The disclosure relates to vehicle interior systems including glass and methods for forming the same, and more particularly to vehicle interior systems including a curved glass article with a cold-formed or cold-bent cover glass and methods for forming the same.
Vehicle interiors include curved surfaces and can incorporate displays in such curved surfaces. The materials used to form such curved surfaces are typically limited to polymers, which do not exhibit the durability and optical performance as glass. As such, curved glass sheets are desirable, especially when used as covers for displays. Existing methods of forming such curved glass sheets, such as thermal forming, have drawbacks including high cost, optical distortion, and surface marking. Accordingly, Applicant has identified a need for vehicle interior systems that can incorporate a curved glass sheet in a cost-effective manner and without problems typically associated with glass thermal forming processes.
According to an aspect, embodiments of the disclosure relate to a method of forming a curved glass article. In the method, a mold having a curved surface is provided. A self-adhesive layer is disposed on the curved surface. A glass sheet is bent into conformity with the curved surface at a temperature less than the glass transition temperature of the glass sheet. The glass sheet includes a first major surface and a second major surface in which the second major surface is opposite to the first major surface. The first major surface is adhered to the self-adhesive layer. A frame is bonded to the second major surface of the glass sheet, and the glass sheet is removed from the self-adhesive layer.
According to another aspect, embodiments of the disclosure relate to a system for cold-forming curved glass articles. The system includes a conveyor system, and a plurality of molds arranged on the conveyor system. Each of the plurality of molds comprising a curved surface and a self-adhesive layer. At a first position on the conveyor system, a first major surface of a glass sheet is adhered to the self-adhesive layer of one mold of the first plurality of molds. At a second position on the conveyor system, a frame is positioned on and adhered to a second major surface of the glass sheet. The second major surface is opposite to the first major surface. At a final position on the conveyor system, the glass sheet with bonded frame is removed from the mold. Between the second position and the final position, the conveyor system has a length and speed configured to allow curing of the frame adhered to the glass sheet.
According to still another aspect, embodiments of the disclosure relate to a mold for forming a curved glass article. The mold includes a curved surface and a self-adhesive layer disposed on the curved surface. The self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer. Further, the curved surface comprises at least one of a convex curvature or a concave curvature.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In general, a vehicle interior system may include a variety of different curved surfaces that are designed to be transparent, such as curved display surfaces and curved non-display glass covers, and the present disclosure provides articles and methods for forming these curved surfaces from a glass material. Forming curved vehicle surfaces from a glass material provide a number of advantages compared to the typical curved plastic panels that are conventionally found in vehicle interiors. For example, glass is typically considered to provide enhanced functionality and user experience in many curved cover material applications, such as display applications and touch screen applications, compared to plastic cover materials.
Accordingly, as will be discussed in more detail below, Applicant has developed a glass article and related manufacturing processes that provide an efficient and cost effective way to form an article, such as a display for a vehicle interior system, utilizing a cold-bent glass sheet.
In particular embodiments, the curved glass article is formed by adhering a glass sheet to a curved mold using a self-adhesive layer. Thereafter, an adhesive is applied to either the bent glass sheet while on the mold or to the frame, and a frame is adhered to the bent glass sheet. The adhesive is allowed to cure while the glass is on the mold to bond the frame to the glass sheet to form the curved glass article. The curved glass article can be removed from the self-adhesive layer, and the mold can be reused for another molding process. In embodiments, a system for molding glass articles is provided. In the system, a plurality of molds is provided, which allows for multiple glass articles to be made and cured at the same time. In embodiments of the system, the actions of adhering the glass sheet to the mold and removing the glass article from the mold can be automated, e.g., the actions can be performed by robots while moving the plurality of molds around a conveyor system. Various aspects and advantages of the curved glass article and method of forming same will be described in relation to the exemplary embodiments described herein and shown in the figures.
The embodiments of the curved glass article described herein can be used in each of vehicle interior systems 100, 200 and 300. Further, the curved glass articles discussed herein may be used as curved cover glasses for any of the curved display embodiments discussed herein, including for use in vehicle interior systems 100, 200 and/or 300. Further, in various embodiments, various non-display components of vehicle interior systems 100, 200 and 300 may be formed from the glass articles discussed herein. In some such embodiments, the glass articles discussed herein may be used as the non-display cover surface for the dashboard, center console, door panel, etc. In such embodiments, glass material may be selected based on its weight, aesthetic appearance, etc. and may be provided with a coating (e.g., an ink or pigment coating) with a pattern (e.g., a brushed metal appearance, a wood grain appearance, a leather appearance, a colored appearance, etc.) to visually match the glass components with adjacent non-glass components. In specific embodiments, such ink or pigment coating may have a transparency level that provides for deadfront functionality.
As shown in
The adhesive layer 22 provides long term strength after curing over the course of, e.g., about an hour at ambient temperature. In embodiments, exemplary adhesives for the adhesive layer 22 include toughened epoxy, flexible epoxy, acrylics, silicones, urethanes, polyurethanes, and silane modified polymers. In specific embodiments, the adhesive layer 22 includes one or more toughened epoxies, such as EP21TDCHT-LO (available from Masterbond®, Hackensack, N.J.), 3M™ Scotch-Weld™ Epoxy DP460 Off-White (available from 3M, St. Paul, Minn.). In other embodiments, the adhesive layer 22 includes one or more flexible epoxies, such as Masterbond EP21TDC-2LO (available from Masterbond®, Hackensack, N.J.), 3M™ Scotch-Weld™ Epoxy 2216 B/A Gray (available from 3M, St. Paul, Minn.), and 3M™ Scotch-Weld™ Epoxy DP125. In still other embodiments, the adhesive layer 22 includes one or more acrylics, such as LORD® Adhesive 410/Accelerator 19 w/LORD® AP 134 primer, LORD® Adhesive 852/LORD® Accelerator 25 GB (both being available from LORD Corporation, Cary, N.C.), DELO PUR SJ9356 (available from DELO Industrial Adhesives, Windach, Germany), Loctite® AA4800, Loctite® HF8000. TEROSON® MS 9399, and TEROSON® MS 647-2C (these latter four being available from Henkel AG & Co. KGaA, Dusseldorf, Germany), among others. In yet other embodiments, the adhesive layer 22 includes one or more urethanes, such as 3M™ Scotch-Weld™ Urethane DP640 Brown and 3M™ Scotch-Weld™ Urethane DP604, and in still further embodiments, the adhesive layer 22 includes one or more silicones, such as Dow Corning® 995 (available from Dow Corning Corporation, Midland, Mich.).
Returning to
In various embodiments, first major surface 16 and/or the second major surface 18 of glass sheet 12 includes one or more surface treatments or layers. The surface treatment may cover at least a portion of the first major surface 16 and/or second major surface 18. Exemplary surface treatments include anti-glare surfaces/coatings, anti-reflective surfaces/coatings, and an easy-to-clean surface coating/treatment. In one or more embodiments, at least a portion of the first major surface 16 and/or the second major surface 18 may include any one, any two or all three of an anti-glare surface, an anti-reflective surface, and easy-to-clean coating/treatment. For example, first major surface 16 may include an anti-glare surface and second major surface 18 may include an anti-reflective surface. In another example, first major surface 16 includes an anti-reflective surface and second major surface 18 includes an anti-glare surface. In yet another example, the first major surface 16 comprises either one of or both the anti-glare surface and the anti-reflective surface, and the second major surface 18 includes the easy-to-clean coating.
In embodiments, the glass sheet 12 may also include a pigment design on the first major surface 16 and/or second major surface 18. The pigment design may include any aesthetic design formed from a pigment (e.g., ink, paint and the like) and can include a wood-grain design, a brushed metal design, a graphic design, a portrait, or a logo. The pigment design may be printed onto the glass sheet. In one or more embodiments, the anti-glare surface includes an etched surface. In one or more embodiments, the anti-reflective surface includes a multi-layer coating.
In general, glass sheet 12 is cold formed or cold bent to the desired curved shape via application of a bending force to the glass sheet 12 while it is situated on a mold 24 as shown in
The mold 24 includes a curved surface 26 on which a self-adhesive layer 28 is disposed. In embodiments, the self-adhesive layer 28 comprises integral surface layers having permanently tacky, pressure sensitive adhesive properties. In embodiments, the self-adhesive layer 28 provides an adhesive force via a surface interaction with the glass sheet 12 (e.g., Van der Waals force, suction force, etc.). Further, in embodiments, the adhesive force is between about 1 kgf/cm2 and 10 kgf/cm2, particularly about 5 kgf/cm2. The adhesive layer 28 is configured to hold the glass sheet 12 in a bent configuration on the mold 24 such that the glass sheet 12 matches the curvature of the curved surface 26 of the mold. In particular, the first major surface 16 of the glass sheet 12 is adhered to the self-adhesive layer 28 as shown in
In embodiments, the self-adhesive layer 28 comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer, among others. In embodiments, the integral surface layers having the tacky, pressure-sensitive adhesive properties may be formed by inhibiting cross-linking on the surface of the self-adhesive layer 28. Advantageously, glass sheets 12 can be repeatedly attached and detached from the self-adhesive layer 28, e.g., to cold-form multiple glass sheets 12 and frames 14 in succession. Further, in embodiments, the surface of the self-adhesive layer 28 can be cleaned and restored to its original state after becoming contaminated with, e.g., oil, dirt, or other debris by washing it with soapy water, acetone, or other suitable cleaning agents. In testing, certain embodiments of the self-adhesive layer 28 have not experienced any change in adhesion force after 33,000 uses, and in embodiments, the self-adhesive layer may be used for months at a time before needing replacement. However, the usable life of the self-adhesive layer may be dictated by a variety of factors, including working environment, cleanliness of the glass/mold, scratches or abrasions from surrounding machinery, etc. Also, advantageously, the self-adhesive layer 28 is strong enough to hold the glass sheet 12 in a bent configuration, but the glass sheet 12 can still be removed from the adhesive layer 28 when it is desired to remove the glass article 10 from the mold.
As shown in
As can be seen in
In the embodiment shown in
In various embodiments, glass sheet 12 is formed from a strengthened glass sheet (e.g., a thermally strengthened glass material, a chemically strengthened glass sheet, etc.) In such embodiments, when glass sheet 12 is formed from a strengthened glass material, first major surface 16 and second major surface 18 are under compressive stress, and thus second major surface 18 can experience greater tensile stress during bending to the convex shape without risking fracture. This allows for strengthened glass sheet 12 to conform to more tightly curved surfaces.
A feature of a cold-formed glass sheet 12 is an asymmetric surface compressive between the first major surface 16 and the second major surface 18 once the glass sheet 12 has been bent to the curved shape. In such embodiments, prior to the cold-forming process or being cold-formed, the respective compressive stresses in the first major surface 16 and the second major surface 18 of glass sheet 12 are substantially equal. After cold-forming, the compressive stress on concave first major surface 16 increases such that the compressive stress on the first major surface 16 is greater after cold-forming than before cold-forming. In contrast, convex second major surface 18 experiences tensile stresses during bending causing a net decrease in surface compressive stress on the second major surface 18, such that the compressive stress in the second major surface 18 following bending is less than the compressive stress in the second major surface 18 when the glass sheet is flat.
As noted above, in addition to providing processing advantages such as eliminating expensive and/or slow heating steps, the cold-forming processes discussed herein are believed to generate curved glass articles with a variety of properties that are superior to hot-formed glass articles, particularly for vehicle interior or display cover glass applications. For example, Applicant believes that, for at least some glass materials, heating during hot-forming processes decreases optical properties of curved glass sheets, and thus, the curved glass sheets formed utilizing the cold-bending processes/systems discussed herein provide for both curved glass shapes along with improved optical qualities not believed achievable with hot-bending processes.
Further, many glass surface treatments (e.g., anti-glare coatings, anti-reflective coatings, easy-to-clean coating, etc.) are applied via deposition processes, such as sputtering processes that are typically ill-suited for coating curved glass articles. In addition, many surface treatments (e.g., anti-glare coatings, anti-reflective coatings, easy-to-clean coating, etc.) also are not able to survive the high temperatures associated with hot-bending processes. Thus, in particular embodiments discussed herein, one or more surface treatments are applied to the first major surface 16 and/or to the second major surface 18 of glass sheet 12 prior to cold-bending, and the glass sheet 12 including the surface treatment is bent to a curved shape as discussed herein. Thus, Applicant believes that the processes and systems discussed herein allow for bending of glass after one or more coating materials have been applied to the glass, in contrast to typical hot-forming processes.
In various embodiments, a cold-formed glass sheet 12 may have a compound curve including a major radius and a cross curvature. A complexly curved cold-formed glass sheet 12 may have a distinct radius of curvature in two independent directions. According to one or more embodiments, a complexly curved cold-formed glass sheet 12 may thus be characterized as having “cross curvature,” where the cold-formed glass sheet 12 is curved along an axis (i.e., a first axis) that is parallel to a given dimension and also curved along an axis (i.e., a second axis) that is perpendicular to the same dimension. The curvature of the cold-formed glass sheet and the curved display can be even more complex when a significant minimum radius is combined with a significant cross curvature, and/or depth of bend. In various embodiments, glass sheet 12 can have more than two curved regions with the same or differing curved shapes. In some embodiments, glass sheet 12 can have one or more region having a curved shape with a variable radius of curvature.
Referring to
In various embodiments, thickness T1 is 2 mm or less and specifically is 0.3 mm to 1.1 mm. For example, thickness T1 may be in a range from about 0.1 mm to about 1.5 mm, from about 0.15 mm to about 1.5 mm, from about 0.2 mm to about 1.5 mm, from about 0.25 mm to about 1.5 mm, from about 0.3 mm to about 1.5 mm, from about 0.35 mm to about 1.5 mm, from about 0.4 mm to about 1.5 mm, from about 0.45 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, from about 0.55 mm to about 1.5 mm, from about 0.6 mm to about 1.5 mm, from about 0.65 mm to about 1.5 mm, from about 0.7 mm to about 1.5 mm, from about 0.1 mm to about 1.4 mm, from about 0.1 mm to about 1.3 mm, from about 0.1 mm to about 1.2 mm, from about 0.1 mm to about 1.1 mm, from about 0.1 mm to about 1.05 mm, from about 0.1 mm to about 1 mm, from about 0.1 mm to about 0.95 mm, from about 0.1 mm to about 0.9 mm, from about 0.1 mm to about 0.85 mm, from about 0.1 mm to about 0.8 mm, from about 0.1 mm to about 0.75 mm, from about 0.1 mm to about 0.7 mm, from about 0.1 mm to about 0.65 mm, from about 0.1 mm to about 0.6 mm, from about 0.1 mm to about 0.55 mm, from about 0.1 mm to about 0.5 mm, from about 0.1 mm to about 0.4 mm, or from about 0.3 mm to about 0.7 mm. In other embodiments, the T1 falls within any one of the exact numerical ranges set forth in this paragraph.
In various embodiments, width W1 is in a range from 5 cm to 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm. In other embodiments, W1 falls within any one of the exact numerical ranges set forth in this paragraph.
In various embodiments, length L1 is in a range from about 5 cm to about 1500 cm, from about 50 cm to about 1500 cm, from about 100 cm to about 1500 cm, from about 150 cm to about 1500 cm, from about 200 cm to about 1500 cm, from about 250 cm to about 1500 cm, from about 300 cm to about 1500 cm, from about 350 cm to about 1500 cm, from about 400 cm to about 1500 cm, from about 450 cm to about 1500 cm, from about 500 cm to about 1500 cm, from about 550 cm to about 1500 cm, from about 600 cm to about 1500 cm, from about 650 cm to about 1500 cm, from about 650 cm to about 1500 cm, from about 700 cm to about 1500 cm, from about 750 cm to about 1500 cm, from about 800 cm to about 1500 cm, from about 850 cm to about 1500 cm, from about 900 cm to about 1500 cm, from about 950 cm to about 1500 cm, from about 1000 cm to about 1500 cm, from about 1050 cm to about 1500 cm, from about 1100 cm to about 1500 cm, from about 1150 cm to about 1500 cm, from about 1200 cm to about 1500 cm, from about 1250 cm to about 1500 cm, from about 1300 cm to about 1500 cm, from about 1350 cm to about 1500 cm, from about 1400 cm to about 1500 cm, or from about 1450 cm to about 1500 cm. In other embodiments, L1 falls within any one of the exact numerical ranges set forth in this paragraph.
In various embodiments, one or more radius of curvature (e.g., R1 shown in
The various embodiments of the vehicle interior system may be incorporated into vehicles such as trains, automobiles (e.g., cars, trucks, buses and the like), sea craft (boats, ships, submarines, and the like), and aircraft (e.g., drones, airplanes, jets, helicopters and the like).
Strengthened Glass Properties
As noted above, glass sheet 12 may be strengthened. In one or more embodiments, glass sheet 12 may be strengthened to include compressive stress that extends from a surface to a depth of compression (DOC). The compressive stress regions are balanced by a central portion exhibiting a tensile stress. At the DOC, the stress crosses from a positive (compressive) stress to a negative (tensile) stress.
In various embodiments, glass sheet 12 may be strengthened mechanically by utilizing a mismatch of the coefficient of thermal expansion between portions of the article to create a compressive stress region and a central region exhibiting a tensile stress. In some embodiments, the glass sheet may be strengthened thermally by heating the glass to a temperature above the glass transition point and then rapidly quenching.
In various embodiments, glass sheet 12 may be chemically strengthened by ion exchange. In the ion exchange process, ions at or near the surface of the glass sheet are replaced by—or exchanged with—larger ions having the same valence or oxidation state. In those embodiments in which the glass sheet comprises an alkali aluminosilicate glass, ions in the surface layer of the article and the larger ions are monovalent alkali metal cations, such as Li+, Na+, K+, Rb+, and Cs+. Alternatively, monovalent cations in the surface layer may be replaced with monovalent cations other than alkali metal cations, such as Ag+ or the like. In such embodiments, the monovalent ions (or cations) exchanged into the glass sheet generate a stress.
Ion exchange processes are typically carried out by immersing a glass sheet in a molten salt bath (or two or more molten salt baths) containing the larger ions to be exchanged with the smaller ions in the glass sheet. It should be noted that aqueous salt baths may also be utilized. In addition, the composition of the bath(s) may include more than one type of larger ions (e.g., Na+ and K+) or a single larger ion. It will be appreciated by those skilled in the art that parameters for the ion exchange process, including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the glass sheet in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the glass sheet (including the structure of the article and any crystalline phases present) and the desired DOC and CS of the glass sheet that results from strengthening. Exemplary molten bath compositions may include nitrates, sulfates, and chlorides of the larger alkali metal ion. Typical nitrates include KNO3, NaNO3, LiNO3, NaSO4 and combinations thereof. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 100 hours depending on glass sheet thickness, bath temperature and glass (or monovalent ion) diffusivity. However, temperatures and immersion times different from those described above may also be used.
In one or more embodiments, the glass sheets may be immersed in a molten salt bath of 100% NaNO3, 100% KNO3, or a combination of NaNO3 and KNO3 having a temperature from about 370° C. to about 480° C. In some embodiments, the glass sheet may be immersed in a molten mixed salt bath including from about 5% to about 90% KNO3 and from about 10% to about 95% NaNO3. In one or more embodiments, the glass sheet may be immersed in a second bath, after immersion in a first bath. The first and second baths may have different compositions and/or temperatures from one another. The immersion times in the first and second baths may vary. For example, immersion in the first bath may be longer than the immersion in the second bath.
In one or more embodiments, the glass sheet may be immersed in a molten, mixed salt bath including NaNO3 and KNO3 (e.g., 49%/51%, 50%/50%, 51%/49%) having a temperature less than about 420° C. (e.g., about 400° C. or about 380° C.). for less than about 5 hours, or even about 4 hours or less.
Ion exchange conditions can be tailored to provide a “spike” or to increase the slope of the stress profile at or near the surface of the resulting glass sheet. The spike may result in a greater surface CS value. This spike can be achieved by a single bath or multiple baths, with the bath(s) having a single composition or mixed composition, due to the unique properties of the glass compositions used in the glass sheets described herein.
In one or more embodiments, where more than one monovalent ion is exchanged into the glass sheet, the different monovalent ions may exchange to different depths within the glass sheet (and generate different magnitudes stresses within the glass sheet at different depths). The resulting relative depths of the stress-generating ions can be determined and cause different characteristics of the stress profile.
CS is measured using those means known in the art, such as by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Orihara Industrial Co., Ltd. (Japan). Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2013), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. As used herein CS may be the “maximum compressive stress” which is the highest compressive stress value measured within the compressive stress layer. In some embodiments, the maximum compressive stress is located at the surface of the glass sheet. In other embodiments, the maximum compressive stress may occur at a depth below the surface, giving the compressive profile the appearance of a “buried peak.”
DOC may be measured by FSM or by a scattered light polariscope (SCALP) (such as the SCALP-04 scattered light polariscope available from Glasstress Ltd., located in Tallinn Estonia), depending on the strengthening method and conditions. When the glass sheet is chemically strengthened by an ion exchange treatment, FSM or SCALP may be used depending on which ion is exchanged into the glass sheet. Where the stress in the glass sheet is generated by exchanging potassium ions into the glass sheet, FSM is used to measure DOC. Where the stress is generated by exchanging sodium ions into the glass sheet, SCALP is used to measure DOC. Where the stress in the glass sheet is generated by exchanging both potassium and sodium ions into the glass, the DOC is measured by SCALP, since it is believed the exchange depth of sodium indicates the DOC and the exchange depth of potassium ions indicates a change in the magnitude of the compressive stress (but not the change in stress from compressive to tensile); the exchange depth of potassium ions in such glass sheets is measured by FSM. Central tension or CT is the maximum tensile stress and is measured by SCALP.
In one or more embodiments, the glass sheet may be strengthened to exhibit a DOC that is described as a fraction of the thickness T1 of the glass sheet (as described herein). For example, in one or more embodiments, the DOC may be equal to or greater than about 0.05T1, equal to or greater than about 0.1T1, equal to or greater than about 0.11T1, equal to or greater than about 0.12T1, equal to or greater than about 0.13T1, equal to or greater than about 0.14T1, equal to or greater than about 0.15T1, equal to or greater than about 0.16T1, equal to or greater than about 0.17T1, equal to or greater than about 0.18T1, equal to or greater than about 0.19T1, equal to or greater than about 0.2T1, equal to or greater than about 0.21T1. In some embodiments, the DOC may be in a range from about 0.08T1 to about 0.25T1, from about 0.09T1 to about 0.25T1, from about 0.18T1 to about 0.25T1, from about 0.11T1 to about 0.25T1, from about 0.12T1 to about 0.25T1, from about 0.13T1 to about 0.25T1, from about 0.14T1 to about 0.25T1, from about 0.15T1 to about 0.25T1, from about 0.08T1 to about 0.24T1, from about 0.08T1 to about 0.23T1, from about 0.08T1 to about 0.22T1, from about 0.08T1 to about 0.21T1, from about 0.08T1 to about 0.2T1, from about 0.08T1 to about 0.19T1, from about 0.08T1 to about 0.18T1, from about 0.08T1 to about 0.17T1, from about 0.08T1 to about 0.16T1, or from about 0.08T1 to about 0.15T1. In some instances, the DOC may be about 20 μm or less. In one or more embodiments, the DOC may be about 40 μm or greater (e.g., from about 40 μm to about 300 μm, from about 50 μm to about 300 μm, from about 60 μm to about 300 μm, from about 70 μm to about 300 μm, from about 80 μm to about 300 μm, from about 90 μm to about 300 μm, from about 100 μm to about 300 μm, from about 110 μm to about 300 μm, from about 120 μm to about 300 μm, from about 140 μm to about 300 μm, from about 150 μm to about 300 μm, from about 40 μm to about 290 μm, from about 40 μm to about 280 μm, from about 40 μm to about 260 μm, from about 40 μm to about 250 μm, from about 40 μm to about 240 μm, from about 40 μm to about 230 μm, from about 40 μm to about 220 μm, from about 40 μm to about 210 μm, from about 40 μm to about 200 μm, from about 40 μm to about 180 μm, from about 40 μm to about 160 μm, from about 40 μm to about 150 μm, from about 40 μm to about 140 μm, from about 40 μm to about 130 μm, from about 40 μm to about 120 μm, from about 40 μm to about 110 μm, or from about 40 μm to about 100 μm. In other embodiments, DOC falls within any one of the exact numerical ranges set forth in this paragraph.
In one or more embodiments, the strengthened glass sheet may have a CS (which may be found at the surface or a depth within the glass sheet) of about 200 MPa or greater, 300 MPa or greater, 400 MPa or greater, about 500 MPa or greater, about 600 MPa or greater, about 700 MPa or greater, about 800 MPa or greater, about 900 MPa or greater, about 930 MPa or greater, about 1000 MPa or greater, or about 1050 MPa or greater.
In one or more embodiments, the strengthened glass sheet may have a maximum tensile stress or central tension (CT) of about 20 MPa or greater, about 30 MPa or greater, about 40 MPa or greater, about 45 MPa or greater, about 50 MPa or greater, about 60 MPa or greater, about 70 MPa or greater, about 75 MPa or greater, about 80 MPa or greater, or about 85 MPa or greater. In some embodiments, the maximum tensile stress or central tension (CT) may be in a range from about 40 MPa to about 100 MPa. In other embodiments, CS falls within the exact numerical ranges set forth in this paragraph.
Glass Compositions
Suitable glass compositions for use in glass sheet 12 include soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass.
Unless otherwise specified, the glass compositions disclosed herein are described in mole percent (mol %) as analyzed on an oxide basis.
In one or more embodiments, the glass composition may include SiO2 in an amount in a range from about 66 mol % to about 80 mol %, from about 67 mol % to about 80 mol %, from about 68 mol % to about 80 mol %, from about 69 mol % to about 80 mol %, from about 70 mol % to about 80 mol %, from about 72 mol % to about 80 mol %, from about 65 mol % to about 78 mol %, from about 65 mol % to about 76 mol %, from about 65 mol % to about 75 mol %, from about 65 mol % to about 74 mol %, from about 65 mol % to about 72 mol %, or from about 65 mol % to about 70 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition includes Al2O3 in an amount greater than about 4 mol %, or greater than about 5 mol %. In one or more embodiments, the glass composition includes Al2O3 in a range from greater than about 7 mol % to about 15 mol %, from greater than about 7 mol % to about 14 mol %, from about 7 mol % to about 13 mol %, from about 4 mol % to about 12 mol %, from about 7 mol % to about 11 mol %, from about 8 mol % to about 15 mol %, from about 9 mol % to about 15 mol %, from about 10 mol % to about 15 mol %, from about 11 mol % to about 15 mol %, or from about 12 mol % to about 15 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the upper limit of Al2O3 may be about 14 mol %, 14.2 mol %, 14.4 mol %, 14.6 mol %, or 14.8 mol %.
In one or more embodiments, the glass article is described as an aluminosilicate glass article or including an aluminosilicate glass composition. In such embodiments, the glass composition or article formed therefrom includes SiO2 and Al2O3 and is not a soda lime silicate glass. In this regard, the glass composition or article formed therefrom includes Al2O3 in an amount of about 2 mol % or greater, 2.25 mol % or greater, 2.5 mol % or greater, about 2.75 mol % or greater, about 3 mol % or greater.
In one or more embodiments, the glass composition comprises B2O3 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises B2O3 in an amount in a range from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 0.1 mol % to about 3 mol %, from about 0.1 mol % to about 2 mol %, from about 0.1 mol % to about 1 mol %, from about 0.1 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition is substantially free of B2O3.
As used herein, the phrase “substantially free” with respect to the components of the composition means that the component is not actively or intentionally added to the composition during initial batching, but may be present as an impurity in an amount less than about 0.001 mol %.
In one or more embodiments, the glass composition optionally comprises P2O5 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises a non-zero amount of P2O5 up to and including 2 mol %, 1.5 mol %, 1 mol %, or 0.5 mol %. In one or more embodiments, the glass composition is substantially free of P2O5.
In one or more embodiments, the glass composition may include a total amount of R2O (which is the total amount of alkali metal oxide such as Li2O, Na2O, K2O, Rb2O, and Cs2O) that is greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In some embodiments, the glass composition includes a total amount of R2O in a range from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 13 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of Rb2O, Cs2O or both Rb2O and Cs2O. In one or more embodiments, the R2O may include the total amount of Li2O, Na2O and K2O only. In one or more embodiments, the glass composition may comprise at least one alkali metal oxide selected from Li2O, Na2O and K2O, wherein the alkali metal oxide is present in an amount greater than about 8 mol % or greater.
In one or more embodiments, the glass composition comprises Na2O in an amount greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In one or more embodiments, the composition includes Na2O in a range from about from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 16 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition includes less than about 4 mol % K2O, less than about 3 mol % K2O, or less than about 1 mol % K2O. In some instances, the glass composition may include K2O in an amount in a range from about 0 mol % to about 4 mol %, from about 0 mol % to about 3.5 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2.5 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0 mol % to about 0.2 mol %, from about 0 mol % to about 0.1 mol %, from about 0.5 mol % to about 4 mol %, from about 0.5 mol % to about 3.5 mol %, from about 0.5 mol % to about 3 mol %, from about 0.5 mol % to about 2.5 mol %, from about 0.5 mol % to about 2 mol %, from about 0.5 mol % to about 1.5 mol %, or from about 0.5 mol % to about 1 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of K2O.
In one or more embodiments, the glass composition is substantially free of Li2O.
In one or more embodiments, the amount of Na2O in the composition may be greater than the amount of Li2O. In some instances, the amount of Na2O may be greater than the combined amount of Li2O and K2O. In one or more alternative embodiments, the amount of Li2O in the composition may be greater than the amount of Na2O or the combined amount of Na2O and K2O.
In one or more embodiments, the glass composition may include a total amount of RO (which is the total amount of alkaline earth metal oxide such as CaO, MgO, BaO, ZnO and SrO) in a range from about 0 mol % to about 2 mol %. In some embodiments, the glass composition includes a non-zero amount of RO up to about 2 mol %. In one or more embodiments, the glass composition comprises RO in an amount from about 0 mol % to about 1.8 mol %, from about 0 mol % to about 1.6 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1.4 mol %, from about 0 mol % to about 1.2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.8 mol %, from about 0 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition includes CaO in an amount less than about 1 mol %, less than about 0.8 mol %, or less than about 0.5 mol %. In one or more embodiments, the glass composition is substantially free of CaO.
In some embodiments, the glass composition comprises MgO in an amount from about 0 mol % to about 7 mol %, from about 0 mol % to about 6 mol %, from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0.1 mol % to about 7 mol %, from about 0.1 mol % to about 6 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 1 mol % to about 7 mol %, from about 2 mol % to about 6 mol %, or from about 3 mol % to about 6 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition comprises ZrO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises ZrO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition comprises SnO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises SnO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition may include an oxide that imparts a color or tint to the glass articles. In some embodiments, the glass composition includes an oxide that prevents discoloration of the glass article when the glass article is exposed to ultraviolet radiation. Examples of such oxides include, without limitation oxides of: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ce, W, and Mo.
In one or more embodiments, the glass composition includes Fe expressed as Fe2O3, wherein Fe is present in an amount up to (and including) about 1 mol %. In some embodiments, the glass composition is substantially free of Fe. In one or more embodiments, the glass composition comprises Fe2O3 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises Fe2O3 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.
Where the glass composition includes TiO2, TiO2 may be present in an amount of about 5 mol % or less, about 2.5 mol % or less, about 2 mol % or less or about 1 mol % or less. In one or more embodiments, the glass composition may be substantially free of TiO2.
An exemplary glass composition includes SiO2 in an amount in a range from about 65 mol % to about 75 mol %, Al2O3 in an amount in a range from about 8 mol % to about 14 mol %, Na2O in an amount in a range from about 12 mol % to about 17 mol %, K2O in an amount in a range of about 0 mol % to about 0.2 mol %, and MgO in an amount in a range from about 1.5 mol % to about 6 mol %. Optionally, SnO2 may be included in the amounts otherwise disclosed herein. It should be understood, that while the preceding glass composition paragraphs express approximate ranges, in other embodiments, glass sheet 134 may be made from any glass composition falling with any one of the exact numerical ranges discussed above.
Aspect (1) of this disclosure pertains to a method of forming a curved glass article, comprising the steps of: providing a mold comprising a curved surface, wherein a self-adhesive layer is disposed on the curved surface; bending a glass sheet into conformity with the curved surface at a temperature less than the glass transition temperature of the glass sheet, wherein the glass sheet comprises a first major surface and a second major surface, wherein the second major surface is opposite to the first major surface, and wherein the first major surface is adhered to the self-adhesive layer; bonding a frame to the second major surface of the glass sheet; and removing the glass sheet from the self-adhesive layer. In one or more embodiments, Aspect (1) pertains to a method of forming a curved glass article, comprising the steps of: bending a glass sheet at a temperature less than the glass transition temperature of the glass sheet to confirm with a curved surface of a mold comprising a self-adhesive layer disposed on the curved surface, wherein the glass sheet comprises a first major surface and a second major surface, wherein the second major surface is opposite to the first major surface, and wherein the first major surface is adhered to the self-adhesive layer; bonding a frame to the second major surface of the glass sheet; and removing the glass sheet from the self-adhesive layer.
Aspect (2) pertains to the method of Aspect (1), wherein bonding further comprising applying an adhesive to the frame or to the second major surface of the glass sheet, positioning the frame on the second major surface, and curing the adhesive.
Aspect (3) pertains to the method of Aspect (2), wherein the adhesive comprises at least one of a toughened adhesive, a flexible epoxy, an acrylic, a urethane, or a silicone.
Aspect (4) pertains to the method of any one of Aspects (1) through (3), wherein the self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer.
Aspect (5) pertains to the method of any one of Aspects (1) through (4), wherein the curved surface comprises at least one of a convex curvature or a concave curvature
Aspect (6) pertains to the method of any one of Aspects (1) through (5), wherein the curved surface comprises both a convex curvature and a concave curvature.
Aspect (7) pertains to the method of any one of Aspects (1) through (6), wherein the curved surface has a radius of curvature of from 30 mm to 5 m.
Aspect (8) pertains to the method of any one of Aspects (1) through (7), wherein bending takes place at a temperature of less than 200° C.
Aspect (9) pertains to the method of any one of Aspects (1) through (8), wherein the mold further comprises a plurality of vacuum channels and wherein the method further comprises applying a negative pressure to the first major surface of the glass sheet to keep the glass sheet in conformity with the curved surface.
Aspect (10) pertains to the method of Aspect (9), wherein releasing the glass sheet from the self-adhesive layer further comprising applying a positive pressure to the first major surface to push the glass sheet away from the self-adhesive layer.
Aspect (11) pertains to the method of any one of Aspects (1) through (10), wherein the glass sheet has a thickness between the first major surface and the second major surface of from 0.4 mm to 2.0 mm.
Aspect (12) pertains to the method of any one of Aspects (1) through (11), further comprising bonding a display to the second major surface using optically clear adhesive.
Aspect (13) pertains to the method of Aspect (12), wherein the display comprises at least one of a light-emitting diode display, an organic light-emitting diode display, a plasma display, or a liquid crystal display.
Aspect (14) pertains to the method of any one of Aspects (1) through (13), wherein the glass sheet comprises at least one of soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass.
Aspect (15) pertains to the method of any one of Aspects (1) through (14), wherein the first major surface and the second major surface are chemically strengthened.
Aspect (16) pertains to the method of any one of Aspects (1) through (15), further comprising applying a surface treatment to at least one of the first major surface or the second major surface prior to bending.
Aspect (17) pertains to the method of Aspect (16), wherein the surface treatment is at least one of an anti-glare treatment, an anti-reflective coating, and easy-to-clean coating.
Aspect (18) pertains to a system for cold-forming curved glass articles, comprising: a conveyor system; a plurality of molds arranged on the conveyor system, each of the plurality of molds comprising a curved surface and a self-adhesive layer; wherein at a first position on the conveyor system, a first major surface of a glass sheet is adhered to the self-adhesive layer of one mold of the first plurality of molds; wherein at a second position on the conveyor system, a frame is positioned on and adhered to a second major surface of the glass sheet, wherein the second major surface is opposite to the first major surface; wherein at a final position on the conveyor system, the glass sheet with bonded frame is removed from the mold; and wherein between the second position and the final position, the conveyor system has a length and speed configured to allow curing of the frame adhered to the glass sheet.
Aspect (19) pertains to the system of Aspect (18), wherein the self-adhesive layer comprises at least one of polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer.
Aspect (20) pertains to the system of Aspect (18) or Aspect (19), wherein the curved surface comprises at least one of a convex curvature or a concave curvature
Aspect (21) pertains to the system of anyone of Aspects (18) through (20), wherein the curved surface comprises both a convex curvature and a concave curvature.
Aspect (22) pertains to the system of anyone of Aspects (18) through (21), wherein the curved surface has a radius of curvature of from 30 mm to 5 m.
Aspect (23) pertains to the system of anyone of Aspects (18) through (22), wherein the system is operated at a temperature of less than 200° C.
Aspect (24) pertains to the system of anyone of Aspects (18) through (23), wherein the second position comprises a first robotic arm configured to position the frame on the second surface of the glass sheet.
Aspect (25) pertains to the system of anyone of Aspects (18) through (24), wherein the final position comprises a second robotic arm configured to remove the glass sheet with bonded frame from the self-releasing adhesive layer of the mold.
Aspect (26) pertains to the system of anyone of Aspects (18) through (24), further comprising a vacuum system configured to apply a negative pressure to a glass sheet adhered to the self-adhesive layer through a plurality of vacuum channels formed into at least one of the plurality of molds.
Aspect (27) pertains to the system of Aspect (26), wherein the vacuum system is also configured to apply a positive pressure to a glass sheet to facilitate releasing the glass sheet from the self-adhesive layer at the final position.
Aspect (28) pertains to a mold for forming a curved glass article, the mold comprising: a curved surface; and a self-adhesive layer disposed on the curved surface; wherein the self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer; and wherein the curved surface comprises at least one of a convex curvature or a concave curvature.
Aspect (29) pertains to the system of Aspect (28), wherein the curved surface comprises both a convex curvature and a concave curvature.
Aspect (30) pertains to the system of Aspect (28) or Aspect (29), wherein the curved surface has a radius of curvature of from 30 mm to 5 m.
Aspect (31) pertains to the system of anyone of Aspects (28) through (30), further comprising vacuum channels formed into the mold, wherein the vacuum channels are configured to allow a positive or negative pressure to be applied to a glass sheet.
Aspect (32) pertains to the system of anyone of Aspects (28) through (31), wherein the self-adhesive layer has an adhesion force of from 1 kgf/cm2 to 10 kgf/cm2.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is in no way intended that any particular order be inferred. In addition, as used herein, the article “a” is intended to include one or more than one component or element, and is not intended to be construed as meaning only one.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosed embodiments. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the embodiments may occur to persons skilled in the art, the disclosed embodiments should be construed to include everything within the scope of the appended claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/880,820 filed on Jul. 31, 2019 the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2068030 | Lieser | Jan 1937 | A |
2608030 | Jendrisak | Aug 1952 | A |
3197903 | Walley | Aug 1965 | A |
3338696 | Dockerty | Aug 1967 | A |
3582456 | Stolki | Jun 1971 | A |
3674589 | Schaab | Jul 1972 | A |
3682609 | Dockerty | Aug 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3778335 | Boyd | Dec 1973 | A |
3790430 | Mochel | Feb 1974 | A |
3799817 | Laethem | Mar 1974 | A |
4147527 | Bystrov et al. | Apr 1979 | A |
4238265 | Deminet | Dec 1980 | A |
4445953 | Hawk | May 1984 | A |
4455338 | Henne | Jun 1984 | A |
4859636 | Aratani et al. | Aug 1989 | A |
4899507 | Mairlot | Feb 1990 | A |
4969966 | Norman | Nov 1990 | A |
4985099 | Mertens et al. | Jan 1991 | A |
5108480 | Sugiyama | Apr 1992 | A |
5154117 | Didelot et al. | Oct 1992 | A |
5173102 | Weber et al. | Dec 1992 | A |
5245468 | Demiryont et al. | Sep 1993 | A |
5250146 | Horvath | Oct 1993 | A |
5264058 | Hoagland et al. | Nov 1993 | A |
5300184 | Masunaga | Apr 1994 | A |
5711119 | Cornils et al. | Jan 1998 | A |
5897937 | Cornils et al. | Apr 1999 | A |
6044662 | Morin | Apr 2000 | A |
6066218 | Kuhn | May 2000 | A |
6086983 | Yoshizawa | Jul 2000 | A |
6101748 | Cass et al. | Aug 2000 | A |
6242931 | Hembree et al. | Jun 2001 | B1 |
6265054 | Bravet et al. | Jul 2001 | B1 |
6270605 | Doerfler | Aug 2001 | B1 |
6274219 | Schuster et al. | Aug 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6302985 | Takahashi et al. | Oct 2001 | B1 |
6332690 | Murofushi | Dec 2001 | B1 |
6387515 | Joret et al. | May 2002 | B1 |
6420800 | Levesque et al. | Jul 2002 | B1 |
6426138 | Narushima et al. | Jul 2002 | B1 |
6582799 | Brown et al. | Jun 2003 | B1 |
6620365 | Odoi et al. | Sep 2003 | B1 |
6816225 | Colgan et al. | Nov 2004 | B2 |
6903871 | Page | Jun 2005 | B2 |
7297040 | Chang et al. | Nov 2007 | B2 |
7375782 | Yamazaki et al. | May 2008 | B2 |
7478930 | Choi | Jan 2009 | B2 |
7489303 | Pryor | Feb 2009 | B1 |
7542302 | Curnalia et al. | Jun 2009 | B1 |
7750821 | Taborisskiy et al. | Jul 2010 | B1 |
7955470 | Kapp et al. | Jun 2011 | B2 |
8298431 | Chwu et al. | Oct 2012 | B2 |
8344369 | Yamazaki et al. | Jan 2013 | B2 |
8521955 | Arulambalam et al. | Aug 2013 | B2 |
8549885 | Dannoux et al. | Oct 2013 | B2 |
8586492 | Barefoot et al. | Nov 2013 | B2 |
8652978 | Dejneka et al. | Feb 2014 | B2 |
8692787 | Imazeki | Apr 2014 | B2 |
8702253 | Lu et al. | Apr 2014 | B2 |
8765262 | Gross | Jul 2014 | B2 |
8814372 | Vandal et al. | Aug 2014 | B2 |
8833106 | Dannoux et al. | Sep 2014 | B2 |
8912447 | Leong et al. | Dec 2014 | B2 |
8923693 | Yeates | Dec 2014 | B2 |
8962084 | Brackley et al. | Feb 2015 | B2 |
8967834 | Timmerman et al. | Mar 2015 | B2 |
8969226 | Dejneka et al. | Mar 2015 | B2 |
8978418 | Balduin et al. | Mar 2015 | B2 |
9007226 | Chang | Apr 2015 | B2 |
9061934 | Bisson et al. | Jun 2015 | B2 |
9090501 | Dkahata et al. | Jul 2015 | B2 |
9109881 | Roussev et al. | Aug 2015 | B2 |
9140543 | Allan et al. | Sep 2015 | B1 |
9156724 | Gross | Oct 2015 | B2 |
9223162 | Deforest et al. | Dec 2015 | B2 |
9240437 | Shieh et al. | Jan 2016 | B2 |
9278500 | Filipp | Mar 2016 | B2 |
9278655 | Jones et al. | Mar 2016 | B2 |
9290413 | Dejneka et al. | Mar 2016 | B2 |
9346703 | Bookbinder et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9357638 | Lee | May 2016 | B2 |
9442028 | Roussev et al. | Sep 2016 | B2 |
9446723 | Stepanski | Sep 2016 | B2 |
9469561 | Kladias et al. | Oct 2016 | B2 |
9517967 | Dejneka et al. | Dec 2016 | B2 |
9573843 | Keegan et al. | Feb 2017 | B2 |
9593042 | Hu et al. | Mar 2017 | B2 |
9595960 | Wilford | Mar 2017 | B2 |
9606625 | Levesque et al. | Mar 2017 | B2 |
9617180 | Bookbinder et al. | Apr 2017 | B2 |
9637926 | Kraus, Jr. | May 2017 | B2 |
9663396 | Miyasaka et al. | May 2017 | B2 |
9694570 | Levasseur et al. | Jul 2017 | B2 |
9700985 | Kashima et al. | Jul 2017 | B2 |
9701564 | Bookbinder et al. | Jul 2017 | B2 |
9720450 | Choi et al. | Aug 2017 | B2 |
9724727 | Domey et al. | Aug 2017 | B2 |
9802485 | Masuda et al. | Oct 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9821509 | Kastell | Nov 2017 | B2 |
9895975 | Lee et al. | Feb 2018 | B2 |
9902640 | Dannoux et al. | Feb 2018 | B2 |
9931817 | Rickerl | Apr 2018 | B2 |
9933820 | Helot et al. | Apr 2018 | B2 |
9947882 | Zhang et al. | Apr 2018 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
9957190 | Finkeldey et al. | May 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
9972645 | Kim | May 2018 | B2 |
9975801 | Maschmeyer et al. | May 2018 | B2 |
9992888 | Moon et al. | Jun 2018 | B2 |
10005246 | Stepanski | Jun 2018 | B2 |
10017033 | Fisher et al. | Jul 2018 | B2 |
10042391 | Yun et al. | Aug 2018 | B2 |
10074824 | Han et al. | Sep 2018 | B2 |
10086762 | Uhm | Oct 2018 | B2 |
10131118 | Kang et al. | Nov 2018 | B2 |
10140018 | Kim et al. | Nov 2018 | B2 |
10153337 | Lee et al. | Dec 2018 | B2 |
10175802 | Boggs et al. | Jan 2019 | B2 |
10211416 | Jin et al. | Feb 2019 | B2 |
10222825 | Wang et al. | Mar 2019 | B2 |
10273184 | Garner et al. | Apr 2019 | B2 |
10303223 | Park et al. | May 2019 | B2 |
10303315 | Jeong et al. | May 2019 | B2 |
10326101 | Oh et al. | Jun 2019 | B2 |
10328865 | Jung | Jun 2019 | B2 |
10343377 | Levasseur et al. | Jul 2019 | B2 |
10347700 | Yang et al. | Jul 2019 | B2 |
10377656 | Dannoux et al. | Aug 2019 | B2 |
10421683 | Schillinger et al. | Sep 2019 | B2 |
10427383 | Levasseur et al. | Oct 2019 | B2 |
10444427 | Bookbinder et al. | Oct 2019 | B2 |
10483210 | Gross et al. | Nov 2019 | B2 |
10500958 | Cho et al. | Dec 2019 | B2 |
10606395 | Boggs et al. | Mar 2020 | B2 |
10649267 | Tuan et al. | May 2020 | B2 |
10788707 | Al et al. | Sep 2020 | B2 |
10976607 | Huang et al. | Apr 2021 | B2 |
20020039229 | Hirose et al. | Apr 2002 | A1 |
20040026021 | Groh et al. | Feb 2004 | A1 |
20040069770 | Cary et al. | Apr 2004 | A1 |
20040107731 | Doehring et al. | Jun 2004 | A1 |
20040258929 | Glaubitt et al. | Dec 2004 | A1 |
20050178158 | Moulding et al. | Aug 2005 | A1 |
20060227125 | Wong et al. | Oct 2006 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070195419 | Tsuda et al. | Aug 2007 | A1 |
20070210621 | Barton et al. | Sep 2007 | A1 |
20070221313 | Franck | Sep 2007 | A1 |
20070223121 | Franck et al. | Sep 2007 | A1 |
20070291384 | Wang | Dec 2007 | A1 |
20080031991 | Choi et al. | Feb 2008 | A1 |
20080093753 | Schuetz | Apr 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080303976 | Nishizawa et al. | Dec 2008 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090101208 | Vandal et al. | Apr 2009 | A1 |
20090117332 | Ellsworth et al. | May 2009 | A1 |
20090179840 | Tanaka et al. | Jul 2009 | A1 |
20090185127 | Tanaka et al. | Jul 2009 | A1 |
20090201443 | Sasaki et al. | Aug 2009 | A1 |
20090311497 | Aoki | Dec 2009 | A1 |
20100000259 | Ukrainczyk et al. | Jan 2010 | A1 |
20100031590 | Buchwald et al. | Feb 2010 | A1 |
20100065342 | Shaikh | Mar 2010 | A1 |
20100103138 | Huang et al. | Apr 2010 | A1 |
20100182143 | Lynam | Jul 2010 | A1 |
20100245253 | Rhyu et al. | Sep 2010 | A1 |
20110057465 | Beau et al. | Mar 2011 | A1 |
20110148267 | McDaniel et al. | Jun 2011 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120111056 | Prest | May 2012 | A1 |
20120128952 | Miwa et al. | May 2012 | A1 |
20120134025 | Hart | May 2012 | A1 |
20120144866 | Liu et al. | Jun 2012 | A1 |
20120152897 | Cheng et al. | Jun 2012 | A1 |
20120196110 | Murata et al. | Aug 2012 | A1 |
20120202030 | Kondo et al. | Aug 2012 | A1 |
20120218640 | Gollier et al. | Aug 2012 | A1 |
20120263945 | Yoshikawa | Oct 2012 | A1 |
20120280368 | Garner et al. | Nov 2012 | A1 |
20120320509 | Kim et al. | Dec 2012 | A1 |
20130020007 | Niiyama et al. | Jan 2013 | A1 |
20130033885 | Oh et al. | Feb 2013 | A1 |
20130070340 | Shelestak et al. | Mar 2013 | A1 |
20130081428 | Liu et al. | Apr 2013 | A1 |
20130088441 | Chung et al. | Apr 2013 | A1 |
20130120850 | Lambert et al. | May 2013 | A1 |
20130186141 | Henry | Jul 2013 | A1 |
20130209824 | Sun et al. | Aug 2013 | A1 |
20130279188 | Entenmann et al. | Oct 2013 | A1 |
20130314642 | Timmerman et al. | Nov 2013 | A1 |
20130329346 | Dannoux et al. | Dec 2013 | A1 |
20130330495 | Maatta et al. | Dec 2013 | A1 |
20140014260 | Chowdhury et al. | Jan 2014 | A1 |
20140036428 | Seng et al. | Feb 2014 | A1 |
20140065374 | Tsuchiya et al. | Mar 2014 | A1 |
20140141206 | Gillard et al. | May 2014 | A1 |
20140146538 | Zenker et al. | May 2014 | A1 |
20140153234 | Knoche et al. | Jun 2014 | A1 |
20140153894 | Jenkins et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140168546 | Magnusson et al. | Jun 2014 | A1 |
20140234581 | Immerman et al. | Aug 2014 | A1 |
20140308464 | Levasseur et al. | Oct 2014 | A1 |
20140312518 | Levasseur et al. | Oct 2014 | A1 |
20140333848 | Chen | Nov 2014 | A1 |
20140340609 | Taylor et al. | Nov 2014 | A1 |
20150015807 | Franke et al. | Jan 2015 | A1 |
20150072129 | Okahata et al. | Mar 2015 | A1 |
20150077429 | Eguchi et al. | Mar 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150168768 | Nagatani | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150210588 | Chang et al. | Jul 2015 | A1 |
20150246424 | Venkatachalam et al. | Sep 2015 | A1 |
20150246507 | Brown et al. | Sep 2015 | A1 |
20150274585 | Rogers et al. | Oct 2015 | A1 |
20150322270 | Amin et al. | Nov 2015 | A1 |
20150336357 | Kang et al. | Nov 2015 | A1 |
20150351272 | Wildner et al. | Dec 2015 | A1 |
20150357387 | Lee et al. | Dec 2015 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160009068 | Garner | Jan 2016 | A1 |
20160016849 | Allan | Jan 2016 | A1 |
20160039705 | Kato et al. | Feb 2016 | A1 |
20160052241 | Zhang | Feb 2016 | A1 |
20160066463 | Yang et al. | Mar 2016 | A1 |
20160081204 | Park et al. | Mar 2016 | A1 |
20160083282 | Jouanno et al. | Mar 2016 | A1 |
20160083292 | Tabe et al. | Mar 2016 | A1 |
20160091645 | Birman et al. | Mar 2016 | A1 |
20160102015 | Yasuda et al. | Apr 2016 | A1 |
20160113135 | Kim et al. | Apr 2016 | A1 |
20160207290 | Cleary et al. | Jul 2016 | A1 |
20160214889 | Garner et al. | Jul 2016 | A1 |
20160216434 | Shih et al. | Jul 2016 | A1 |
20160250982 | Fisher et al. | Sep 2016 | A1 |
20160252656 | Waldschmidt et al. | Sep 2016 | A1 |
20160259365 | Wang et al. | Sep 2016 | A1 |
20160272529 | Hong et al. | Sep 2016 | A1 |
20160297176 | Rickerl | Oct 2016 | A1 |
20160306451 | Isoda et al. | Oct 2016 | A1 |
20160313494 | Hamilton et al. | Oct 2016 | A1 |
20160354996 | Alder et al. | Dec 2016 | A1 |
20160355091 | Lee et al. | Dec 2016 | A1 |
20160355901 | Isozaki et al. | Dec 2016 | A1 |
20160375808 | Etienne et al. | Dec 2016 | A1 |
20170008377 | Fisher et al. | Jan 2017 | A1 |
20170021661 | Pelucchi | Jan 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170081238 | Jones et al. | Mar 2017 | A1 |
20170088454 | Fukushima et al. | Mar 2017 | A1 |
20170094039 | Lu | Mar 2017 | A1 |
20170115944 | Oh et al. | Apr 2017 | A1 |
20170158551 | Bookbinder et al. | Jun 2017 | A1 |
20170160434 | Hart et al. | Jun 2017 | A1 |
20170185289 | Kim et al. | Jun 2017 | A1 |
20170190152 | Notsu et al. | Jul 2017 | A1 |
20170197561 | McFarland | Jul 2017 | A1 |
20170213872 | Jinbo et al. | Jul 2017 | A1 |
20170217290 | Yoshizumi et al. | Aug 2017 | A1 |
20170217815 | Dannoux et al. | Aug 2017 | A1 |
20170240772 | Dohner et al. | Aug 2017 | A1 |
20170247291 | Hatano et al. | Aug 2017 | A1 |
20170262057 | Knittl et al. | Sep 2017 | A1 |
20170263690 | Lee et al. | Sep 2017 | A1 |
20170274627 | Chang et al. | Sep 2017 | A1 |
20170285227 | Chen et al. | Oct 2017 | A1 |
20170305786 | Roussev et al. | Oct 2017 | A1 |
20170327402 | Fujii et al. | Nov 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170349473 | Moriya et al. | Dec 2017 | A1 |
20180009197 | Gross et al. | Jan 2018 | A1 |
20180014420 | Amin et al. | Jan 2018 | A1 |
20180031743 | Wakatsuki et al. | Feb 2018 | A1 |
20180050948 | Faik et al. | Feb 2018 | A1 |
20180069053 | Bok | Mar 2018 | A1 |
20180072022 | Tsai et al. | Mar 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180111569 | Faik et al. | Apr 2018 | A1 |
20180122863 | Bok | May 2018 | A1 |
20180125228 | Porter et al. | May 2018 | A1 |
20180134232 | Jacques | May 2018 | A1 |
20180141850 | Dejneka et al. | May 2018 | A1 |
20180147985 | Brown et al. | May 2018 | A1 |
20180149777 | Brown | May 2018 | A1 |
20180149907 | Gahagan et al. | May 2018 | A1 |
20180164850 | Sim et al. | Jun 2018 | A1 |
20180186674 | Kumar | Jul 2018 | A1 |
20180188869 | Boggs | Jul 2018 | A1 |
20180188870 | Boggs | Jul 2018 | A1 |
20180208131 | Mattelet et al. | Jul 2018 | A1 |
20180208494 | Mattelet et al. | Jul 2018 | A1 |
20180210118 | Gollier et al. | Jul 2018 | A1 |
20180215125 | Gahagan | Aug 2018 | A1 |
20180245125 | Tsai et al. | Aug 2018 | A1 |
20180304825 | Mattelet et al. | Oct 2018 | A1 |
20180324964 | Yoo et al. | Nov 2018 | A1 |
20180345644 | Kang et al. | Dec 2018 | A1 |
20180364760 | Ahn et al. | Dec 2018 | A1 |
20180374906 | Everaerts et al. | Dec 2018 | A1 |
20190034017 | Boggs et al. | Jan 2019 | A1 |
20190039352 | Zhao et al. | Feb 2019 | A1 |
20190039935 | Couillard et al. | Feb 2019 | A1 |
20190069451 | Myers et al. | Feb 2019 | A1 |
20190077337 | Gervelmeyer | Mar 2019 | A1 |
20190152831 | An et al. | May 2019 | A1 |
20190223309 | Amin et al. | Jul 2019 | A1 |
20190295494 | Wang et al. | Sep 2019 | A1 |
20190315648 | Kumar et al. | Oct 2019 | A1 |
20190329531 | Brennan et al. | Oct 2019 | A1 |
20200064535 | Haan et al. | Feb 2020 | A1 |
20200301192 | Huang et al. | Sep 2020 | A1 |
20210055599 | Chen et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
1587132 | Mar 2005 | CN |
1860081 | Nov 2006 | CN |
101600846 | Dec 2009 | CN |
101684032 | Mar 2010 | CN |
201989544 | Sep 2011 | CN |
102341356 | Feb 2012 | CN |
102464456 | May 2012 | CN |
102566841 | Jul 2012 | CN |
103136490 | Jun 2013 | CN |
103587161 | Feb 2014 | CN |
203825589 | Sep 2014 | CN |
204111583 | Jan 2015 | CN |
104656999 | May 2015 | CN |
104679341 | Jun 2015 | CN |
204463066 | Jul 2015 | CN |
104843976 | Aug 2015 | CN |
105118391 | Dec 2015 | CN |
105511127 | Apr 2016 | CN |
205239166 | May 2016 | CN |
105705330 | Jun 2016 | CN |
106256794 | Dec 2016 | CN |
205905907 | Jan 2017 | CN |
106458683 | Feb 2017 | CN |
206114596 | Apr 2017 | CN |
206114956 | Apr 2017 | CN |
107613809 | Jan 2018 | CN |
107757516 | Mar 2018 | CN |
108519831 | Sep 2018 | CN |
108550587 | Sep 2018 | CN |
108725350 | Nov 2018 | CN |
109070470 | Dec 2018 | CN |
109135605 | Jan 2019 | CN |
109690662 | Apr 2019 | CN |
109743421 | May 2019 | CN |
4415787 | Nov 1995 | DE |
4415878 | Nov 1995 | DE |
69703490 | May 2001 | DE |
102004022008 | Dec 2004 | DE |
102004002208 | Aug 2005 | DE |
102009021938 | Nov 2010 | DE |
102010007204 | Aug 2011 | DE |
102013214108 | Feb 2015 | DE |
102014116798 | May 2016 | DE |
0076924 | Apr 1983 | EP |
0316224 | May 1989 | EP |
0347049 | Dec 1989 | EP |
0418700 | Mar 1991 | EP |
0423698 | Apr 1991 | EP |
0525970 | Feb 1993 | EP |
0664210 | Jul 1995 | EP |
1013622 | Jun 2000 | EP |
1031409 | Aug 2000 | EP |
1046493 | Oct 2000 | EP |
0910721 | Nov 2000 | EP |
1647663 | Apr 2006 | EP |
2236281 | Oct 2010 | EP |
2385630 | Nov 2011 | EP |
2521118 | Nov 2012 | EP |
2852502 | Apr 2015 | EP |
2933718 | Oct 2015 | EP |
3093181 | Nov 2016 | EP |
3100854 | Dec 2016 | EP |
3118174 | Jan 2017 | EP |
3118175 | Jan 2017 | EP |
3144141 | Mar 2017 | EP |
3156286 | Apr 2017 | EP |
3189965 | Jul 2017 | EP |
3288791 | Mar 2018 | EP |
3426614 | Jan 2019 | EP |
3532442 | Sep 2019 | EP |
2750075 | Dec 1997 | FR |
2918411 | Jan 2009 | FR |
3012073 | Apr 2015 | FR |
0805770 | Dec 1958 | GB |
0991867 | May 1965 | GB |
1319846 | Jun 1973 | GB |
2011316 | Jul 1979 | GB |
2281542 | Mar 1995 | GB |
55-154329 | Dec 1980 | JP |
57-048082 | Mar 1982 | JP |
58-073681 | May 1983 | JP |
58-194751 | Nov 1983 | JP |
59-076561 | May 1984 | JP |
63-089317 | Apr 1988 | JP |
63-190730 | Aug 1988 | JP |
03-059337 | Jun 1991 | JP |
3059337 | Jun 1991 | JP |
03-228840 | Oct 1991 | JP |
04-119931 | Apr 1992 | JP |
05-116972 | May 1993 | JP |
06-340029 | Dec 1994 | JP |
10-218630 | Aug 1998 | JP |
11-001349 | Jan 1999 | JP |
11-006029 | Jan 1999 | JP |
11-060293 | Mar 1999 | JP |
2000-260330 | Sep 2000 | JP |
2002-255574 | Sep 2002 | JP |
2003-500260 | Jan 2003 | JP |
2003-276571 | Oct 2003 | JP |
2003-321257 | Nov 2003 | JP |
2004-101712 | Apr 2004 | JP |
2004-284839 | Oct 2004 | JP |
2006-181936 | Jul 2006 | JP |
2007-188035 | Jul 2007 | JP |
2007-197288 | Aug 2007 | JP |
2010-145731 | Jul 2010 | JP |
2012-111661 | Jun 2012 | JP |
2013-084269 | May 2013 | JP |
2014-126564 | Jul 2014 | JP |
2015-502901 | Jan 2015 | JP |
2015-092422 | May 2015 | JP |
5748082 | Jul 2015 | JP |
5796561 | Oct 2015 | JP |
2016-500458 | Jan 2016 | JP |
2016-031696 | Mar 2016 | JP |
2016-517380 | Jun 2016 | JP |
2016-130810 | Jul 2016 | JP |
2016-144008 | Aug 2016 | JP |
5976561 | Aug 2016 | JP |
2016-173794 | Sep 2016 | JP |
2016-530204 | Sep 2016 | JP |
2016-203609 | Dec 2016 | JP |
2016-207200 | Dec 2016 | JP |
6281825 | Feb 2018 | JP |
6281825 | Feb 2018 | JP |
6340029 | Jun 2018 | JP |
2002-0019045 | Mar 2002 | KR |
10-0479282 | Aug 2005 | KR |
10-2008-0023888 | Mar 2008 | KR |
10-2013-0005776 | Jan 2013 | KR |
10-2014-0111403 | Sep 2014 | KR |
10-2015-0026911 | Mar 2015 | KR |
10-2015-0033969 | Apr 2015 | KR |
10-2015-0051458 | May 2015 | KR |
10-1550833 | Sep 2015 | KR |
1550833 | Sep 2015 | KR |
10-2015-0121101 | Oct 2015 | KR |
10-2016-0118746 | Oct 2016 | KR |
10-1674060 | Nov 2016 | KR |
10-2016-0144008 | Dec 2016 | KR |
10-2017-0000208 | Jan 2017 | KR |
10-2017-0106263 | Sep 2017 | KR |
10-2017-0107124 | Sep 2017 | KR |
10-2017-0113822 | Oct 2017 | KR |
10-2017-0121674 | Nov 2017 | KR |
10-2018-0028597 | Mar 2018 | KR |
10-2018-0049484 | May 2018 | KR |
10-2018-0049780 | May 2018 | KR |
10-2019-0001864 | Jan 2019 | KR |
10-2019-0081264 | Jul 2019 | KR |
200704268 | Jan 2007 | TW |
201438895 | Oct 2014 | TW |
201546006 | Dec 2015 | TW |
201636309 | Oct 2016 | TW |
201637857 | Nov 2016 | TW |
58334 | Jul 2018 | VN |
9425272 | Nov 1994 | WO |
9739074 | Oct 1997 | WO |
9801649 | Jan 1998 | WO |
0073062 | Dec 2000 | WO |
2006095005 | Sep 2006 | WO |
2007108861 | Sep 2007 | WO |
2008042731 | Apr 2008 | WO |
2008153484 | Dec 2008 | WO |
2009072530 | Jun 2009 | WO |
2011029852 | Mar 2011 | WO |
2011144359 | Nov 2011 | WO |
2011155403 | Dec 2011 | WO |
2012005307 | Jan 2012 | WO |
2012058084 | May 2012 | WO |
2012166343 | Dec 2012 | WO |
2013072611 | May 2013 | WO |
2013072612 | May 2013 | WO |
2013174715 | Nov 2013 | WO |
2013175106 | Nov 2013 | WO |
2014085663 | Jun 2014 | WO |
2014107640 | Jul 2014 | WO |
2014172237 | Oct 2014 | WO |
2014175371 | Oct 2014 | WO |
2015031594 | Mar 2015 | WO |
2015055583 | Apr 2015 | WO |
2015057552 | Apr 2015 | WO |
2015084902 | Jun 2015 | WO |
2015085283 | Jun 2015 | WO |
2015141966 | Sep 2015 | WO |
2016007815 | Jan 2016 | WO |
2016007843 | Jan 2016 | WO |
2016010947 | Jan 2016 | WO |
2016010949 | Jan 2016 | WO |
2016044360 | Mar 2016 | WO |
2016069113 | May 2016 | WO |
2016070974 | May 2016 | WO |
2016115311 | Jul 2016 | WO |
2016125713 | Aug 2016 | WO |
2016136758 | Sep 2016 | WO |
2016173699 | Nov 2016 | WO |
2016183059 | Nov 2016 | WO |
2016195301 | Dec 2016 | WO |
2016196531 | Dec 2016 | WO |
2016196546 | Dec 2016 | WO |
2016202605 | Dec 2016 | WO |
2017015392 | Jan 2017 | WO |
2017019851 | Feb 2017 | WO |
2017023673 | Feb 2017 | WO |
2017106081 | Jun 2017 | WO |
2017146866 | Aug 2017 | WO |
2017155932 | Sep 2017 | WO |
2017158031 | Sep 2017 | WO |
WO-2017155932 | Sep 2017 | WO |
WO-2017218652 | Dec 2017 | WO |
2018005646 | Jan 2018 | WO |
2018009504 | Jan 2018 | WO |
2018015392 | Jan 2018 | WO |
WO-2018005646 | Jan 2018 | WO |
WO-2018009504 | Jan 2018 | WO |
2018075853 | Apr 2018 | WO |
WO-2018075853 | Apr 2018 | WO |
2018081068 | May 2018 | WO |
WO-2018081068 | May 2018 | WO |
2018102332 | Jun 2018 | WO |
2018125683 | Jul 2018 | WO |
WO-2018129065 | Jul 2018 | WO |
2018160812 | Sep 2018 | WO |
2018200454 | Nov 2018 | WO |
2018200807 | Nov 2018 | WO |
2018213267 | Nov 2018 | WO |
2019055469 | Mar 2019 | WO |
2019055652 | Mar 2019 | WO |
2019074800 | Apr 2019 | WO |
2019075065 | Apr 2019 | WO |
2019151618 | Aug 2019 | WO |
Entry |
---|
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages. |
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation C770-16, 2016. |
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages. |
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages. |
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages. |
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”. |
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages. |
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 DIGEST; pp. 1786-1788, v37, 2006. |
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages. |
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages. |
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI. |
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017]. |
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136. |
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84. |
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass” Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689. |
Galuppi L et al: “Optimal cold bending of laminated glass”, 20070101 vol. 52, No. 1/2 Jan. 1, 2007 K2007-01-01), pp. 123-146. |
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297. |
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office. |
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014). |
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469. |
Pambianchi et al.; “Corning Incorporated: Designing a New Future With Glass and Optics” Chapter 1 In “Materials Research for Manufacturing: An Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016). |
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center Cnsole Work Premiere Automotive World; Downloaded Jul. 12, 2017; 2 Pages. |
Photodon, “Screen Protectors for Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015). |
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Corning Incorporated, 2015, Rev: F_090315, 2 pages. |
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10. |
Stattler; “New Wave—Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages. |
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010). |
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550. |
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages. |
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages. |
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages. |
Doyle et al; “Manual on Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages. |
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. ENGLISH; 181 Pages. |
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages. |
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages. |
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages. |
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (eds) (2014); 9 Pages. |
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages. |
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015)285-300. |
Galuppi et al; “Optical Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243. |
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age. |
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass-New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 Pages. |
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International, Feb. 2004 pp. 95-97. |
Weijde; “Graduation Plan”; Jan. 2017; 30 Pages. |
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages. |
European Patent Application No. 20187179.5 European Search Report and Search Opinion dated Dec. 17, 2020; 7 Pages; European Patent Office. |
Number | Date | Country | |
---|---|---|---|
20210032150 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62880820 | Jul 2019 | US |