The present invention relates to the field of wireless communication. More specifically, the present invention relates to increasing the number of users and data capacity and data rate of wireless systems. More specifically, in order to increase the capacity, the present invention employs a system which allows the same or correlated signatures to be used for different users simultaneously during the operation of the system.
Traditionally, the capacity of Code Division Multiple Access (CDMA) systems, the number of users simultaneously supported in a cell and the data rate allocated to the users, are dependent on availability of the spreading codes functioning as user's signatures, and their cross-correlation properties. If one code is assigned to a user, it cannot be used for the other uses at the same time. This rule is adopted even for the systems with multiple transmission antennas which generates beam steering (beam forming) as a means of interference reduction. Although the current beam steering technology can achieve certain capacity enhancement, the result (of capacity enhancement) is quite limited since the interference cannot be completely removed to a specific location in the field. In addition, from an implementation point of view, such a multiple antenna system is quite complex.
This invention provides a mechanism to allow reusing the already allocated spreading code or using the codes that may correlate to those already being used within the same sector and/or cell. This in return provides capacity improvement proportional to the number of added Base Station antennas for each cell. The present invention employs an antenna null steering technique for code allocation to maintain the cross correlation properties of the codes only for the desired user and to gain capacity improvement.
The present invention will be understood when reading the accompanying description and drawings, wherein like elements are designated by like numerals, and wherein:
The present invention uses a simple antenna null steering technique for suppressing the power of the undesired interference signals, which may use the same or correlated spreading codes, at a desired receiver. Since the spreading codes can be reused simultaneously, the capacity of the whole system can be increased. The simplicity and ease of implementation is one advantage of the null steering method. However, due to the ease of implementation, the null steering technique can be used as a complementary method along with beam steering to provide further improvement of system capacity.
The concept may use different spreading codes, users and antennas. However, the present invention is described using the same or correlated spreading code for N users simultaneously, utilizing N+1 antennas. Channel information such as the spatial information is used by N+1 antennas of a Base Station BS to create a null at all user locations with the identical or correlated spreading code but the desired one. The concept is illustrated below for the case where N=2, where N=the number of users.
Considering a two-user case. The system is depicted in
To create a null at user B, we will select the complex weights, W1A, W2A and W3A so that the gain of the composite channel from the base station to user A is maximized and the composite channel gain from the base station to user B is 0. Mathematically, it is a constraint optimization problem, which can be expressed as follows:
Similarly, to create a null at user A, we will select the complex weights, w1B, w2b and w3b so that the gain of the composite channel from the base station to user B is maximized and the composite channel gain from the base station to user A is 0. Mathematically, it is likewise a constraint optimization problem, which can be expressed as follows:
The optimization problem described above can be easily solved. Next, as an example, we show how to determine w1A, w2A and w3A from Equation 1. First from the constraint in Equation 1, we choose w3A as follows:
Applying w3A, the composite channel impulse response at user A becomes:
w1Ag1+w2Ag2; Equation 4
where,
In general, gi is a complex number. Define gi=αieJφ
It can be shown that the channel gain of the composite channel impulse response from the base station to user A is
It is clear that, to reach the maximum possible gain, we should have:
θ2−θ1+φ2−φ1=0 Equation 7
One approach to satisfy the above equation is to choose:
For example, define a simplified channel model as
for i=1, 2, 3, and p=A, B, where Dip is the distance from user p to antenna i, and λ is the wavelength, which is 0.15 m in this example. In addition, we assume that the three (3) antennas are distributed along the X axis in a OXY plane with space between two adjacent antennas being 0.75 m and antenna 2 being placed at the origin (O) of the OXY plane. We choose the location for user A being (xA, yA)=(−70,20) and user B being (xB,yB)=(50, 50). The composite channel power profiles (in dB) near these two points are shown in
This application claims priority from U.S. provisional application No. 60/335,616, filed Nov. 2, 2001, which is incorporated by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
6115406 | Mesecher | Sep 2000 | A |
6748024 | Kuchi et al. | Jun 2004 | B2 |
20020044591 | Lee et al. | Apr 2002 | A1 |
20020155818 | Boros et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
1191706 | Mar 2002 | EP |
2001-127699 | May 2001 | JP |
2001-169344 | Jun 2001 | JP |
0171928 | Sep 2001 | WO |
0176110 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030108084 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
60335616 | Nov 2001 | US |