment conditions, link quality, receive device capabilities, receiver locations, target throughput, and/or application QoS requirements from the receiving devices through corresponding feedback channels such as the feedback channel 240. In step 806, the network management engine 216 of the master application device 210 may select one or more of the distributed transceivers 212a-212e for subsequent data transmission based on the collected propagation environment conditions, link quality, receive device capabilities, receiver locations, target throughput, application QoS requirements. The exemplary steps continue in step 808 and 809, respectively. In step 808, the network management engine 216 within the master application device 210 may determine connection types, communication protocols, and/or transceiver operation modes for the selected distributed transceivers based on the collected propagation environment conditions, link quality, receive device capabilities, receiver locations, target throughput, application QoS requirements. In step 810, the network management engine 216 of the master application device 210 may communicate with the selected distributed transceivers utilizing corresponding control channels such as the control channel 412a, for example. The network management engine 216 of the master application device 210 may configure the selected distributed transceivers so as to support the determined connection types, communication protocols, and transceiver operation modes. The exemplary steps continue in step 812.


In step 809, the network management engine 216 of the master application device 210 may identify directions and antenna patterns that results in strong receive signals and/or a maximal coverage at the receiving devices such as the end-user application device 220 based on the collected propagation environment conditions and link quality. In step 811, the network management engine 216 of the master application device 210 may be operable to configure beamforming settings and/or antenna arrangement for the selected distributed transceivers based on the identified directions and antenna patterns, and/or receiver locations. In step 812, the network management engine 216 of the master application device 210 may allocate resources such as frequencies, time slots, processor, and/or storage to the selected distributed transceivers to continue the subsequent data communication to the receiving devices. In step 814, the network management engine 216 of the master application device 210 may coordinate and manage the operation of the selected distributed transceivers during the data communication to the receiving devices. In step 815, it may be determined whether the selected distributed transceivers need to be switched to other operation mode from the current determined transceiver operation mode. In instances where the selected distributed transceivers need to be switched to other operation mode from the current determined transceiver operation mode, then the exemplary step go back to step 806. Otherwise, the exemplary steps end in step 816.



FIG. 9 is a diagram illustrating exemplary steps utilized by a master device with a collection of distributed transceivers to enable communication sessions in-between corresponding data centric application devices, in accordance with an embodiment of the invention. Referring to FIG. 9, in step 902, the master application device 210 comprises one or more distributed transceivers 212a through 212e that are integrated within corresponding application devices. The exemplary steps start with step 904, where the network management engine 216 of the master application device 210 may track or monitor device capabilities, usage of resources, available resources, and/or application device locations. In step 906, it may be determined if device-to-device communication between the application devices are desirable. In instances where the device-to-device communication between the end-user application devices such as the end-user application devices 111 and 112 is required, then in step 908, the network management engine 216 of the master application device 210 may select communication types and communication protocols for the end-user application devices 111 and 112 based on the corresponding application device capabilities, usage of resources, available resources, and/or application device locations.


In an exemplary embodiment of the invention, the selected communication types may comprise peer-to-peer communication, master-slave communication and/or server-client communication. In step 910, the network management engine 216 of the master application device 210 may instruct the end-user application devices 111 and 112 to establish a communication session in-between based on the selected communication types and communication protocols. In step 912, the network management engine 216 of the master application device 210 may create a session profile for the communication session between the end-user application devices 111 and 112. The session profile comprises the selected communication types and communication protocols, link quality, target throughput, and/or application QoS requirements. In step 914, the network management engine 216 of the master application device 210 may configure the end-user application devices 111 and 112 based on the session profile. In step 916, the network management engine 216 of the master application device 210 may allocate resources to the end-user application devices 111 and 112 based on the session profile to activate the communication session between the intended application devices. In step 918, the network management engine 216 of the master application device 210 may continuously monitor data communication over the activated communication session between the end-user application devices 111 and 112. In step 906, in instances where the device-to-device communication between the application devices is required, the exemplary steps may return to the step 904.



FIG. 10 is a diagram illustrating exemplary steps utilized by a device master with a collection of distributed transceivers for communication session transfer, in accordance with an embodiment of the invention. Referring to FIG. 10, in step 1002, the master application device 210 comprises one or more distributed transceivers 212a through 212e that are integrated within corresponding application devices. The exemplary steps start with step 1004, where the network management engine 216 of the master application device 210 may be operable to monitor data transfer over WiFi, for example, via a specific distributed transceiver such as the distributed transceiver 410a out of the collection of the distributed transceivers. The distributed transceiver 410a may be integrated in the application device 118, for example. In step 1006, it may be determined if additional resources are required to continue the data transferring over WiFi. In instances where additional resources such as frequency, time slots, processors and/or memory are required to continue the data transferring over WiFi, then in step 1008, where the network management engine 216 of the master application device 210 may select one or more different distributed transceivers such as the distributed transceivers 410b and 410c for the data transferring over WiFi based on corresponding application device capabilities, usage of resources, available resources, application device locations, link quality, target throughput, and/or application QoS requirements. In step 1010, the master application device 210 may transfer the existing communication session for the data transferring to the selected different distributed transceivers 410b and 410c. In step 1012, the master application device 210 may instruct the selected different distributed transceivers 410b and 410c to continue the data transferring over WiFi utilizing the existing communication session. In an exemplary embodiment of the invention, the network management engine 216 of the master application device 210 may coordinate and manage the distributed transceivers 410a and the distributed transceivers 410b and 410c such that the data transferring over the distributed transceivers 410a is suspended or stopped before or after the distributed transceivers 410b and 410c starting the data transferring over WiFi.


Aspects of a method and system for centralized distributed transceiver management are provided. In accordance with various exemplary embodiments of the invention, as described with respect to FIG. 1 through FIG. 10, a device such as the master application device 210 comprises a plurality of distributed transceivers 212a-212e, the central baseband processor 214 and the network management engine 216. The plurality of distributed transceivers 212a-212e may be connected to the central baseband processor 214 and the network management engine 216 in the central processor 217 in a star topology or a ring topology as shown in FIGS. 4 and 5, respectively. The master application device 210 may be operable to communicate data streams that may comprise various multimedia information such as images, video, voice, as well as any other form of data utilizing one or more distributed transceivers selected from the plurality of the distributed transceivers 212a-212e to one or more other devices such as the end-user application device 220. The network management engine 216 may dynamically configure the selected one or more distributed transceivers, for example, the distributed transceivers 212a-212c, to switch between different operation modes based on corresponding link quality and propagation environment during the data communication.


In an exemplary embodiment of the invention, the central processor 217 may dynamically configure and coordinate the selected one or more distributed transceivers 212a-212c to switch back-and-forth between spatial diversity mode, frequency diversity mode, multiplexing mode and MIMO mode. The entire collection of the distributed transceivers 212a-212e may be connected to the central processor 217 in a star topology or a ring topology. The central baseband processor 214 may be operable to perform digital signal processing needed for transmit and receive operations for the selected one or more distributed transceivers 212a-212c. During the data communication, the network management engine 216 may be operable to monitor or scan communication environment information such as propagation environment conditions, link quality, device capabilities, usage of resources, available resources, device locations, target throughput, and/or application QoS requirements. In an exemplary embodiment of the invention, the network management engine 216 may identify directions and antenna patterns that results in strong receive signals and/or a maximal coverage at the receiving devices such as the end-user application device 220 based on the corresponding propagation environment conditions and link quality.


The network management engine 216 may be operable to configure beamforming settings and/or antenna arrangement for the selected one or more distributed transceivers 212a-212c based on the identified directions and antenna patterns, and/or receiver locations. In an exemplary embodiment of the invention, the network management engine 216 may determine or select connection types, communication protocols, and/or transceiver operation modes for the selected one or more distributed transceivers 212a-212c based on the corresponding propagation environment conditions, link quality, receive device capabilities, device locations, target throughput, application QoS requirements. The network management engine 216 may allocate resources such as frequencies, time slots, processor, and/or storage to the selected one or more distributed transceivers 212a-212c. The master application device 210 may continue subsequent data communication to the receiving devices such as the end-user application device 220 utilizing the allocated resources and the determined communication connection types and protocols. In an exemplary embodiment of the invention, the network management engine 216 may be operable to coordinate and manage the operation of the distributed transceivers and associated antenna or antenna array of the selected one or more distributed transceivers 212a-212c so as to share the allocated resources. For example, the network management engine 216 may monitor and manage data transferring over WiFi utilizing the distributed transceiver 410a, for example.


The distributed transceiver 410a may be integrated in the application device 118, for example. In some instances, additional resources such as frequency, time slots, processors and/or storage are required to continue the data transferring over WiFi with desired QoS requirements. In this regard, the network management engine 216 may select or identify one or more different distributed transceivers such as the distributed transceivers 410b and 410c that may be operable to support the data transferring over WiFi with the desired QoS requirements. The master application device 210 may transfer the existing communication session associated with the distributed transceiver 410a for the data transferring to the selected different distributed transceivers 410b and 410c. The resources associated with the selected different distributed transceivers 410b and 410c may be shared to continue the data transferring over WiFi utilizing the existing communication session transferred from the distributed transceiver 410a.


Other embodiments of the invention may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for centralized distributed transceiver management.


Accordingly, the present invention may be realized in hardware, software, or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.


The present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.


While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A method of processing signals, the method comprising: in a first device that comprises a plurality of distributed transceivers, a central baseband processor and a network management engine: determining a plurality of channel responses based on propagation of beams between said plurality of distributed transceivers and a second device;activating a portion of said plurality of distributed transceivers based on said plurality of channel responses;communicating data streams from one or more of said plurality of distributed transceivers to said second device based on said activated portion of said plurality of distributed transceivers such that each distributed transceivers of said activated portion of said plurality of distributed transceivers communicates a different data stream on same carrier frequency;allocating resources to said one or more of said plurality of distributed transceivers; andconfiguring said one or more of said plurality of distributed transceivers to switch between different modes of operation,wherein the switching between different modes of operation is based on said allocation of said resources to said one or more of said plurality of distributed transceivers, a communication link quality of a communication link between said plurality of distributed transceivers and said second device and propagation environment during said communication.
  • 2. The method according to claim 1, wherein said different modes of operation comprise at least one of spatial diversity mode, frequency diversity mode, and multiplexing mode, or multiple-input-multiple-output mode.
  • 3. The method according to claim 1, wherein said plurality of distributed transceivers are connected to said central baseband processor and said network management engine in a star topology.
  • 4. The method according to claim 1, comprising performing digital signal processing by said central baseband processor for transmit and receive operations for each of said one or more of said plurality of distributed transceivers during said communication.
  • 5. The method according to claim 1, comprising monitoring by said network management engine, said communication link quality and propagation environment during said communication.
  • 6. The method according to claim 5, comprising configuring beamforming settings and antenna arrangement for said one or more of said plurality of distributed transceivers based on said monitoring.
  • 7. The method according to claim 1, comprising determining connection types and communication protocols, and allocating resources to said one or more of said plurality of distributed transceivers for said switching.
  • 8. The method according to claim 7, comprising communicating said data streams utilizing said allocated resources, said connection types and said communication protocols to said second device.
  • 9. The method according to claim 8, comprising sharing resources among said one or more of said plurality of distributed transceivers.
  • 10. The method according to claim 9, comprising transferring an existing communication session with one of said one or more of said plurality of distributed transceivers to a different one or more of said one or more of said plurality of distributed transceivers for said resource sharing, wherein said existing communication session corresponds to continuation of said communication of said data streams from said one or more of said plurality of distributed transceivers to said second device.
  • 11. A system for processing signals, the system comprising: a first device that comprises a plurality of distributed transceivers, a central baseband processor and a network management engine, said first device being operable to: determine a plurality of channel responses based on propagation of beams between said plurality of distributed transceivers and a second device;activate a portion of said plurality of distributed transceivers based on said plurality of channel responses;communicate data streams from one or more of said plurality of distributed transceivers to said second device based on said activated portion of said plurality of distributed transceivers such that each distributed transceivers of said activated portion of said plurality of distributed transceivers communicates a different data stream on same carrier frequency;allocating resources to said one or more of said plurality of distributed transceivers; andconfigure said one or more of said plurality of distributed transceivers to switch between different modes of operation,wherein the switching between different modes of operation is based on said allocation of said resources to said one or more of said plurality of distributed transceivers, a communication link quality of a communication link between said plurality of distributed transceivers and said second device and propagation environment during said communication.
  • 12. The system according to claim 11, wherein said different modes of operation comprise at least one of spatial diversity mode, frequency diversity mode, and multiplexing mode, or multiple-input-multiple-output mode.
  • 13. The system according to claim 11, wherein said plurality of distributed transceivers are connected to said central baseband processor and said network management engine in a star topology.
  • 14. The system according to claim 11, wherein said central baseband processor of said first device performs digital signal processing for transmit and receive operations for each of said one or more of said plurality of distributed transceivers during said communication.
  • 15. The system according to claim 11, wherein said network management engine of said first device monitors said communication link quality and said propagation environment during said communication.
  • 16. The system according to claim 14, wherein said network management engine of said first device configures beamforming settings and antenna arrangement for said one or more of said plurality of distributed transceivers based on said monitoring of said communication link quality and said propagation environment.
  • 17. The system according to claim 16, wherein said network management engine of said first device determines connection types and communication protocols, and allocates resources to said one or more of said plurality of distributed transceivers for said switching.
  • 18. The system according to claim 17, wherein said network management engine of said first device communicates said data streams utilizing said allocated resources, said connection types and said communication protocols to said second device.
  • 19. The system according to claim 18, wherein said network management engine of said first device shares resources among said one or more of said plurality of distributed transceivers.
  • 20. The system according to claim 19, wherein said network management engine of said first device transfers an existing communication session with one of said one or more of said plurality of distributed transceivers to a different one or more of said one or more of said plurality of distributed transceivers for said resource sharing, wherein said existing communication session corresponds to continuation of said communication of said data streams from said one or more of said plurality of distributed transceivers to said second device.
CROSS-REFERENCE TO RELATED APPLICATIONS/INCORPORATION BY REFERENCE

This Patent Application makes reference to, claims priority to and claims benefit from U.S. Provisional Patent Application Ser. No. 61/548,201 filed on Oct. 17, 2011, and is a Continuation Application of U.S. patent application Ser. No. 15/441,209, filed on Feb. 23, 2017, which is a Continuation Application of U.S. patent application Ser. No. 14/813,058, filed on Jul. 29, 2015, which is a Continuation Application of U.S. patent application Ser. No. 13/473,096, filed on May 16, 2012. Each of the above stated applications is hereby incorporated herein by reference in its entirety.

US Referenced Citations (376)
Number Name Date Kind
3618097 McLeod, Jr. Nov 1971 A
3835469 Chen et al. Sep 1974 A
4799062 Sanderford, Jr. et al. Jan 1989 A
5473602 McKenna Dec 1995 A
5479651 Nakaguchi Dec 1995 A
5525990 Lewis Jun 1996 A
5561850 Makitalo et al. Oct 1996 A
5598173 Forti et al. Jan 1997 A
5666124 Chethik et al. Sep 1997 A
5771017 Dean et al. Jun 1998 A
5883602 Volman Mar 1999 A
5905473 Taenzer May 1999 A
5936577 Shoki et al. Aug 1999 A
5940033 Locher et al. Aug 1999 A
6018316 Rudish et al. Jan 2000 A
6307502 Marti-Canales et al. Oct 2001 B1
6405018 Reudink Jun 2002 B1
6433920 Welch et al. Aug 2002 B1
6456252 Goyette Sep 2002 B1
6487417 Rossoni et al. Nov 2002 B1
6577631 Keenan Jun 2003 B1
6600776 Alamouti et al. Jul 2003 B1
6718159 Sato Apr 2004 B1
6802035 Catreux Oct 2004 B2
6804491 Uesugi Oct 2004 B1
6992622 Chiang et al. Jan 2006 B1
7020482 Medvedev et al. Mar 2006 B2
7058367 Luo et al. Jun 2006 B1
7187949 Chang et al. Mar 2007 B2
7206294 Garahi et al. Apr 2007 B2
7248217 Mani et al. Jul 2007 B2
7248841 Agee Jul 2007 B2
7260141 Bierly et al. Aug 2007 B2
7333455 Bolt et al. Feb 2008 B1
7339979 Kelkar Mar 2008 B1
7363058 Gustaf Apr 2008 B2
7424225 Elliott Sep 2008 B1
7480486 Oh et al. Jan 2009 B1
7574236 Mansour Aug 2009 B1
7636573 Walton et al. Dec 2009 B2
7688909 Tsutsui Mar 2010 B2
7689216 Wandel Mar 2010 B2
7710319 Nassiri-Toussi et al. May 2010 B2
7890114 Braun Feb 2011 B2
7904117 Doan et al. Mar 2011 B2
7911985 Proctor, Jr. et al. Mar 2011 B2
7920889 Hoshino et al. Apr 2011 B2
7986742 Ketchum et al. Jul 2011 B2
8014366 Wax et al. Sep 2011 B2
8045638 Grant et al. Oct 2011 B2
8098752 Hwang Jan 2012 B2
8121235 Sun et al. Feb 2012 B1
8126408 Ahrony Feb 2012 B2
8140122 Park Mar 2012 B2
8160601 Veselinovic Apr 2012 B2
8175184 Kim et al. May 2012 B2
8190102 Rofougaran May 2012 B2
8203978 Walton Jun 2012 B2
8228188 Key et al. Jul 2012 B2
8279132 Jung Oct 2012 B2
8280445 Yong et al. Oct 2012 B2
8314736 Moshfeghi Nov 2012 B2
8320304 Deb Nov 2012 B2
8364188 Srinivasan Jan 2013 B2
8369791 Hafeez Feb 2013 B2
8385305 Negus et al. Feb 2013 B1
8385452 Gorokhov Feb 2013 B2
8396157 Li Mar 2013 B2
8457798 Hackett Jun 2013 B2
8462047 Ai et al. Jun 2013 B1
8482462 Komijani et al. Jul 2013 B2
8570988 Wallace et al. Oct 2013 B2
8588193 Ho et al. Nov 2013 B1
8620301 Hessel Dec 2013 B1
8644262 Sun et al. Feb 2014 B1
8654815 Forenza Feb 2014 B1
8744513 Chen et al. Jun 2014 B2
8750264 Shatti Jun 2014 B2
8780943 Moshfeghi Jul 2014 B2
8787469 Kim et al. Jul 2014 B2
8817678 Moshfeghi Aug 2014 B2
8854255 Ehret Oct 2014 B1
8885628 Palanki et al. Nov 2014 B2
9037094 Moshfeghi May 2015 B2
9065515 Pezennec et al. Jun 2015 B2
9112648 Moshfeghi Aug 2015 B2
9185601 Frerking Nov 2015 B2
9197982 Moshfeghi Nov 2015 B2
9225482 Moshfeghi Dec 2015 B2
9226092 Moshfeghi Dec 2015 B2
9252908 Branlund Feb 2016 B1
9253587 Moshfeghi Feb 2016 B2
9277510 Helmersson et al. Mar 2016 B2
9438389 Moshfeghi et al. Sep 2016 B2
9456354 Branlund Sep 2016 B2
9548805 Moshfeghi et al. Jan 2017 B2
9602257 Moshfeghi et al. Mar 2017 B2
9660777 Moshfeghi et al. May 2017 B2
9680554 Moshfeghi et al. Jun 2017 B2
9686060 Moshfeghi Jun 2017 B2
9698948 Moshfeghi Jul 2017 B2
9736637 Larsen et al. Aug 2017 B2
9780928 Moshfeghi et al. Oct 2017 B2
9787103 Leabman et al. Oct 2017 B1
9829563 Xiao et al. Nov 2017 B2
9923620 Moshfeghi et al. Mar 2018 B2
10020861 Moshfeghi et al. Jul 2018 B2
10069555 Islam et al. Sep 2018 B2
10069608 Moshfeghi et al. Sep 2018 B2
10084576 Moshfeghi et al. Sep 2018 B2
10090887 Rofougaran et al. Oct 2018 B1
10103853 Moshfeghi Oct 2018 B2
10199717 Rofougaran et al. Feb 2019 B2
10277370 Moshfeghi Apr 2019 B2
10320090 Zou et al. Jun 2019 B2
10348371 Rofougaran et al. Jul 2019 B2
10355720 Shattil Jul 2019 B2
10560179 Gharavi et al. Feb 2020 B2
10587313 Yoon et al. Mar 2020 B2
10666326 Rofougaran et al. May 2020 B2
20020034958 Oberschmidt et al. Mar 2002 A1
20020132600 Rudrapatna Sep 2002 A1
20020193074 Squibbs Dec 2002 A1
20020196186 Holt Dec 2002 A1
20030012208 Bemheim et al. Jan 2003 A1
20030090418 Howell May 2003 A1
20030125040 Walton et al. Jul 2003 A1
20030129989 Gholmieh et al. Jul 2003 A1
20030236109 Nagata Dec 2003 A1
20040077354 Leung et al. Apr 2004 A1
20040077379 Smith et al. Apr 2004 A1
20040082356 Walton et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040110469 Judd et al. Jun 2004 A1
20040116129 Wilson Jun 2004 A1
20040127174 Frank et al. Jul 2004 A1
20040166808 Hasegawa et al. Aug 2004 A1
20040204114 Brennan et al. Oct 2004 A1
20050048964 Cohen et al. Mar 2005 A1
20050069252 Hwang et al. Mar 2005 A1
20050088358 Larry et al. Apr 2005 A1
20050134517 Gottl Jun 2005 A1
20050136943 Banerjee et al. Jun 2005 A1
20050181755 Hoshino et al. Aug 2005 A1
20050232216 Webster et al. Oct 2005 A1
20050237971 Skraparlis Oct 2005 A1
20050243756 Cleveland et al. Nov 2005 A1
20050270227 Stephens Dec 2005 A1
20060025178 Tao et al. Feb 2006 A1
20060063494 Zhang et al. Mar 2006 A1
20060121946 Walton et al. Jun 2006 A1
20060205342 McKay et al. Sep 2006 A1
20060246922 Gasbarro et al. Nov 2006 A1
20060267839 Vaskelainen et al. Nov 2006 A1
20070001924 Hirabayashi Jan 2007 A1
20070040025 Goel et al. Feb 2007 A1
20070052519 Talty et al. Mar 2007 A1
20070066254 Tsuchie et al. Mar 2007 A1
20070093270 Lagnado Apr 2007 A1
20070100548 Small May 2007 A1
20070115800 Fonseka et al. May 2007 A1
20070116012 Chang et al. May 2007 A1
20070127360 Song et al. Jun 2007 A1
20070160014 Larsson Jul 2007 A1
20070280310 Muenter et al. Dec 2007 A1
20080025208 Chan Jan 2008 A1
20080026763 Rensburg et al. Jan 2008 A1
20080076370 Kotecha et al. Mar 2008 A1
20080117961 Han et al. May 2008 A1
20080166975 Kim et al. Jul 2008 A1
20080167049 Karr Jul 2008 A1
20080212582 Zwart et al. Sep 2008 A1
20080225758 Proctor et al. Sep 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080261509 Sen Oct 2008 A1
20080303701 Zhang et al. Dec 2008 A1
20080305820 Sadiq et al. Dec 2008 A1
20080309555 Fan et al. Dec 2008 A1
20080315944 Brown Dec 2008 A1
20090009392 Jacomb-Hood et al. Jan 2009 A1
20090010215 Kim et al. Jan 2009 A1
20090028120 Lee Jan 2009 A1
20090029645 Leroudier Jan 2009 A1
20090092120 Goto et al. Apr 2009 A1
20090093265 Kimura et al. Apr 2009 A1
20090136227 Lambert May 2009 A1
20090156227 Frerking Jun 2009 A1
20090161235 Border et al. Jun 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090191910 Athalye et al. Jul 2009 A1
20090195455 Kim et al. Aug 2009 A1
20090224137 Hoermann Sep 2009 A1
20090233545 Sutskover et al. Sep 2009 A1
20090296846 Maru Dec 2009 A1
20090325479 Chakrabarti et al. Dec 2009 A1
20100042881 Wong Feb 2010 A1
20100046655 Lee et al. Feb 2010 A1
20100080197 Kanellakis et al. Apr 2010 A1
20100090898 Gallagher et al. Apr 2010 A1
20100105403 Lennartson et al. Apr 2010 A1
20100117890 Vook et al. May 2010 A1
20100124895 Martin et al. May 2010 A1
20100136922 Rofougaran Jun 2010 A1
20100149039 Komijani et al. Jun 2010 A1
20100167639 Ranson et al. Jul 2010 A1
20100172309 Forenza et al. Jul 2010 A1
20100208776 Song et al. Aug 2010 A1
20100220012 Reede Sep 2010 A1
20100265925 Liu et al. Oct 2010 A1
20100266061 Cheng et al. Oct 2010 A1
20100267415 Kakitsu et al. Oct 2010 A1
20100273504 Bull et al. Oct 2010 A1
20100284446 Mu et al. Nov 2010 A1
20100291918 Suzuki et al. Nov 2010 A1
20100304680 Kuffner et al. Dec 2010 A1
20100304770 Wieffeldt et al. Dec 2010 A1
20100328157 Culkin et al. Dec 2010 A1
20110002410 Forenza Jan 2011 A1
20110003610 Key et al. Jan 2011 A1
20110045764 Maruyama et al. Feb 2011 A1
20110063181 Walker Mar 2011 A1
20110069773 Doron et al. Mar 2011 A1
20110081875 Imamura et al. Apr 2011 A1
20110105032 Maruhashi et al. May 2011 A1
20110105167 Pan et al. May 2011 A1
20110136478 Trigui Jun 2011 A1
20110140954 Fortuny-Guasch Jun 2011 A1
20110142104 Coldrey et al. Jun 2011 A1
20110149835 Shimada et al. Jun 2011 A1
20110164510 Zheng et al. Jul 2011 A1
20110190005 Cheon et al. Aug 2011 A1
20110194504 Gorokhov et al. Aug 2011 A1
20110212684 Nam et al. Sep 2011 A1
20110222616 Jiang et al. Sep 2011 A1
20110268037 Fujimoto Nov 2011 A1
20110299441 Petrovic et al. Dec 2011 A1
20120002742 Cheng Jan 2012 A1
20120015603 Proctor et al. Jan 2012 A1
20120034924 Kalhan Feb 2012 A1
20120057508 Moshfeghi Mar 2012 A1
20120082070 Hart et al. Apr 2012 A1
20120082072 Shen Apr 2012 A1
20120083207 Rofougaran et al. Apr 2012 A1
20120083223 Li et al. Apr 2012 A1
20120083225 Rofougaran et al. Apr 2012 A1
20120083233 Rofougaran et al. Apr 2012 A1
20120083306 Rofougaran et al. Apr 2012 A1
20120093209 Schmidt et al. Apr 2012 A1
20120120884 Yu et al. May 2012 A1
20120129543 Patel et al. May 2012 A1
20120131650 Gutt et al. May 2012 A1
20120149300 Forster Jun 2012 A1
20120184203 Tulino et al. Jul 2012 A1
20120184219 Richardson et al. Jul 2012 A1
20120194385 Schmidt et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120224651 Murakami et al. Sep 2012 A1
20120230274 Xiao et al. Sep 2012 A1
20120238202 Kim et al. Sep 2012 A1
20120250659 Sambhwani Oct 2012 A1
20120257516 Pazhyannur et al. Oct 2012 A1
20120259547 Morlock et al. Oct 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20130027240 Chowdhury Jan 2013 A1
20130027250 Chen Jan 2013 A1
20130039342 Kazmi Feb 2013 A1
20130040558 Kazmi Feb 2013 A1
20130044028 Lea et al. Feb 2013 A1
20130057447 Pivit et al. Mar 2013 A1
20130072112 Gunnarsson et al. Mar 2013 A1
20130072113 Lee et al. Mar 2013 A1
20130089123 Rahul et al. Apr 2013 A1
20130094439 Moshfeghi Apr 2013 A1
20130094440 Moshfeghi Apr 2013 A1
20130094522 Moshfeghi Apr 2013 A1
20130094544 Moshfeghi Apr 2013 A1
20130095747 Moshfeghi Apr 2013 A1
20130095770 Moshfeghi Apr 2013 A1
20130095874 Moshfeghi et al. Apr 2013 A1
20130114468 Hui et al. May 2013 A1
20130155891 Dinan Jun 2013 A1
20130272220 Li et al. Oct 2013 A1
20130272437 Eidson et al. Oct 2013 A1
20130286962 Heath, Jr. et al. Oct 2013 A1
20130287139 Zhu et al. Oct 2013 A1
20130322561 Abreu et al. Dec 2013 A1
20130324055 Kludt et al. Dec 2013 A1
20130343235 Khan Dec 2013 A1
20140003338 Rahul et al. Jan 2014 A1
20140010319 Baik et al. Jan 2014 A1
20140016573 Nuggehalli et al. Jan 2014 A1
20140035731 Chan et al. Feb 2014 A1
20140044041 Moshfeghi Feb 2014 A1
20140044042 Moshfeghi Feb 2014 A1
20140044043 Moshfeghi et al. Feb 2014 A1
20140045478 Moshfeghi Feb 2014 A1
20140045541 Moshfeghi et al. Feb 2014 A1
20140072078 Sergeyev et al. Mar 2014 A1
20140077875 Wang et al. Mar 2014 A1
20140079165 Kludt et al. Mar 2014 A1
20140086191 Berntsen et al. Mar 2014 A1
20140104124 Chernokalov et al. Apr 2014 A1
20140125539 Katipally et al. May 2014 A1
20140133435 Forenza et al. May 2014 A1
20140161018 Chang et al. Jun 2014 A1
20140198696 Li et al. Jul 2014 A1
20140241296 Shattil Aug 2014 A1
20140266866 Swirhun et al. Sep 2014 A1
20150003307 Moshfeghi et al. Jan 2015 A1
20150011160 Jurgovan et al. Jan 2015 A1
20150031407 Moshfeghi Jan 2015 A1
20150042744 Ralston et al. Feb 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150123496 Leabman et al. May 2015 A1
20150229133 Reynolds et al. Aug 2015 A1
20150241020 Lee et al. Aug 2015 A1
20150296344 Trojer et al. Oct 2015 A1
20150303950 Shattil Oct 2015 A1
20150318897 Hyde et al. Nov 2015 A1
20150318905 Moshfeghi et al. Nov 2015 A1
20150341098 Angeletti et al. Nov 2015 A1
20160014613 Ponnampalam et al. Jan 2016 A1
20160043838 Moshfeghi et al. Feb 2016 A1
20160054440 Younis Feb 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160094318 Shattil Mar 2016 A1
20160142114 Moshfeghi et al. May 2016 A1
20160192400 Sohn et al. Jun 2016 A1
20160197665 Moshfeghi et al. Jul 2016 A1
20160203347 Bartholomew et al. Jul 2016 A1
20160211905 Moshfeghi et al. Jul 2016 A1
20160219567 Gil et al. Jul 2016 A1
20160285481 Cohen Sep 2016 A1
20170026218 Shattil Jan 2017 A1
20170062944 Zimmerman et al. Mar 2017 A1
20170078897 Duan et al. Mar 2017 A1
20170126374 Moshfeghi et al. May 2017 A1
20170156069 Moshfeghi et al. Jun 2017 A1
20170201437 Balakrishnan et al. Jul 2017 A1
20170212208 Baek et al. Jul 2017 A1
20170230099 Moshfeghi et al. Aug 2017 A1
20170237290 Bakker et al. Aug 2017 A1
20170257155 Liang et al. Sep 2017 A1
20170264014 Le-Ngoc Sep 2017 A1
20170279573 Moshfeghi et al. Sep 2017 A1
20170288727 Rappaport Oct 2017 A1
20170317734 Moshfeghi Nov 2017 A1
20170317801 Moshfeghi et al. Nov 2017 A1
20170324480 Elmirghani et al. Nov 2017 A1
20170332249 Guey et al. Nov 2017 A1
20170338921 Moshfeghi Nov 2017 A1
20170339625 Stapleton Nov 2017 A1
20170353338 Amadjikpe et al. Dec 2017 A1
20180026586 Carbone et al. Jan 2018 A1
20180027471 Zhang et al. Jan 2018 A1
20180041270 Buer et al. Feb 2018 A1
20180048390 Palmer et al. Feb 2018 A1
20180063139 Day et al. Mar 2018 A1
20180090992 Shrivastava et al. Mar 2018 A1
20180091270 Moshfeghi Mar 2018 A1
20180109303 Yoo et al. Apr 2018 A1
20180115305 Islam et al. Apr 2018 A1
20180176799 Lange et al. Jun 2018 A1
20180183152 Turpin et al. Jun 2018 A1
20180220416 Islam et al. Aug 2018 A1
20180234158 Moshfeghi Aug 2018 A1
20190089434 Rainish et al. Mar 2019 A1
20190123866 Moshfeghi Apr 2019 A1
20190230626 Rune et al. Jul 2019 A1
20190319754 Moshfeghi Oct 2019 A1
20190319755 Moshfeghi Oct 2019 A1
20190319756 Moshfeghi Oct 2019 A1
20200076491 Zhang et al. Mar 2020 A1
20200145079 Marinier et al. May 2020 A1
20200204249 Pyun Jun 2020 A1
20200412519 Krishnaswamy et al. Dec 2020 A1
Foreign Referenced Citations (8)
Number Date Country
1890441 Feb 2008 EP
1890441 Mar 2013 EP
2008027531 Mar 2008 WO
2008027531 Dec 2008 WO
2012055468 May 2012 WO
2013058998 Apr 2013 WO
2013058999 Apr 2013 WO
2016115545 Jul 2016 WO
Non-Patent Literature Citations (246)
Entry
Notice of Allowance in U.S. Appl. No. 15/904,521 dated Mar. 20, 2019.
Notice of Allowance issued in U.S. Appl. No. 16/129,423 dated Jul. 15, 2019.
Patent Board Decision—Examiner Affirmed for U.S. Appl. No. 13/473,144 dated Jun. 4, 2018.
Patent Board Decision—Examiner Affirmed in Part for U.S. Appl. No. 13/473,160 dated Feb. 21, 2017.
Patent Board Decision—Examiner Reversed for U.S. Appl. No. 13/919,932 dated Dec. 19, 2017.
Response to Rule 312 Communication for U.S. Appl. No. 15/834,894 dated Apr. 19, 2019; Miscellaneous Communication to Applicant for U.S. Appl. No. 15/834,894 dated Apr. 19, 2019.
Restriction Requirement for U.S. Appl. No. 15/893,626 dated Aug. 12, 2016.
Shimin Gong et al., “Backscatter Relay Communications Powered by Wireless Energy Beamforming,” IEEE Trans. on Communication, 2018.
USPTO Miscellaneous communication for U.S. Appl. No. 15/834,894 dated Apr. 19, 2019.
Zeng et al., “Joint relay selection and beamforming for mmWave fronthauling network,” 2017 IEEE/CIC International Conference on Communications in China, Oct. 22, 2017, 6 pages.
Non-Final Office Action for U.S. Appl. No. 14/709,136 dated Sep. 28, 2016.
Non-Final Office Action for U.S. Appl. No. 14/813,058 dated Jun. 10, 2016.
Non-Final Office Action for U.S. Appl. No. 14/940,130 dated Apr. 6, 2016.
Non-Final Office Action for U.S. Appl. No. 14/980,281 dated Apr. 20, 2016.
Non-Final Office Action for U.S. Appl. No. 14/980,338 dated Mar. 14, 2017.
Non-Final Office Action for U.S. Appl. No. 15/229,135 dated Dec. 21, 2017.
Non-Final Office Action for U.S. Appl. No. 15/372,417 dated May 3, 2018.
Non-Final Office Action for U.S. Appl. No. 15/441,209 dated Jul. 3, 2018.
Non-Final Office Action for U.S. Appl. No. 15/595,940 dated Nov. 17, 2017.
Non-Final Office Action for U.S. Appl. No. 15/616,911 dated Jan. 3, 2019.
Non-Final Office Action for U.S. Appl. No. 15/706,759 dated Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 15/893,626 dated Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 16/101,044 dated Dec. 26, 2018.
Non-Final Office Action for U.S. Appl. No. 16/125,757 dated Aug. 9, 2019.
Non-Final Office Action for U.S. Appl. No. 16/129,413 dated Feb. 4, 2019.
Non-Final Office Action for U.S. Appl. No. 16/129,423 dated Feb. 4, 2019.
Non-Final Office Action in U.S. Appl. No. 15/432,091 dated Nov. 22, 2017.
Non-Final Office Action in U.S. Appl. No. 16/111,326 dated Mar. 1, 2019.
Notice of Allowance for U.S. Appl. No. 13/473,083 dated Jan. 7, 2015.
Notice of Allowance for U.S. Appl. No. 13/473,096 dated Apr. 17, 2015.
Notice of Allowance for U.S. Appl. No. 13/473,105 dated Jun. 10, 2014.
Notice of Allowance for U.S. Appl. No. 13/473,113 dated Aug. 10, 2015.
Notice of Allowance for U.S. Appl. No. 13/473,160 dated May 25, 2017.
Notice of Allowance for U.S. Appl. No. 13/473,180 dated May 1, 2014.
Notice of Allowance for U.S. Appl. No. 13/919,922 dated Oct. 27, 2015.
Notice of Allowance for U.S. Appl. No. 13/919,932 dated Feb. 28, 2018.
Notice of Allowance for U.S. Appl. No. 13/919,958 dated Sep. 2, 2015.
Notice of Allowance for U.S. Appl. No. 13/919,967 dated Jul. 29, 2019.
Notice of Allowance for U.S. Appl. No. 13/919,972 dated Dec. 20, 2016.
Notice of Allowance for U.S. Appl. No. 14/325,218 dated Dec. 19, 2016.
Notice of Allowance for U.S. Appl. No. 14/455,859 dated Apr. 20, 2016.
Notice of Allowance for U.S. Appl. No. 14/709,136 dated Feb. 16, 2017.
Notice of Allowance for U.S. Appl. No. 14/813,058 dated Nov. 7, 2016.
Notice of Allowance for U.S. Appl. No. 14/940,130 dated Feb. 1, 2017.
Notice of Allowance for U.S. Appl. No. 14/980,281 dated Feb. 7, 2017.
Notice of Allowance for U.S. Appl. No. 14/980,338 dated Feb. 22, 2018.
Notice of Allowance for U.S. Appl. No. 15/229,135 dated May 22, 2018.
Notice of Allowance for U.S. Appl. No. 15/372,417 dated Dec. 7, 2018.
Notice of Allowance for U.S. Appl. No. 15/441,209 dated Dec. 28, 2018.
Notice of Allowance for U.S. Appl. No. 15/472,148 dated Dec. 10, 2018.
Notice of Allowance for U.S. Appl. No. 15/595,919 dated Jun. 5, 2019.
Notice of Allowance for U.S. Appl. No. 15/595,940 dated May 1, 2018.
Notice of Allowance for U.S. Appl. No. 15/616,911 dated Jul. 24, 2019.
Notice of Allowance for U.S. Appl. No. 16/129,423 dated Jul. 15, 2019.
Notice of Allowance for U.S. Appl. No. 16/382,386 dated Jul. 24, 2019.
Notice of Allowance for U.S. Appl. No. 16/031,007 dated May 2, 2019.
Notice of Allowance in U.S. Appl. No. 15/432,091 dated Apr. 11, 2018.
Notice of Allowance in U.S. Appl. No. 15/607,743 dated Jan. 22, 2019.
Notice of Allowance in U.S. Appl. No. 15/834,894 dated Feb. 20, 2019.
Notice of Allowance in U.S. Appl. No. 15/835,971 dated May 29, 2018.
Non-Final Office Action for U.S. Appl. No. 16/016,619 dated Sep. 25, 2018.
Baggett, Benjamin M.W. Optimization of Aperiodically Spaced Phased Arrays for Wideband Applications. MS Thesis. Virginia Polytechnic Institute and State University, 2011 pp. 1-137.
Corrected Notice of Allowability for U.S. Appl. No. 15/904,521 dated May 6, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Jul. 8, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/607,743 dated May 10, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated Jun. 21, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated May 10, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 13/473,180 dated Jun. 11, 2014.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Aug. 5, 2019.
Corrected Notice of Allowance in U.S. Appl. No. 15/607,743 dated Apr. 3, 2019.
Corrected Notice of Allowance in U.S. Appl. No. 15/835,971 dated Jul. 23, 2018.
Dennis R Morgan et al., “A same-frequency cellular repeater using adaptive feedback cancellation,” Global Communications Conference (GLOBECOM), 2012 IEEE, IEEE, (2012) XP032375270, pp. 3825-3830, 2012.
Ex Parte Quayle Action for U.S. Appl. No. 16/032,668 dated Jul. 10, 2019.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 13/473,144 dated Jul. 26, 2017.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 13/473,160 dated Dec. 24, 2015.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 13/919,932 dated Jan. 10, 2017.
Final Office Action for U.S. Appl. No. 13/473,144 dated Jul. 28, 2016.
Final Office Action for U.S. Appl. No. 13/473/144 dated Aug. 14, 2014.
Final Office Action for U.S. Appl. No. 13/919,932 dated Oct. 23, 2015.
Final Office Action for U.S. Appl. No. 13/919,972 dated Jan. 21, 2016.
Final Office Action for U.S. Appl. No. 14/940,130 dated Oct. 14, 2016.
Final Office Action for U.S. Appl. No. 16/129,413 dated Aug. 13, 2019.
Final Office Action for U.S. Application Serial No. dated Oct. 22, 2014.
International Preliminary Report on Patentability for International Patent PCT/US2012/058839, 5 pages, dated Apr. 22, 2014.
International Preliminary Report on Patentability for International Patent PCT/US2012/058839, dated Apr. 22, 2014.
International Preliminary Report on Patentability for International Patent PCT/US2012/058842, 5 pages, dated Apr. 22, 2014.
International Search Report and the Written Opinion of the International Searching Authority in International application No. PCT/US12/58839, 6 pages, dated Apr. 4, 2013.
International Search Report and the Written Opinion of the International Searching Authority in International application No. PCT/US12/58842, 6 pages, dated Jan. 4, 2013.
International Search Report in PCT/US2018/064184 dated Jul. 1, 2019.
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee, with Partial Search Report for PCT Appl No. PCT/US2018/064184 dated Apr. 10, 2019.
K. Han and K. Huang, “Wirelessly Powered Backscatter Communication networks: Modeling, Coverage and Capacity,” Apr. 9, 2016, Arxiv.com.
List of References cited by Applicant and considered by Applicant for U.S. Appl. No. 14/325,218 dated Apr. 21, 2017.
Non-Final Office Action for U.S. Appl. No. 13/473,083 dated Mar. 3, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,096 dated Apr. 23, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,096 dated Dec. 9, 2013.
Non-Final Office Action for U.S. Appl. No. 13/473,096 dated Nov. 3, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,105 dated Nov. 25, 2013.
Non-Final Office Action for U.S. Appl. No. 13/473,113 dated Oct. 2, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,144 dated Feb. 6, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,144 dated Feb. 9, 2015.
Non-Final Office Action for U.S. Appl. No. 13/473,144 dated Oct. 7, 2015.
Non-Final Office Action for U.S. Appl. No. 13/473,160 dated Jan. 15, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,180 dated Sep. 12, 2013.
Non-Final Office Action for U.S. Appl. No. 13/919,922 dated Jan. 30, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,932 dated Feb. 6, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,958 dated Jan. 5, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,967 dated Feb. 9, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,972 dated Jun. 4, 2015.
Non-Final Office Action for U.S. Appl. No. 14/455,859 dated Nov. 13, 2015.
Corrected Notice of Allowance for U.S. Appl. No. 16/382,386 dated Dec. 30, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/616,911 dated Jan. 24, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/616,911 dated Dec. 12, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated Jan. 8, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,617 dated Jan. 9, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,668 dated Dec. 30, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/129,423 dated Jan. 23, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/382,386 dated Feb. 6, 2020.
Final Office Action for U.S. Appl. No. 16/125,757 dated Dec. 2, 2019.
Final Office Action for U.S. Appl. No. 16/526,544 dated Feb. 12, 2020.
Non-Final Office Action for U.S. Appl. No. 16/129,413 dated Feb. 12, 2020.
Non-Final Office Action for U.S. Appl. No. 16/666,680 dated Feb. 19, 2020.
Notice of Allowance for U.S. Appl. No. 16/129,423 dated Nov. 27, 2019.
Notice of Allowance for U.S. Appl. No. 16/294,025 dated Jan. 13, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/032,668 dated Feb. 14, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Sep. 16, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/616,911 dated Oct. 31, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Oct. 22, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,617 dated Oct. 28, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/129,423 dated Nov. 7, 2019.
International Search Report and Written Opinion for commonly owned International Patent Application PCT/US2012/058842, dated Jan. 4, 2013, Golba LLC.
Misc Communication from USPTO for U.S. Appl. No. 16/382,386 dated Oct. 8, 2019.
Non-Final Office Action for U.S. Appl. No. 16/231,903 dated Sep. 18, 2019.
Non-Final Office Action for U.S. Appl. No. 16/294,025 dated Sep. 12, 2019.
Non-Final Office Action for U.S. Appl. No. 16/377,980 dated Aug. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 16/526,544 dated Sep. 18, 2019.
Non-Final Office Action in U.S. Appl. No. 15/836,198 dated Oct. 31, 2019.
Notice of Allowance for U.S. Appl. No. 16/032,668 dated Sep. 20, 2019.
Notice of Allowance for U.S. Appl. No. 15/595,919 dated Oct. 25, 2019.
Notice of Allowance for U.S. Appl. No. 15/904,521 dated Sep. 20, 2019.
Notice of Allowance for U.S. Appl. No. 16/111,326 dated Oct. 10, 2019.
Non-Final Office Action for U.S. Appl. No. 15/256,222 dated Mar. 21, 2019.
Final Office Action for U.S. Appl. No. 15/256,222 dated Oct. 4, 2019.
Non-Final Office Action for U.S. Appl. No. 15/256,222 dated Aug. 27, 2018.
Corrected Notice of Allowability for U.S. Appl. No. 16/111,326 dated Mar. 9, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated May 13, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/836,198 dated May 22, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated Mar. 12, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,668 dated Mar. 23, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/111,326 dated Apr. 23, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/294,025 dated May 18, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/294,025 dated Mar. 25, 2020.
Final Office Action for U.S. Appl. No. 16/377,980 dated Mar. 4, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/231,903 dated Apr. 30, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/129,423 dated Mar. 3, 2020.
Non-Final Office Action for U.S. Appl. No. 16/125,757 dated Mar. 23, 2020.
Non-Final Office Action for U.S. Appl. No. 16/153,735 dated May 13, 2020.
Non-Final Office Action for U.S. Appl. No. 16/364,956 dated Apr. 10, 2020.
Non-Final Office Action for U.S. Appl. No. 16/377,847 dated Apr. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 16/675,290 dated Apr. 30, 2020.
Notice of Allowance for U.S. Appl. No. 15/256,222 dated Apr. 3, 2020.
Notice of Allowance for U.S. Appl. No. 15/607,750 dated Jun. 1, 2020.
Notice of Allowance for U.S. Appl. No. 15/836,198 dated Apr. 17, 2020.
Notice of Allowance for U.S. Appl. No. 16/231,903 dated Mar. 24, 2020.
Notice of Allowance for U.S. Appl. No. 16/377,980 dated Apr. 14, 2020.
Notice of Allowance for U.S. Appl. No. 16/526,544 dated Apr. 9, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 15/256,222 dated Jul. 10, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 16/377,980 dated Jul. 22, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 16/526,544 dated Jul. 16, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated Aug. 25, 2020.
Final Office Action for U.S. Appl. No. 16/125,757 dated Jul. 15, 2020.
Final Office Action for U.S. Appl. No. 16/377,847 dated Jul. 13, 2020.
Final Office Action for U.S. Appl. No. 16/666,680 dated Jun. 29, 2020.
Non-Final Office Action for U.S. Appl. No. 16/204,397 dated Sep. 17, 2020.
Non-Final Office Action for U.S. Appl. No. 16/451,998 dated Sep. 11, 2020.
Non-Final Office Action for U.S. Appl. No. 16/452,023 dated Sep. 9, 2020.
Non-Final Office Action for U.S. Appl. No. 16/819,388 dated Jul. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 16/866,536 dated Sep. 1, 2020.
Notice of Allowance for U.S. Appl. No. 16/129,413 dated Aug. 12, 2020.
Notice of Allowance for U.S. Appl. No. 16/153,735 dated Jul. 2, 2020.
Notice of Allowance for U.S. Appl. No. 16/684,789 dated Jul. 10, 2020.
Supplemental Notice of Allowability for U.S. Appl. No. 16/153,735 dated Jul. 22, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/231,903 dated Jul. 1, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/256,222 dated Oct. 28, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/836,198 dated Oct. 2, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/129,413 dated Nov. 27, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/153,735 dated Nov. 18, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/377,980 dated Oct. 5, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated Sep. 25, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/675,290 dated Dec. 16, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/684,789 dated Nov. 20, 2020.
Final Office Action for U.S. Appl. No. 16/364,956 dated Oct. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 16/233,044 dated Oct. 14, 2020.
Non-Final Office Action for U.S. Appl. No. 16/377,847 dated Dec. 14, 2020.
Non-Final Office Action for U.S. Appl. No. 16/398,156 dated Oct. 15, 2020.
Non-Final Office Action for U.S. Appl. No. 16/461,980 dated Sep. 21, 2020.
Non-Final Office Action for U.S. Appl. No. 16/666,680 dated Nov. 13, 2020.
Non-Final Office Action for U.S. Appl. No. 16/689,758 dated Sep. 29, 2020.
Non-Final Office Action for U.S. Appl. No. 16/941,690 dated Nov. 12, 2020.
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Nov. 9, 2020.
Notice of Allowance for U.S.U.S. Appl. No. 16/125,757 dated Oct. 28, 2020.
Notice of Allowance for U.S. Appl. No. 16/364,956 dated Dec. 11, 2020.
Notice of Allowance for U.S. Appl. No. 16/452,023 dated Nov. 16, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/153,735 dated Oct. 9, 2020.
Notice of Allowance for U.S. Appl. No. 16/927,470 dated Oct. 29, 2020.
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Jan. 6, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 16/684,789 dated Jan. 11, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Dec. 31, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Feb. 1, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/364,956 dated Jan. 6, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Jan. 26, 2021.
International Preliminary Report on Patentability for International Application No. PCT/US2018/064184 dated Jan 21, 2021.
Morgan et al., “A Same-Frequency Cellular Repeater Using Adaptive Feedback Cancellation,” IEEE, Mar. 12, 2012, pps. 3825-3830.
Notice of Allowability for U.S. Appl. No. 15/607,750 dated Jan. 11, 2021.
Notice of Allowance for U.S. Appl. No. 16/204,397 dated Jan. 12, 2021.
Notice of Allowance for U.S. Appl. No. 16/451,998 dated Jan. 14, 2021.
Notice of Allowance for U.S. Appl. No. 16/689,758 dated Jan. 22, 2021.
Notice of Allowance for U.S. Appl. No. 16/819,388 dated Jan. 25, 2021.
Notice of Allowance for U.S. Appl. No. 16/866,536 dated Jan. 29, 2021.
Supplemental Notice of Allowability for U.S. Appl. No. 16/153,735 dated Jan. 11, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 16/125,757 dated Mar. 11, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 16/204,397 dated Mar. 11, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/354,390 dated Apr. 9, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated Apr. 7, 2021.
Non-Final Office Action for U.S. Appl. No. 17/011,042 dated Mar. 23, 2021.
Notice of Allowability for U.S. Appl. No. 16/819,388 dated Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 16/377,847 dated Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 16/391,628 dated Mar. 17, 2021.
Notice of Allowance for U.S. Appl. No. 16/451,980 dated Mar. 23, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/866,536 dated Mar. 17, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Feb. 2, 2021.
Notice of Allowability for U.S. Appl. No. 16/129,13 dated Feb. 18, 2021.
Notice of Allowance for U.S. Appl. No. 16/354,390 dated Feb. 25, 2021.
Notice of Allowance for U.S. Appl. No. 16/666,680 dated Mar. 2, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/452,023 dated Feb. 18, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/153,735 dated Feb. 24, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/451,998 dated Mar. 2, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/204,397 dated Apr. 28, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated Apr. 29, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/866,536 dated Apr. 29, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Apr. 26, 2021.
Final Office Action for U.S. Appl. No. 16/233,044 dated Apr. 19, 2021.
Final Office Action for U.S. Appl. No. 16/398,156 dated Apr. 19, 2021.
Notice of Allowability for U.S. Appl. No. 16/819,388 dated Apr. 28, 2021.
Notice of Allowance for U.S. Appl. No. 16/941,690 dated May 5, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/452,023 dated Apr. 30, 2021.
Related Publications (1)
Number Date Country
20190312692 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
61548201 Oct 2011 US
Continuations (3)
Number Date Country
Parent 15441209 Feb 2017 US
Child 16388043 US
Parent 14813058 Jul 2015 US
Child 15441209 US
Parent 13473096 May 2012 US
Child 14813058 US