Method and system for cold-forming glass

Information

  • Patent Grant
  • 11685685
  • Patent Number
    11,685,685
  • Date Filed
    Friday, July 31, 2020
    3 years ago
  • Date Issued
    Tuesday, June 27, 2023
    11 months ago
Abstract
Disclosed are embodiments of a method of forming a curved glass article. In the method, a mold having a curved surface is provided. A self-adhesive layer is disposed on the curved surface. A glass sheet is bent into conformity with the curved surface at a temperature less than the glass transition temperature of the glass sheet. The glass sheet includes a first major surface and a second major surface in which the second major surface is opposite to the first major surface. The first major surface is adhered to the self-adhesive layer. A frame is bonded to the second major surface of the glass sheet, and the glass sheet is removed from the self-adhesive layer. A system for performing the method and a mold having a self-adhesive layer are also disclosed.
Description
BACKGROUND

The disclosure relates to vehicle interior systems including glass and methods for forming the same, and more particularly to vehicle interior systems including a curved glass article with a cold-formed or cold-bent cover glass and methods for forming the same.


Vehicle interiors include curved surfaces and can incorporate displays in such curved surfaces. The materials used to form such curved surfaces are typically limited to polymers, which do not exhibit the durability and optical performance as glass. As such, curved glass sheets are desirable, especially when used as covers for displays. Existing methods of forming such curved glass sheets, such as thermal forming, have drawbacks including high cost, optical distortion, and surface marking. Accordingly, Applicant has identified a need for vehicle interior systems that can incorporate a curved glass sheet in a cost-effective manner and without problems typically associated with glass thermal forming processes.


SUMMARY

According to an aspect, embodiments of the disclosure relate to a method of forming a curved glass article. In the method, a mold having a curved surface is provided. A self-adhesive layer is disposed on the curved surface. A glass sheet is bent into conformity with the curved surface at a temperature less than the glass transition temperature of the glass sheet. The glass sheet includes a first major surface and a second major surface in which the second major surface is opposite to the first major surface. The first major surface is adhered to the self-adhesive layer. A frame is bonded to the second major surface of the glass sheet, and the glass sheet is removed from the self-adhesive layer.


According to another aspect, embodiments of the disclosure relate to a system for cold-forming curved glass articles. The system includes a conveyor system, and a plurality of molds arranged on the conveyor system. Each of the plurality of molds comprising a curved surface and a self-adhesive layer. At a first position on the conveyor system, a first major surface of a glass sheet is adhered to the self-adhesive layer of one mold of the first plurality of molds. At a second position on the conveyor system, a frame is positioned on and adhered to a second major surface of the glass sheet. The second major surface is opposite to the first major surface. At a final position on the conveyor system, the glass sheet with bonded frame is removed from the mold. Between the second position and the final position, the conveyor system has a length and speed configured to allow curing of the frame adhered to the glass sheet.


According to still another aspect, embodiments of the disclosure relate to a mold for forming a curved glass article. The mold includes a curved surface and a self-adhesive layer disposed on the curved surface. The self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer. Further, the curved surface comprises at least one of a convex curvature or a concave curvature.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a vehicle interior with vehicle interior systems, according to exemplary embodiments.



FIGS. 2A and 2B depict a curved glass article, according to an exemplary embodiment.



FIG. 3 depicts a close-up view of a corner of the curved glass article of FIG. 2A, according to an exemplary embodiment.



FIG. 4 depicts a mold with a self-adhesive layer for cold-forming a curved glass article, according to an exemplary embodiment.



FIG. 5 depicts the mold of FIG. 4 with a glass sheet thereon, according to an exemplary embodiment.



FIG. 6 depicts the mold of FIG. 4 with a glass sheet and frame thereon, according to an exemplary embodiment.



FIG. 7 depicts the mold of FIG. 4 with a curved glass article being released from the self-adhesive layer after the adhesive bonding the frame to the glass sheet has cured, according to an exemplary embodiment.



FIGS. 8 and 9 depict embodiments of molds having curvatures different from the mold shown in FIG. 4, according to exemplary embodiments.



FIG. 10 depicts another embodiment of a mold having vacuum channels, according to an exemplary embodiment.



FIG. 11 depicts a system for cold-forming a glass sheet, according to an exemplary embodiment.



FIG. 12 depicts a glass sheet with exemplary dimensions, according to an exemplary embodiment.





DETAILED DESCRIPTION

Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In general, a vehicle interior system may include a variety of different curved surfaces that are designed to be transparent, such as curved display surfaces and curved non-display glass covers, and the present disclosure provides articles and methods for forming these curved surfaces from a glass material. Forming curved vehicle surfaces from a glass material provide a number of advantages compared to the typical curved plastic panels that are conventionally found in vehicle interiors. For example, glass is typically considered to provide enhanced functionality and user experience in many curved cover material applications, such as display applications and touch screen applications, compared to plastic cover materials.


Accordingly, as will be discussed in more detail below, Applicant has developed a glass article and related manufacturing processes that provide an efficient and cost effective way to form an article, such as a display for a vehicle interior system, utilizing a cold-bent glass sheet.


In particular embodiments, the curved glass article is formed by adhering a glass sheet to a curved mold using a self-adhesive layer. Thereafter, an adhesive is applied to either the bent glass sheet while on the mold or to the frame, and a frame is adhered to the bent glass sheet. The adhesive is allowed to cure while the glass is on the mold to bond the frame to the glass sheet to form the curved glass article. The curved glass article can be removed from the self-adhesive layer, and the mold can be reused for another molding process. In embodiments, a system for molding glass articles is provided. In the system, a plurality of molds is provided, which allows for multiple glass articles to be made and cured at the same time. In embodiments of the system, the actions of adhering the glass sheet to the mold and removing the glass article from the mold can be automated, e.g., the actions can be performed by robots while moving the plurality of molds around a conveyor system. Various aspects and advantages of the curved glass article and method of forming same will be described in relation to the exemplary embodiments described herein and shown in the figures.



FIG. 1 shows an exemplary vehicle interior 1000 that includes three different embodiments of a vehicle interior system 100, 200, 300. Vehicle interior system 100 includes a frame, shown as center console base 110, with a curved surface 120 including a curved display 130. Vehicle interior system 200 includes a frame, shown as dashboard base 210, with a curved surface 220 including a curved display 230. The dashboard base 210 typically includes an instrument panel 215 which may also include a curved display. Vehicle interior system 300 includes a frame, shown as steering wheelbase 310, with a curved surface 320 and a curved display 330. In one or more embodiments, the vehicle interior system includes a frame that is an arm rest, a pillar, a seat back, a floorboard, a headrest, a door panel, or any portion of the interior of a vehicle that includes a curved surface. In other embodiments, the frame is a portion of a housing for a free-standing display (i.e., a display that is not permanently connected to a portion of the vehicle). In embodiments, the display 130, 230, 330 may be at least one of a light-emitting diode display, an organic light-emitting diode display, a plasma display, or a liquid crystal display bonded to a rear surface (e.g., using an optically clear adhesive) of a curved glass article 10 disclosed herein.


The embodiments of the curved glass article described herein can be used in each of vehicle interior systems 100, 200 and 300. Further, the curved glass articles discussed herein may be used as curved cover glasses for any of the curved display embodiments discussed herein, including for use in vehicle interior systems 100, 200 and/or 300. Further, in various embodiments, various non-display components of vehicle interior systems 100, 200 and 300 may be formed from the glass articles discussed herein. In some such embodiments, the glass articles discussed herein may be used as the non-display cover surface for the dashboard, center console, door panel, etc. In such embodiments, glass material may be selected based on its weight, aesthetic appearance, etc. and may be provided with a coating (e.g., an ink or pigment coating) with a pattern (e.g., a brushed metal appearance, a wood grain appearance, a leather appearance, a colored appearance, etc.) to visually match the glass components with adjacent non-glass components. In specific embodiments, such ink or pigment coating may have a transparency level that provides for deadfront functionality.



FIG. 2A depicts a curved glass article 10, such as the cover glass for curved display 130, 230, 330 according to exemplary embodiments. It should be understood that, while FIG. 2A is described in terms of forming curved display 130, 230, 330, the curved glass article 10 of FIG. 2A may be used in any suitable curved glass application, including any curved glass component of any of the vehicle interior systems of FIG. 1 or other curved glass surfaces of the vehicle interior 1000. Such curved glass components could be display or non-display regions, e.g., a flat display area and a curved non-display area, curved displays, and curved display and curved non-display areas.


As shown in FIG. 2A, the curved glass article 10 includes a glass sheet 12 and a frame 14. The frame 14 holds the glass sheet 12 in a curved configuration. As shown in the side view of FIG. 2B, the glass sheet 12 includes a first major surface 16 and a second major surface 18 opposite first major surface 16. In embodiments, the second major surface 18 is a rear surface of the A minor surface 20 connects the first major surface 16 and the second major surface 18, and in specific embodiments, minor surface 20 defines the outer perimeter of glass sheet 12. The glass sheet 12 is attached to the frame 14 via an adhesive layer 22. As shown in the close-up view of FIG. 3, in embodiments, the adhesive layer 22 is applied only where the frame 14 is attached to the glass sheet 12.


The adhesive layer 22 provides long term strength after curing over the course of, e.g., about an hour at ambient temperature. In embodiments, exemplary adhesives for the adhesive layer 22 include toughened epoxy, flexible epoxy, acrylics, silicones, urethanes, polyurethanes, and silane modified polymers. In specific embodiments, the adhesive layer 22 includes one or more toughened epoxies, such as EP21TDCHT-LO (available from Masterbond®, Hackensack, N.J.), 3M™ Scotch-Weld™ Epoxy DP460 Off-White (available from 3M, St. Paul, Minn.). In other embodiments, the adhesive layer 22 includes one or more flexible epoxies, such as Masterbond EP21TDC-2LO (available from Masterbond®, Hackensack, N.J.), 3M™ Scotch-Weld™ Epoxy 2216 B/A Gray (available from 3M, St. Paul, Minn.), and 3M™ Scotch-Weld™ Epoxy DP125. In still other embodiments, the adhesive layer 22 includes one or more acrylics, such as LORD® Adhesive 410/Accelerator 19 w/LORD® AP 134 primer, LORD® Adhesive 852/LORD® Accelerator 25 GB (both being available from LORD Corporation, Cary, N.C.), DELO PUR SJ9356 (available from DELO Industrial Adhesives, Windach, Germany), Loctite® AA4800, Loctite® HF8000. TEROSON® MS 9399, and TEROSON® MS 647-2C (these latter four being available from Henkel AG & Co. KGaA, Dusseldorf, Germany), among others. In yet other embodiments, the adhesive layer 22 includes one or more urethanes, such as 3M™ Scotch-Weld™ Urethane DP640 Brown and 3M™ Scotch-Weld™ Urethane DP604, and in still further embodiments, the adhesive layer 22 includes one or more silicones, such as Dow Corning® 995 (available from Dow Corning Corporation, Midland, Mich.).


Returning to FIG. 2B, the glass sheet 12 has a curved shape such that first major surface 16 and second major surface 18 each include at least one curved section having a radius of curvature R1. In embodiments, R1 is between 30 mm and 5 m. Further, in embodiments, the glass sheet 12 has a thickness T1 (e.g., an average thickness measured between surfaces 16, 18) shown in FIG. 2B that is in a range from 0.05 mm to 2 mm. In specific embodiments, T1 is less than or equal to 1.5 mm and in more specific embodiments, T1 is 0.4 mm to 1.3 mm. Applicant has found that such thin glass sheets can be cold formed to a variety of curved shapes (including the relatively high curvature radii of curvature discussed herein) utilizing cold forming without breakage while at the same time providing for a high quality cover layer for a variety of vehicle interior applications. In addition, such thin glass sheets 12 may deform more readily, which could potentially compensate for shape mismatches and gaps that may exist relative to the frame 14.


In various embodiments, first major surface 16 and/or the second major surface 18 of glass sheet 12 includes one or more surface treatments or layers. The surface treatment may cover at least a portion of the first major surface 16 and/or second major surface 18. Exemplary surface treatments include anti-glare surfaces/coatings, anti-reflective surfaces/coatings, and an easy-to-clean surface coating/treatment. In one or more embodiments, at least a portion of the first major surface 16 and/or the second major surface 18 may include any one, any two or all three of an anti-glare surface, an anti-reflective surface, and easy-to-clean coating/treatment. For example, first major surface 16 may include an anti-glare surface and second major surface 18 may include an anti-reflective surface. In another example, first major surface 16 includes an anti-reflective surface and second major surface 18 includes an anti-glare surface. In yet another example, the first major surface 16 comprises either one of or both the anti-glare surface and the anti-reflective surface, and the second major surface 18 includes the easy-to-clean coating.


In embodiments, the glass sheet 12 may also include a pigment design on the first major surface 16 and/or second major surface 18. The pigment design may include any aesthetic design formed from a pigment (e.g., ink, paint and the like) and can include a wood-grain design, a brushed metal design, a graphic design, a portrait, or a logo. The pigment design may be printed onto the glass sheet. In one or more embodiments, the anti-glare surface includes an etched surface. In one or more embodiments, the anti-reflective surface includes a multi-layer coating.


In general, glass sheet 12 is cold formed or cold bent to the desired curved shape via application of a bending force to the glass sheet 12 while it is situated on a mold 24 as shown in FIG. 4. Advantageously, it is easier to apply surface treatments to a flat glass sheet 12 prior to creating the curvature in the glass sheet 12, and cold-forming allows the treated glass sheet 12 to be bent without destroying the surface treatment (as compared to the tendency of high temperatures associated with hot-forming to destroy surface treatments, which requires surface treatments to be applied to the curved article in a more complicated process). In embodiments, the cold forming process is performed at a temperature less than the glass transition temperature of the glass sheet 12. In particular, the cold forming process may be performed at room temperature (e.g., about 20° C.) or a slightly elevated temperature, e.g., at 200° C. or less, 150° C. or less, 100° C. or less, or at 50° C. or less.


The mold 24 includes a curved surface 26 on which a self-adhesive layer 28 is disposed. In embodiments, the self-adhesive layer 28 comprises integral surface layers having permanently tacky, pressure sensitive adhesive properties. In embodiments, the self-adhesive layer 28 provides an adhesive force via a surface interaction with the glass sheet 12 (e.g., Van der Waals force, suction force, etc.). Further, in embodiments, the adhesive force is between about 1 kgf/cm2 and 10 kgf/cm2, particularly about 5 kgf/cm2. The adhesive layer 28 is configured to hold the glass sheet 12 in a bent configuration on the mold 24 such that the glass sheet 12 matches the curvature of the curved surface 26 of the mold. In particular, the first major surface 16 of the glass sheet 12 is adhered to the self-adhesive layer 28 as shown in FIG. 5.


In embodiments, the self-adhesive layer 28 comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer, among others. In embodiments, the integral surface layers having the tacky, pressure-sensitive adhesive properties may be formed by inhibiting cross-linking on the surface of the self-adhesive layer 28. Advantageously, glass sheets 12 can be repeatedly attached and detached from the self-adhesive layer 28, e.g., to cold-form multiple glass sheets 12 and frames 14 in succession. Further, in embodiments, the surface of the self-adhesive layer 28 can be cleaned and restored to its original state after becoming contaminated with, e.g., oil, dirt, or other debris by washing it with soapy water, acetone, or other suitable cleaning agents. In testing, certain embodiments of the self-adhesive layer 28 have not experienced any change in adhesion force after 33,000 uses, and in embodiments, the self-adhesive layer may be used for months at a time before needing replacement. However, the usable life of the self-adhesive layer may be dictated by a variety of factors, including working environment, cleanliness of the glass/mold, scratches or abrasions from surrounding machinery, etc. Also, advantageously, the self-adhesive layer 28 is strong enough to hold the glass sheet 12 in a bent configuration, but the glass sheet 12 can still be removed from the adhesive layer 28 when it is desired to remove the glass article 10 from the mold.


As shown in FIG. 6, the frame 14 is adhered to the second major surface 18 of the glass sheet 12. For example, in embodiments, the frame 14 may be coated with the adhesive layer 22 and then attached to the second major surface 18 of the glass sheet. Alternatively or additionally, in embodiments, the second major surface 18 is covered at least partially with the adhesive layer 22 for attaching the frame 14 to the glass sheet 12. After the frame 14 is adhered to the glass sheet 12, the glass article 10 may be allowed to cure on the mold 24 as necessary. Thereafter, the curved glass article 10 is released from the adhesive layer 28.


As can be seen in FIG. 7, the curved surface 26 of the mold 24 provides the glass article 10 with a convex curvature with respect to the first major surface 16. However, in other embodiments, the curved surface 26 of the mold 24 provides the glass sheet 12 with a concave curvature. In other embodiments, such as shown in FIG. 8, the mold 24 has a curved surface 26 that provides the glass sheet 12 with both a concave and a convex curvature. FIG. 9 depicts another embodiment of a mold 24 providing a V-shaped curved glass article 10. In particular, the curved surface 26 of the mold 24 has a curved section 30 and two flat sections 32. Thus, as opposed to the embodiments of the molds 24 shown in FIGS. 4-7 and FIG. 8 that have continuous curvatures, the mold 24 of FIG. 9 is only curved in the curved section 30, which is positioned between two flat sections 32.


In the embodiment shown in FIG. 10, the mold 24 includes channels 34 through which air between the glass sheet 12 and the self-adhesive layer 28 can be evacuated by application of a negative pressure. That is, in such embodiments, the mold 24 utilizes both an adhesive layer 28 and vacuum pressure to hold the glass sheet 12 in conformity with the curved surface 26. In such embodiments, the channels 34 can also be used to help release the glass article 10 from the mold 24 by blowing air (or another fluid) towards the first major surface 16 of the glass sheet 12 to provide pressure pushing the glass sheet 12 away from the mold 24.



FIG. 11 schematically depicts an automated system 50 for cold-forming a plurality of curved glass articles 10. In the embodiment shown in FIG. 11, a plurality of molds 24 are provided on a conveyor system 52. At a first position 54, one of the plurality of molds 24 is laminated with a glass sheet 12. In embodiments, the glass sheets 12 may be stored in a glass loading machine that loads glass sheets 12 into a glass laminating machine that bends the glass sheet 12 over a self-adhesive layer 28 of a mold 24. At a second position 56, the frame 14 is bonded to the glass sheet 12. In embodiments, a robotic arm 58 can be used to position the frame 14 over the glass sheet 12, apply adhesive 22 to the glass sheet 12, and/or press the frame 14 onto the glass sheet 12. After the second position 56, the conveyor system 52 moves the molds 24 over a distance for a time sufficient to allow the adhesive layer 22 to cure, bonding the frame 14 to the glass sheet 12. In embodiments, the glass sheet 12 and frame 14 are allowed to cure on the mold 24 for a time of up to one hour. In embodiments, the adhesive layer 22 only bonds to an initial green strength on the conveyor system 52, instead of to a full cure strength, while on the conveyor system 52. The conveyor system 52 moves the molds 24 to a final position 60 where the curved glass article 10 is removed from the mold 24. In an embodiment, the curved glass article 10 is removed from the mold 24 with another robotic arm 62. In embodiments, a pin or diaphragm with air is used to push the curved glass article 10 from the mold 24. The mold 24 is then moved back to the first position 54 where another glass sheet 12 can be laminated to the mold 24, and the mold 54 cycles back around the conveyor system 52.


In various embodiments, glass sheet 12 is formed from a strengthened glass sheet (e.g., a thermally strengthened glass material, a chemically strengthened glass sheet, etc.) In such embodiments, when glass sheet 12 is formed from a strengthened glass material, first major surface 16 and second major surface 18 are under compressive stress, and thus second major surface 18 can experience greater tensile stress during bending to the convex shape without risking fracture. This allows for strengthened glass sheet 12 to conform to more tightly curved surfaces.


A feature of a cold-formed glass sheet 12 is an asymmetric surface compressive between the first major surface 16 and the second major surface 18 once the glass sheet 12 has been bent to the curved shape. In such embodiments, prior to the cold-forming process or being cold-formed, the respective compressive stresses in the first major surface 16 and the second major surface 18 of glass sheet 12 are substantially equal. After cold-forming, the compressive stress on concave first major surface 16 increases such that the compressive stress on the first major surface 16 is greater after cold-forming than before cold-forming. In contrast, convex second major surface 18 experiences tensile stresses during bending causing a net decrease in surface compressive stress on the second major surface 18, such that the compressive stress in the second major surface 18 following bending is less than the compressive stress in the second major surface 18 when the glass sheet is flat.


As noted above, in addition to providing processing advantages such as eliminating expensive and/or slow heating steps, the cold-forming processes discussed herein are believed to generate curved glass articles with a variety of properties that are superior to hot-formed glass articles, particularly for vehicle interior or display cover glass applications. For example, Applicant believes that, for at least some glass materials, heating during hot-forming processes decreases optical properties of curved glass sheets, and thus, the curved glass sheets formed utilizing the cold-bending processes/systems discussed herein provide for both curved glass shapes along with improved optical qualities not believed achievable with hot-bending processes.


Further, many glass surface treatments (e.g., anti-glare coatings, anti-reflective coatings, easy-to-clean coating, etc.) are applied via deposition processes, such as sputtering processes that are typically ill-suited for coating curved glass articles. In addition, many surface treatments (e.g., anti-glare coatings, anti-reflective coatings, easy-to-clean coating, etc.) also are not able to survive the high temperatures associated with hot-bending processes. Thus, in particular embodiments discussed herein, one or more surface treatments are applied to the first major surface 16 and/or to the second major surface 18 of glass sheet 12 prior to cold-bending, and the glass sheet 12 including the surface treatment is bent to a curved shape as discussed herein. Thus, Applicant believes that the processes and systems discussed herein allow for bending of glass after one or more coating materials have been applied to the glass, in contrast to typical hot-forming processes.


In various embodiments, a cold-formed glass sheet 12 may have a compound curve including a major radius and a cross curvature. A complexly curved cold-formed glass sheet 12 may have a distinct radius of curvature in two independent directions. According to one or more embodiments, a complexly curved cold-formed glass sheet 12 may thus be characterized as having “cross curvature,” where the cold-formed glass sheet 12 is curved along an axis (i.e., a first axis) that is parallel to a given dimension and also curved along an axis (i.e., a second axis) that is perpendicular to the same dimension. The curvature of the cold-formed glass sheet and the curved display can be even more complex when a significant minimum radius is combined with a significant cross curvature, and/or depth of bend. In various embodiments, glass sheet 12 can have more than two curved regions with the same or differing curved shapes. In some embodiments, glass sheet 12 can have one or more region having a curved shape with a variable radius of curvature.


Referring to FIG. 12, additional structural details of glass sheet 12 are shown and described. As noted above, glass sheet 12 has a thickness T1 that is substantially constant and is defined as a distance between the first major surface 16 and the second major surface 18. In various embodiments, T1 may refer to an average thickness or a maximum thickness of the glass sheet. In addition, glass sheet 12 includes a width W1 defined as a first maximum dimension of one of the first or second major surfaces 16, 18 orthogonal to the thickness T1, and a length L1 defined as a second maximum dimension of one of the first or second major surfaces 16, 18 orthogonal to both the thickness and the width. In other embodiments, W1 and L1 may be the average width and the average length of glass sheet 12, respectively.


In various embodiments, thickness T1 is 2 mm or less and specifically is 0.3 mm to 1.1 mm. For example, thickness T1 may be in a range from about 0.1 mm to about 1.5 mm, from about 0.15 mm to about 1.5 mm, from about 0.2 mm to about 1.5 mm, from about 0.25 mm to about 1.5 mm, from about 0.3 mm to about 1.5 mm, from about 0.35 mm to about 1.5 mm, from about 0.4 mm to about 1.5 mm, from about 0.45 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, from about 0.55 mm to about 1.5 mm, from about 0.6 mm to about 1.5 mm, from about 0.65 mm to about 1.5 mm, from about 0.7 mm to about 1.5 mm, from about 0.1 mm to about 1.4 mm, from about 0.1 mm to about 1.3 mm, from about 0.1 mm to about 1.2 mm, from about 0.1 mm to about 1.1 mm, from about 0.1 mm to about 1.05 mm, from about 0.1 mm to about 1 mm, from about 0.1 mm to about 0.95 mm, from about 0.1 mm to about 0.9 mm, from about 0.1 mm to about 0.85 mm, from about 0.1 mm to about 0.8 mm, from about 0.1 mm to about 0.75 mm, from about 0.1 mm to about 0.7 mm, from about 0.1 mm to about 0.65 mm, from about 0.1 mm to about 0.6 mm, from about 0.1 mm to about 0.55 mm, from about 0.1 mm to about 0.5 mm, from about 0.1 mm to about 0.4 mm, or from about 0.3 mm to about 0.7 mm. In other embodiments, the T1 falls within any one of the exact numerical ranges set forth in this paragraph.


In various embodiments, width W1 is in a range from 5 cm to 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm. In other embodiments, W1 falls within any one of the exact numerical ranges set forth in this paragraph.


In various embodiments, length L1 is in a range from about 5 cm to about 1500 cm, from about 50 cm to about 1500 cm, from about 100 cm to about 1500 cm, from about 150 cm to about 1500 cm, from about 200 cm to about 1500 cm, from about 250 cm to about 1500 cm, from about 300 cm to about 1500 cm, from about 350 cm to about 1500 cm, from about 400 cm to about 1500 cm, from about 450 cm to about 1500 cm, from about 500 cm to about 1500 cm, from about 550 cm to about 1500 cm, from about 600 cm to about 1500 cm, from about 650 cm to about 1500 cm, from about 650 cm to about 1500 cm, from about 700 cm to about 1500 cm, from about 750 cm to about 1500 cm, from about 800 cm to about 1500 cm, from about 850 cm to about 1500 cm, from about 900 cm to about 1500 cm, from about 950 cm to about 1500 cm, from about 1000 cm to about 1500 cm, from about 1050 cm to about 1500 cm, from about 1100 cm to about 1500 cm, from about 1150 cm to about 1500 cm, from about 1200 cm to about 1500 cm, from about 1250 cm to about 1500 cm, from about 1300 cm to about 1500 cm, from about 1350 cm to about 1500 cm, from about 1400 cm to about 1500 cm, or from about 1450 cm to about 1500 cm. In other embodiments, L1 falls within any one of the exact numerical ranges set forth in this paragraph.


In various embodiments, one or more radius of curvature (e.g., R1 shown in FIG. 2B) of glass sheet 12 is about 30 mm or greater. For example, R1 may be in a range from about 30 mm to about 5000 mm, from about 50 mm to about 5000 mm, from about 70 mm to about 5000 mm, from about 90 mm to about 5000 mm, from about 110 mm to about 5000 mm, from about 150 mm to about 5000 mm, from about 200 mm to about 5000 mm, from about 250 mm to about 5000 mm, from about 300 mm to about 5000 mm, from about 350 mm to about 5000 mm, from about 400 mm to about 5000 mm, from about 450 mm to about 5000 mm, from about 500 mm to about 5000 mm, from about 550 mm to about 5000 mm, from about 600 mm to about 5000 mm, from about 650 mm to about 5000 mm, from about 700 mm to about 5000 mm, from about 750 mm to about 5000 mm, from about 800 mm to about 5000 mm, from about 850 mm to about 5000 mm, from about 900 mm to about 5000 mm, from about 950 mm to about 5000 mm, from about 1000 mm to about 5000 mm, from about 1500 mm to about 5000 mm, from about 2000 mm to about 5000 mm, from about 2500 mm to about 5000 mm, from about 3000 mm to about 5000 mm, from about 3500 mm to about 5000 mm, from about 4000 mm to about 5000 mm, from about 4500 mm to about 5000 mm, from about 30 mm to about 4500 mm, from about 30 mm to about 4000 mm, from about 30 mm to about 3500 mm, from about 30 mm to about 3000 mm, from about 30 mm to about 2500 mm, from about 30 mm to about 2000 mm, from about 30 mm to about 1500 mm, from about 30 mm to about 1000 mm, from about 30 mm to about 950 mm, from about 30 mm to about 900 mm, from about 30 mm to about 850 mm, from about 30 mm to about 800 mm, from about 30 mm to about 750 mm, from about 30 mm to about 700 mm, from about 30 mm to about 650 mm, from about 30 mm to about 600 mm, from about 30 mm to about 550 mm, from about 30 mm to about 500 mm, from about 30 mm to about 450 mm, or from about 30 mm to about 400 mm. In other embodiments, R1 falls within any one of the exact numerical ranges set forth in this paragraph.


The various embodiments of the vehicle interior system may be incorporated into vehicles such as trains, automobiles (e.g., cars, trucks, buses and the like), sea craft (boats, ships, submarines, and the like), and aircraft (e.g., drones, airplanes, jets, helicopters and the like).


Strengthened Glass Properties


As noted above, glass sheet 12 may be strengthened. In one or more embodiments, glass sheet 12 may be strengthened to include compressive stress that extends from a surface to a depth of compression (DOC). The compressive stress regions are balanced by a central portion exhibiting a tensile stress. At the DOC, the stress crosses from a positive (compressive) stress to a negative (tensile) stress.


In various embodiments, glass sheet 12 may be strengthened mechanically by utilizing a mismatch of the coefficient of thermal expansion between portions of the article to create a compressive stress region and a central region exhibiting a tensile stress. In some embodiments, the glass sheet may be strengthened thermally by heating the glass to a temperature above the glass transition point and then rapidly quenching.


In various embodiments, glass sheet 12 may be chemically strengthened by ion exchange. In the ion exchange process, ions at or near the surface of the glass sheet are replaced by—or exchanged with—larger ions having the same valence or oxidation state. In those embodiments in which the glass sheet comprises an alkali aluminosilicate glass, ions in the surface layer of the article and the larger ions are monovalent alkali metal cations, such as Li+, Na+, K+, Rb+, and Cs+. Alternatively, monovalent cations in the surface layer may be replaced with monovalent cations other than alkali metal cations, such as Ag+ or the like. In such embodiments, the monovalent ions (or cations) exchanged into the glass sheet generate a stress.


Ion exchange processes are typically carried out by immersing a glass sheet in a molten salt bath (or two or more molten salt baths) containing the larger ions to be exchanged with the smaller ions in the glass sheet. It should be noted that aqueous salt baths may also be utilized. In addition, the composition of the bath(s) may include more than one type of larger ions (e.g., Na+ and K+) or a single larger ion. It will be appreciated by those skilled in the art that parameters for the ion exchange process, including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the glass sheet in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the glass sheet (including the structure of the article and any crystalline phases present) and the desired DOC and CS of the glass sheet that results from strengthening. Exemplary molten bath compositions may include nitrates, sulfates, and chlorides of the larger alkali metal ion. Typical nitrates include KNO3, NaNO3, LiNO3, NaSO4 and combinations thereof. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 100 hours depending on glass sheet thickness, bath temperature and glass (or monovalent ion) diffusivity. However, temperatures and immersion times different from those described above may also be used.


In one or more embodiments, the glass sheets may be immersed in a molten salt bath of 100% NaNO3, 100% KNO3, or a combination of NaNO3 and KNO3 having a temperature from about 370° C. to about 480° C. In some embodiments, the glass sheet may be immersed in a molten mixed salt bath including from about 5% to about 90% KNO3 and from about 10% to about 95% NaNO3. In one or more embodiments, the glass sheet may be immersed in a second bath, after immersion in a first bath. The first and second baths may have different compositions and/or temperatures from one another. The immersion times in the first and second baths may vary. For example, immersion in the first bath may be longer than the immersion in the second bath.


In one or more embodiments, the glass sheet may be immersed in a molten, mixed salt bath including NaNO3 and KNO3 (e.g., 49%/51%, 50%/50%, 51%/49%) having a temperature less than about 420° C. (e.g., about 400° C. or about 380° C.). for less than about 5 hours, or even about 4 hours or less.


Ion exchange conditions can be tailored to provide a “spike” or to increase the slope of the stress profile at or near the surface of the resulting glass sheet. The spike may result in a greater surface CS value. This spike can be achieved by a single bath or multiple baths, with the bath(s) having a single composition or mixed composition, due to the unique properties of the glass compositions used in the glass sheets described herein.


In one or more embodiments, where more than one monovalent ion is exchanged into the glass sheet, the different monovalent ions may exchange to different depths within the glass sheet (and generate different magnitudes stresses within the glass sheet at different depths). The resulting relative depths of the stress-generating ions can be determined and cause different characteristics of the stress profile.


CS is measured using those means known in the art, such as by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Orihara Industrial Co., Ltd. (Japan). Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2013), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. As used herein CS may be the “maximum compressive stress” which is the highest compressive stress value measured within the compressive stress layer. In some embodiments, the maximum compressive stress is located at the surface of the glass sheet. In other embodiments, the maximum compressive stress may occur at a depth below the surface, giving the compressive profile the appearance of a “buried peak.”


DOC may be measured by FSM or by a scattered light polariscope (SCALP) (such as the SCALP-04 scattered light polariscope available from Glasstress Ltd., located in Tallinn Estonia), depending on the strengthening method and conditions. When the glass sheet is chemically strengthened by an ion exchange treatment, FSM or SCALP may be used depending on which ion is exchanged into the glass sheet. Where the stress in the glass sheet is generated by exchanging potassium ions into the glass sheet, FSM is used to measure DOC. Where the stress is generated by exchanging sodium ions into the glass sheet, SCALP is used to measure DOC. Where the stress in the glass sheet is generated by exchanging both potassium and sodium ions into the glass, the DOC is measured by SCALP, since it is believed the exchange depth of sodium indicates the DOC and the exchange depth of potassium ions indicates a change in the magnitude of the compressive stress (but not the change in stress from compressive to tensile); the exchange depth of potassium ions in such glass sheets is measured by FSM. Central tension or CT is the maximum tensile stress and is measured by SCALP.


In one or more embodiments, the glass sheet may be strengthened to exhibit a DOC that is described as a fraction of the thickness T1 of the glass sheet (as described herein). For example, in one or more embodiments, the DOC may be equal to or greater than about 0.05T1, equal to or greater than about 0.1T1, equal to or greater than about 0.11T1, equal to or greater than about 0.12T1, equal to or greater than about 0.13T1, equal to or greater than about 0.14T1, equal to or greater than about 0.15T1, equal to or greater than about 0.16T1, equal to or greater than about 0.17T1, equal to or greater than about 0.18T1, equal to or greater than about 0.19T1, equal to or greater than about 0.2T1, equal to or greater than about 0.21T1. In some embodiments, the DOC may be in a range from about 0.08T1 to about 0.25T1, from about 0.09T1 to about 0.25T1, from about 0.18T1 to about 0.25T1, from about 0.11T1 to about 0.25T1, from about 0.12T1 to about 0.25T1, from about 0.13T1 to about 0.25T1, from about 0.14T1 to about 0.25T1, from about 0.15T1 to about 0.25T1, from about 0.08T1 to about 0.24T1, from about 0.08T1 to about 0.23T1, from about 0.08T1 to about 0.22T1, from about 0.08T1 to about 0.21T1, from about 0.08T1 to about 0.2T1, from about 0.08T1 to about 0.19T1, from about 0.08T1 to about 0.18T1, from about 0.08T1 to about 0.17T1, from about 0.08T1 to about 0.16T1, or from about 0.08T1 to about 0.15T1. In some instances, the DOC may be about 20 μm or less. In one or more embodiments, the DOC may be about 40 μm or greater (e.g., from about 40 μm to about 300 μm, from about 50 μm to about 300 μm, from about 60 μm to about 300 μm, from about 70 μm to about 300 μm, from about 80 μm to about 300 μm, from about 90 μm to about 300 μm, from about 100 μm to about 300 μm, from about 110 μm to about 300 μm, from about 120 μm to about 300 μm, from about 140 μm to about 300 μm, from about 150 μm to about 300 μm, from about 40 μm to about 290 μm, from about 40 μm to about 280 μm, from about 40 μm to about 260 μm, from about 40 μm to about 250 μm, from about 40 μm to about 240 μm, from about 40 μm to about 230 μm, from about 40 μm to about 220 μm, from about 40 μm to about 210 μm, from about 40 μm to about 200 μm, from about 40 μm to about 180 μm, from about 40 μm to about 160 μm, from about 40 μm to about 150 μm, from about 40 μm to about 140 μm, from about 40 μm to about 130 μm, from about 40 μm to about 120 μm, from about 40 μm to about 110 μm, or from about 40 μm to about 100 μm. In other embodiments, DOC falls within any one of the exact numerical ranges set forth in this paragraph.


In one or more embodiments, the strengthened glass sheet may have a CS (which may be found at the surface or a depth within the glass sheet) of about 200 MPa or greater, 300 MPa or greater, 400 MPa or greater, about 500 MPa or greater, about 600 MPa or greater, about 700 MPa or greater, about 800 MPa or greater, about 900 MPa or greater, about 930 MPa or greater, about 1000 MPa or greater, or about 1050 MPa or greater.


In one or more embodiments, the strengthened glass sheet may have a maximum tensile stress or central tension (CT) of about 20 MPa or greater, about 30 MPa or greater, about 40 MPa or greater, about 45 MPa or greater, about 50 MPa or greater, about 60 MPa or greater, about 70 MPa or greater, about 75 MPa or greater, about 80 MPa or greater, or about 85 MPa or greater. In some embodiments, the maximum tensile stress or central tension (CT) may be in a range from about 40 MPa to about 100 MPa. In other embodiments, CS falls within the exact numerical ranges set forth in this paragraph.


Glass Compositions


Suitable glass compositions for use in glass sheet 12 include soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass.


Unless otherwise specified, the glass compositions disclosed herein are described in mole percent (mol %) as analyzed on an oxide basis.


In one or more embodiments, the glass composition may include SiO2 in an amount in a range from about 66 mol % to about 80 mol %, from about 67 mol % to about 80 mol %, from about 68 mol % to about 80 mol %, from about 69 mol % to about 80 mol %, from about 70 mol % to about 80 mol %, from about 72 mol % to about 80 mol %, from about 65 mol % to about 78 mol %, from about 65 mol % to about 76 mol %, from about 65 mol % to about 75 mol %, from about 65 mol % to about 74 mol %, from about 65 mol % to about 72 mol %, or from about 65 mol % to about 70 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition includes Al2O3 in an amount greater than about 4 mol %, or greater than about 5 mol %. In one or more embodiments, the glass composition includes Al2O3 in a range from greater than about 7 mol % to about 15 mol %, from greater than about 7 mol % to about 14 mol %, from about 7 mol % to about 13 mol %, from about 4 mol % to about 12 mol %, from about 7 mol % to about 11 mol %, from about 8 mol % to about 15 mol %, from about 9 mol % to about 15 mol %, from about 10 mol % to about 15 mol %, from about 11 mol % to about 15 mol %, or from about 12 mol % to about 15 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the upper limit of Al2O3 may be about 14 mol %, 14.2 mol %, 14.4 mol %, 14.6 mol %, or 14.8 mol %.


In one or more embodiments, the glass article is described as an aluminosilicate glass article or including an aluminosilicate glass composition. In such embodiments, the glass composition or article formed therefrom includes SiO2 and Al2O3 and is not a soda lime silicate glass. In this regard, the glass composition or article formed therefrom includes Al2O3 in an amount of about 2 mol % or greater, 2.25 mol % or greater, 2.5 mol % or greater, about 2.75 mol % or greater, about 3 mol % or greater.


In one or more embodiments, the glass composition comprises B2O3 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises B2O3 in an amount in a range from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 0.1 mol % to about 3 mol %, from about 0.1 mol % to about 2 mol %, from about 0.1 mol % to about 1 mol %, from about 0.1 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition is substantially free of B2O3.


As used herein, the phrase “substantially free” with respect to the components of the composition means that the component is not actively or intentionally added to the composition during initial batching, but may be present as an impurity in an amount less than about 0.001 mol %.


In one or more embodiments, the glass composition optionally comprises P2O5 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises a non-zero amount of P2O5 up to and including 2 mol %, 1.5 mol %, 1 mol %, or 0.5 mol %. In one or more embodiments, the glass composition is substantially free of P2O5.


In one or more embodiments, the glass composition may include a total amount of R2O (which is the total amount of alkali metal oxide such as Li2O, Na2O, K2O, Rb2O, and Cs2O) that is greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In some embodiments, the glass composition includes a total amount of R2O in a range from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 13 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of Rb2O, Cs2O or both Rb2O and Cs2O. In one or more embodiments, the R2O may include the total amount of Li2O, Na2O and K2O only. In one or more embodiments, the glass composition may comprise at least one alkali metal oxide selected from Li2O, Na2O and K2O, wherein the alkali metal oxide is present in an amount greater than about 8 mol % or greater.


In one or more embodiments, the glass composition comprises Na2O in an amount greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In one or more embodiments, the composition includes Na2O in a range from about from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 16 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition includes less than about 4 mol % K2O, less than about 3 mol % K2O, or less than about 1 mol % K2O. In some instances, the glass composition may include K2O in an amount in a range from about 0 mol % to about 4 mol %, from about 0 mol % to about 3.5 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2.5 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0 mol % to about 0.2 mol %, from about 0 mol % to about 0.1 mol %, from about 0.5 mol % to about 4 mol %, from about 0.5 mol % to about 3.5 mol %, from about 0.5 mol % to about 3 mol %, from about 0.5 mol % to about 2.5 mol %, from about 0.5 mol % to about 2 mol %, from about 0.5 mol % to about 1.5 mol %, or from about 0.5 mol % to about 1 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of K2O.


In one or more embodiments, the glass composition is substantially free of Li2O.


In one or more embodiments, the amount of Na2O in the composition may be greater than the amount of Li2O. In some instances, the amount of Na2O may be greater than the combined amount of Li2O and K2O. In one or more alternative embodiments, the amount of Li2O in the composition may be greater than the amount of Na2O or the combined amount of Na2O and K2O.


In one or more embodiments, the glass composition may include a total amount of RO (which is the total amount of alkaline earth metal oxide such as CaO, MgO, BaO, ZnO and SrO) in a range from about 0 mol % to about 2 mol %. In some embodiments, the glass composition includes a non-zero amount of RO up to about 2 mol %. In one or more embodiments, the glass composition comprises RO in an amount from about 0 mol % to about 1.8 mol %, from about 0 mol % to about 1.6 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1.4 mol %, from about 0 mol % to about 1.2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.8 mol %, from about 0 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition includes CaO in an amount less than about 1 mol %, less than about 0.8 mol %, or less than about 0.5 mol %. In one or more embodiments, the glass composition is substantially free of CaO.


In some embodiments, the glass composition comprises MgO in an amount from about 0 mol % to about 7 mol %, from about 0 mol % to about 6 mol %, from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0.1 mol % to about 7 mol %, from about 0.1 mol % to about 6 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 1 mol % to about 7 mol %, from about 2 mol % to about 6 mol %, or from about 3 mol % to about 6 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition comprises ZrO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises ZrO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition comprises SnO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises SnO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.


In one or more embodiments, the glass composition may include an oxide that imparts a color or tint to the glass articles. In some embodiments, the glass composition includes an oxide that prevents discoloration of the glass article when the glass article is exposed to ultraviolet radiation. Examples of such oxides include, without limitation oxides of: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ce, W, and Mo.


In one or more embodiments, the glass composition includes Fe expressed as Fe2O3, wherein Fe is present in an amount up to (and including) about 1 mol %. In some embodiments, the glass composition is substantially free of Fe. In one or more embodiments, the glass composition comprises Fe2O3 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises Fe2O3 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.


Where the glass composition includes TiO2, TiO2 may be present in an amount of about 5 mol % or less, about 2.5 mol % or less, about 2 mol % or less or about 1 mol % or less. In one or more embodiments, the glass composition may be substantially free of TiO2.


An exemplary glass composition includes SiO2 in an amount in a range from about 65 mol % to about 75 mol %, Al2O3 in an amount in a range from about 8 mol % to about 14 mol %, Na2O in an amount in a range from about 12 mol % to about 17 mol %, K2O in an amount in a range of about 0 mol % to about 0.2 mol %, and MgO in an amount in a range from about 1.5 mol % to about 6 mol %. Optionally, SnO2 may be included in the amounts otherwise disclosed herein. It should be understood, that while the preceding glass composition paragraphs express approximate ranges, in other embodiments, glass sheet 134 may be made from any glass composition falling with any one of the exact numerical ranges discussed above.


Aspect (1) of this disclosure pertains to a method of forming a curved glass article, comprising the steps of: providing a mold comprising a curved surface, wherein a self-adhesive layer is disposed on the curved surface; bending a glass sheet into conformity with the curved surface at a temperature less than the glass transition temperature of the glass sheet, wherein the glass sheet comprises a first major surface and a second major surface, wherein the second major surface is opposite to the first major surface, and wherein the first major surface is adhered to the self-adhesive layer; bonding a frame to the second major surface of the glass sheet; and removing the glass sheet from the self-adhesive layer. In one or more embodiments, Aspect (1) pertains to a method of forming a curved glass article, comprising the steps of: bending a glass sheet at a temperature less than the glass transition temperature of the glass sheet to confirm with a curved surface of a mold comprising a self-adhesive layer disposed on the curved surface, wherein the glass sheet comprises a first major surface and a second major surface, wherein the second major surface is opposite to the first major surface, and wherein the first major surface is adhered to the self-adhesive layer; bonding a frame to the second major surface of the glass sheet; and removing the glass sheet from the self-adhesive layer.


Aspect (2) pertains to the method of Aspect (1), wherein bonding further comprising applying an adhesive to the frame or to the second major surface of the glass sheet, positioning the frame on the second major surface, and curing the adhesive.


Aspect (3) pertains to the method of Aspect (2), wherein the adhesive comprises at least one of a toughened adhesive, a flexible epoxy, an acrylic, a urethane, or a silicone.


Aspect (4) pertains to the method of any one of Aspects (1) through (3), wherein the self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer.


Aspect (5) pertains to the method of any one of Aspects (1) through (4), wherein the curved surface comprises at least one of a convex curvature or a concave curvature


Aspect (6) pertains to the method of any one of Aspects (1) through (5), wherein the curved surface comprises both a convex curvature and a concave curvature.


Aspect (7) pertains to the method of any one of Aspects (1) through (6), wherein the curved surface has a radius of curvature of from 30 mm to 5 m.


Aspect (8) pertains to the method of any one of Aspects (1) through (7), wherein bending takes place at a temperature of less than 200° C.


Aspect (9) pertains to the method of any one of Aspects (1) through (8), wherein the mold further comprises a plurality of vacuum channels and wherein the method further comprises applying a negative pressure to the first major surface of the glass sheet to keep the glass sheet in conformity with the curved surface.


Aspect (10) pertains to the method of Aspect (9), wherein releasing the glass sheet from the self-adhesive layer further comprising applying a positive pressure to the first major surface to push the glass sheet away from the self-adhesive layer.


Aspect (11) pertains to the method of any one of Aspects (1) through (10), wherein the glass sheet has a thickness between the first major surface and the second major surface of from 0.4 mm to 2.0 mm.


Aspect (12) pertains to the method of any one of Aspects (1) through (11), further comprising bonding a display to the second major surface using optically clear adhesive.


Aspect (13) pertains to the method of Aspect (12), wherein the display comprises at least one of a light-emitting diode display, an organic light-emitting diode display, a plasma display, or a liquid crystal display.


Aspect (14) pertains to the method of any one of Aspects (1) through (13), wherein the glass sheet comprises at least one of soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass.


Aspect (15) pertains to the method of any one of Aspects (1) through (14), wherein the first major surface and the second major surface are chemically strengthened.


Aspect (16) pertains to the method of any one of Aspects (1) through (15), further comprising applying a surface treatment to at least one of the first major surface or the second major surface prior to bending.


Aspect (17) pertains to the method of Aspect (16), wherein the surface treatment is at least one of an anti-glare treatment, an anti-reflective coating, and easy-to-clean coating.


Aspect (18) pertains to a system for cold-forming curved glass articles, comprising: a conveyor system; a plurality of molds arranged on the conveyor system, each of the plurality of molds comprising a curved surface and a self-adhesive layer; wherein at a first position on the conveyor system, a first major surface of a glass sheet is adhered to the self-adhesive layer of one mold of the first plurality of molds; wherein at a second position on the conveyor system, a frame is positioned on and adhered to a second major surface of the glass sheet, wherein the second major surface is opposite to the first major surface; wherein at a final position on the conveyor system, the glass sheet with bonded frame is removed from the mold; and wherein between the second position and the final position, the conveyor system has a length and speed configured to allow curing of the frame adhered to the glass sheet.


Aspect (19) pertains to the system of Aspect (18), wherein the self-adhesive layer comprises at least one of polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer.


Aspect (20) pertains to the system of Aspect (18) or Aspect (19), wherein the curved surface comprises at least one of a convex curvature or a concave curvature


Aspect (21) pertains to the system of anyone of Aspects (18) through (20), wherein the curved surface comprises both a convex curvature and a concave curvature.


Aspect (22) pertains to the system of anyone of Aspects (18) through (21), wherein the curved surface has a radius of curvature of from 30 mm to 5 m.


Aspect (23) pertains to the system of anyone of Aspects (18) through (22), wherein the system is operated at a temperature of less than 200° C.


Aspect (24) pertains to the system of anyone of Aspects (18) through (23), wherein the second position comprises a first robotic arm configured to position the frame on the second surface of the glass sheet.


Aspect (25) pertains to the system of anyone of Aspects (18) through (24), wherein the final position comprises a second robotic arm configured to remove the glass sheet with bonded frame from the self-releasing adhesive layer of the mold.


Aspect (26) pertains to the system of anyone of Aspects (18) through (24), further comprising a vacuum system configured to apply a negative pressure to a glass sheet adhered to the self-adhesive layer through a plurality of vacuum channels formed into at least one of the plurality of molds.


Aspect (27) pertains to the system of Aspect (26), wherein the vacuum system is also configured to apply a positive pressure to a glass sheet to facilitate releasing the glass sheet from the self-adhesive layer at the final position.


Aspect (28) pertains to a mold for forming a curved glass article, the mold comprising: a curved surface; and a self-adhesive layer disposed on the curved surface; wherein the self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer; and wherein the curved surface comprises at least one of a convex curvature or a concave curvature.


Aspect (29) pertains to the system of Aspect (28), wherein the curved surface comprises both a convex curvature and a concave curvature.


Aspect (30) pertains to the system of Aspect (28) or Aspect (29), wherein the curved surface has a radius of curvature of from 30 mm to 5 m.


Aspect (31) pertains to the system of anyone of Aspects (28) through (30), further comprising vacuum channels formed into the mold, wherein the vacuum channels are configured to allow a positive or negative pressure to be applied to a glass sheet.


Aspect (32) pertains to the system of anyone of Aspects (28) through (31), wherein the self-adhesive layer has an adhesion force of from 1 kgf/cm2 to 10 kgf/cm2.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is in no way intended that any particular order be inferred. In addition, as used herein, the article “a” is intended to include one or more than one component or element, and is not intended to be construed as meaning only one.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosed embodiments. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the embodiments may occur to persons skilled in the art, the disclosed embodiments should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. A method of forming a curved glass article comprising: bending a glass sheet at a temperature less than the glass transition temperature of the glass sheet to conform with a curved surface of a mold comprising a self-adhesive layer disposed on the curved surface, wherein the glass sheet comprises a first major surface and a second major surface, wherein the second major surface is opposite to the first major surface, and wherein the first major surface is adhered to the self-adhesive layer, wherein the self-adhesive layer holds the glass sheet in a bent configuration;bonding a frame to the second major surface of the glass sheet;removing the glass sheet from the self-adhesive layer;wherein the self-adhesive layer provides an adhesive force via surface interaction with the glass sheet, wherein the adhesive force is between about 1 kgf/cm2 and 10 kgf/cm2.
  • 2. The method of claim 1, wherein bonding further comprising applying an adhesive to the frame or to the second major surface of the glass sheet, positioning the frame on the second major surface, and curing the adhesive.
  • 3. The method of claim 2, wherein the adhesive comprises at least one of a toughened adhesive, a flexible epoxy, an acrylic, a urethane, or a silicone.
  • 4. The method of claim 1, wherein the self-adhesive layer comprises at least one of a polyurethane, a silicone, an acrylic, a polyester, a polyolefin, a polyacrylamide, or a polyether-urethane copolymer.
  • 5. The method of claim 1, wherein the curved surface comprises at least one of a convex curvature, a concave curvature, and both a convex curvature and a concave curvature.
  • 6. The method of claim 1, wherein the curved surface has a radius of curvature of from 30 mm to 5 m.
  • 7. The method of claim 1, wherein bending takes place at a temperature of less than 200° C.
  • 8. The method of claim 1, wherein the glass sheet has a thickness between the first major surface and the second major surface from 0.4 mm to 2.0 mm.
  • 9. The method of claim 1, further comprising bonding a display to the second major surface using an optically clear adhesive.
  • 10. The method of claim 9, wherein the display comprises at least one of a light-emitting diode display, an organic light-emitting diode display, a plasma display, or a liquid crystal display.
  • 11. The method of claim 1, wherein the first major surface and the second major surface are chemically strengthened.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/880,820 filed on Jul. 31, 2019 the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (319)
Number Name Date Kind
2068030 Lieser Jan 1937 A
2608030 Jendrisak Aug 1952 A
3197903 Walley Aug 1965 A
3338696 Dockerty Aug 1967 A
3582456 Stolki Jun 1971 A
3674589 Schaab Jul 1972 A
3682609 Dockerty Aug 1972 A
3753840 Plumat Aug 1973 A
3778335 Boyd Dec 1973 A
3790430 Mochel Feb 1974 A
3799817 Laethem Mar 1974 A
4147527 Bystrov et al. Apr 1979 A
4238265 Deminet Dec 1980 A
4445953 Hawk May 1984 A
4455338 Henne Jun 1984 A
4859636 Aratani et al. Aug 1989 A
4899507 Mairlot Feb 1990 A
4969966 Norman Nov 1990 A
4985099 Mertens et al. Jan 1991 A
5108480 Sugiyama Apr 1992 A
5154117 Didelot et al. Oct 1992 A
5173102 Weber et al. Dec 1992 A
5245468 Demiryont et al. Sep 1993 A
5250146 Horvath Oct 1993 A
5264058 Hoagland et al. Nov 1993 A
5300184 Masunaga Apr 1994 A
5711119 Cornils et al. Jan 1998 A
5897937 Cornils et al. Apr 1999 A
6044662 Morin Apr 2000 A
6066218 Kuhn May 2000 A
6086983 Yoshizawa Jul 2000 A
6101748 Cass et al. Aug 2000 A
6242931 Hembree et al. Jun 2001 B1
6265054 Bravet et al. Jul 2001 B1
6270605 Doerfler Aug 2001 B1
6274219 Schuster et al. Aug 2001 B1
6287674 Verlinden et al. Sep 2001 B1
6302985 Takahashi et al. Oct 2001 B1
6332690 Murofushi Dec 2001 B1
6387515 Joret et al. May 2002 B1
6420800 Levesque et al. Jul 2002 B1
6426138 Narushima et al. Jul 2002 B1
6582799 Brown et al. Jun 2003 B1
6620365 Odoi et al. Sep 2003 B1
6816225 Colgan et al. Nov 2004 B2
6903871 Page Jun 2005 B2
7297040 Chang et al. Nov 2007 B2
7375782 Yamazaki et al. May 2008 B2
7478930 Choi Jan 2009 B2
7489303 Pryor Feb 2009 B1
7542302 Curnalia et al. Jun 2009 B1
7750821 Taborisskiy et al. Jul 2010 B1
7955470 Kapp et al. Jun 2011 B2
8298431 Chwu et al. Oct 2012 B2
8344369 Yamazaki et al. Jan 2013 B2
8521955 Arulambalam et al. Aug 2013 B2
8549885 Dannoux et al. Oct 2013 B2
8586492 Barefoot et al. Nov 2013 B2
8652978 Dejneka et al. Feb 2014 B2
8692787 Imazeki Apr 2014 B2
8702253 Lu et al. Apr 2014 B2
8765262 Gross Jul 2014 B2
8814372 Vandal et al. Aug 2014 B2
8833106 Dannoux et al. Sep 2014 B2
8912447 Leong et al. Dec 2014 B2
8923693 Yeates Dec 2014 B2
8962084 Brackley et al. Feb 2015 B2
8967834 Timmerman et al. Mar 2015 B2
8969226 Dejneka et al. Mar 2015 B2
8978418 Balduin et al. Mar 2015 B2
9007226 Chang Apr 2015 B2
9061934 Bisson et al. Jun 2015 B2
9090501 Dkahata et al. Jul 2015 B2
9109881 Roussev et al. Aug 2015 B2
9140543 Allan et al. Sep 2015 B1
9156724 Gross Oct 2015 B2
9223162 Deforest et al. Dec 2015 B2
9240437 Shieh et al. Jan 2016 B2
9278500 Filipp Mar 2016 B2
9278655 Jones et al. Mar 2016 B2
9290413 Dejneka et al. Mar 2016 B2
9346703 Bookbinder et al. May 2016 B2
9346706 Bazemore et al. May 2016 B2
9357638 Lee May 2016 B2
9442028 Roussev et al. Sep 2016 B2
9446723 Stepanski Sep 2016 B2
9469561 Kladias et al. Oct 2016 B2
9517967 Dejneka et al. Dec 2016 B2
9573843 Keegan et al. Feb 2017 B2
9593042 Hu et al. Mar 2017 B2
9595960 Wilford Mar 2017 B2
9606625 Levesque et al. Mar 2017 B2
9617180 Bookbinder et al. Apr 2017 B2
9637926 Kraus, Jr. May 2017 B2
9663396 Miyasaka et al. May 2017 B2
9694570 Levasseur et al. Jul 2017 B2
9700985 Kashima et al. Jul 2017 B2
9701564 Bookbinder et al. Jul 2017 B2
9720450 Choi et al. Aug 2017 B2
9724727 Domey et al. Aug 2017 B2
9802485 Masuda et al. Oct 2017 B2
9815730 Marjanovic et al. Nov 2017 B2
9821509 Kastell Nov 2017 B2
9895975 Lee et al. Feb 2018 B2
9902640 Dannoux et al. Feb 2018 B2
9931817 Rickerl Apr 2018 B2
9933820 Helot et al. Apr 2018 B2
9947882 Zhang et al. Apr 2018 B2
9955602 Wildner et al. Apr 2018 B2
9957190 Finkeldey et al. May 2018 B2
9963374 Jouanno et al. May 2018 B2
9972645 Kim May 2018 B2
9975801 Maschmeyer et al. May 2018 B2
9992888 Moon et al. Jun 2018 B2
10005246 Stepanski Jun 2018 B2
10017033 Fisher et al. Jul 2018 B2
10042391 Yun et al. Aug 2018 B2
10074824 Han et al. Sep 2018 B2
10086762 Uhm Oct 2018 B2
10131118 Kang et al. Nov 2018 B2
10140018 Kim et al. Nov 2018 B2
10153337 Lee et al. Dec 2018 B2
10175802 Boggs et al. Jan 2019 B2
10211416 Jin et al. Feb 2019 B2
10222825 Wang et al. Mar 2019 B2
10273184 Garner et al. Apr 2019 B2
10303223 Park et al. May 2019 B2
10303315 Jeong et al. May 2019 B2
10326101 Oh et al. Jun 2019 B2
10328865 Jung Jun 2019 B2
10343377 Levasseur et al. Jul 2019 B2
10347700 Yang et al. Jul 2019 B2
10377656 Dannoux et al. Aug 2019 B2
10421683 Schillinger et al. Sep 2019 B2
10427383 Levasseur et al. Oct 2019 B2
10444427 Bookbinder et al. Oct 2019 B2
10483210 Gross et al. Nov 2019 B2
10500958 Cho et al. Dec 2019 B2
10606395 Boggs et al. Mar 2020 B2
10649267 Tuan et al. May 2020 B2
10788707 Al et al. Sep 2020 B2
10976607 Huang et al. Apr 2021 B2
20020039229 Hirose et al. Apr 2002 A1
20040026021 Groh et al. Feb 2004 A1
20040069770 Cary et al. Apr 2004 A1
20040107731 Doehring et al. Jun 2004 A1
20040258929 Glaubitt et al. Dec 2004 A1
20050178158 Moulding et al. Aug 2005 A1
20060227125 Wong et al. Oct 2006 A1
20070188871 Fleury et al. Aug 2007 A1
20070195419 Tsuda et al. Aug 2007 A1
20070210621 Barton et al. Sep 2007 A1
20070221313 Franck Sep 2007 A1
20070223121 Franck et al. Sep 2007 A1
20070291384 Wang Dec 2007 A1
20080031991 Choi et al. Feb 2008 A1
20080093753 Schuetz Apr 2008 A1
20080285134 Closset et al. Nov 2008 A1
20080303976 Nishizawa et al. Dec 2008 A1
20090096937 Bauer et al. Apr 2009 A1
20090101208 Vandal et al. Apr 2009 A1
20090117332 Ellsworth et al. May 2009 A1
20090179840 Tanaka et al. Jul 2009 A1
20090185127 Tanaka et al. Jul 2009 A1
20090201443 Sasaki et al. Aug 2009 A1
20090311497 Aoki Dec 2009 A1
20100000259 Ukrainczyk et al. Jan 2010 A1
20100031590 Buchwald et al. Feb 2010 A1
20100065342 Shaikh Mar 2010 A1
20100103138 Huang et al. Apr 2010 A1
20100182143 Lynam Jul 2010 A1
20100245253 Rhyu et al. Sep 2010 A1
20110057465 Beau et al. Mar 2011 A1
20110148267 McDaniel et al. Jun 2011 A1
20120050975 Garelli et al. Mar 2012 A1
20120111056 Prest May 2012 A1
20120128952 Miwa et al. May 2012 A1
20120134025 Hart May 2012 A1
20120144866 Liu et al. Jun 2012 A1
20120152897 Cheng et al. Jun 2012 A1
20120196110 Murata et al. Aug 2012 A1
20120202030 Kondo et al. Aug 2012 A1
20120218640 Gollier et al. Aug 2012 A1
20120263945 Yoshikawa Oct 2012 A1
20120280368 Garner et al. Nov 2012 A1
20120320509 Kim et al. Dec 2012 A1
20130020007 Niiyama et al. Jan 2013 A1
20130033885 Oh et al. Feb 2013 A1
20130070340 Shelestak et al. Mar 2013 A1
20130081428 Liu et al. Apr 2013 A1
20130088441 Chung et al. Apr 2013 A1
20130120850 Lambert et al. May 2013 A1
20130186141 Henry Jul 2013 A1
20130209824 Sun et al. Aug 2013 A1
20130279188 Entenmann et al. Oct 2013 A1
20130314642 Timmerman et al. Nov 2013 A1
20130329346 Dannoux et al. Dec 2013 A1
20130330495 Maatta et al. Dec 2013 A1
20140014260 Chowdhury et al. Jan 2014 A1
20140036428 Seng et al. Feb 2014 A1
20140065374 Tsuchiya et al. Mar 2014 A1
20140141206 Gillard et al. May 2014 A1
20140146538 Zenker et al. May 2014 A1
20140153234 Knoche et al. Jun 2014 A1
20140153894 Jenkins et al. Jun 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140168546 Magnusson et al. Jun 2014 A1
20140234581 Immerman et al. Aug 2014 A1
20140308464 Levasseur et al. Oct 2014 A1
20140312518 Levasseur et al. Oct 2014 A1
20140333848 Chen Nov 2014 A1
20140340609 Taylor et al. Nov 2014 A1
20150015807 Franke et al. Jan 2015 A1
20150072129 Okahata et al. Mar 2015 A1
20150077429 Eguchi et al. Mar 2015 A1
20150166394 Marjanovic et al. Jun 2015 A1
20150168768 Nagatani Jun 2015 A1
20150177443 Faecke et al. Jun 2015 A1
20150210588 Chang et al. Jul 2015 A1
20150246424 Venkatachalam et al. Sep 2015 A1
20150246507 Brown et al. Sep 2015 A1
20150274585 Rogers et al. Oct 2015 A1
20150322270 Amin et al. Nov 2015 A1
20150336357 Kang et al. Nov 2015 A1
20150351272 Wildner et al. Dec 2015 A1
20150357387 Lee et al. Dec 2015 A1
20160009066 Nieber et al. Jan 2016 A1
20160009068 Garner Jan 2016 A1
20160016849 Allan Jan 2016 A1
20160039705 Kato et al. Feb 2016 A1
20160052241 Zhang Feb 2016 A1
20160066463 Yang et al. Mar 2016 A1
20160081204 Park et al. Mar 2016 A1
20160083282 Jouanno et al. Mar 2016 A1
20160083292 Tabe et al. Mar 2016 A1
20160091645 Birman et al. Mar 2016 A1
20160102015 Yasuda et al. Apr 2016 A1
20160113135 Kim et al. Apr 2016 A1
20160207290 Cleary et al. Jul 2016 A1
20160214889 Garner et al. Jul 2016 A1
20160216434 Shih et al. Jul 2016 A1
20160250982 Fisher et al. Sep 2016 A1
20160252656 Waldschmidt et al. Sep 2016 A1
20160259365 Wang et al. Sep 2016 A1
20160272529 Hong et al. Sep 2016 A1
20160297176 Rickerl Oct 2016 A1
20160306451 Isoda et al. Oct 2016 A1
20160313494 Hamilton et al. Oct 2016 A1
20160354996 Alder et al. Dec 2016 A1
20160355091 Lee et al. Dec 2016 A1
20160355901 Isozaki et al. Dec 2016 A1
20160375808 Etienne et al. Dec 2016 A1
20170008377 Fisher et al. Jan 2017 A1
20170021661 Pelucchi Jan 2017 A1
20170066223 Notsu et al. Mar 2017 A1
20170081238 Jones et al. Mar 2017 A1
20170088454 Fukushima et al. Mar 2017 A1
20170094039 Lu Mar 2017 A1
20170115944 Oh et al. Apr 2017 A1
20170158551 Bookbinder et al. Jun 2017 A1
20170160434 Hart et al. Jun 2017 A1
20170185289 Kim et al. Jun 2017 A1
20170190152 Notsu et al. Jul 2017 A1
20170197561 McFarland Jul 2017 A1
20170213872 Jinbo et al. Jul 2017 A1
20170217290 Yoshizumi et al. Aug 2017 A1
20170217815 Dannoux et al. Aug 2017 A1
20170240772 Dohner et al. Aug 2017 A1
20170247291 Hatano et al. Aug 2017 A1
20170262057 Knittl et al. Sep 2017 A1
20170263690 Lee et al. Sep 2017 A1
20170274627 Chang et al. Sep 2017 A1
20170285227 Chen et al. Oct 2017 A1
20170305786 Roussev et al. Oct 2017 A1
20170327402 Fujii et al. Nov 2017 A1
20170334770 Luzzato et al. Nov 2017 A1
20170349473 Moriya et al. Dec 2017 A1
20180009197 Gross et al. Jan 2018 A1
20180014420 Amin et al. Jan 2018 A1
20180031743 Wakatsuki et al. Feb 2018 A1
20180050948 Faik et al. Feb 2018 A1
20180069053 Bok Mar 2018 A1
20180072022 Tsai et al. Mar 2018 A1
20180103132 Prushinskiy et al. Apr 2018 A1
20180111569 Faik et al. Apr 2018 A1
20180122863 Bok May 2018 A1
20180125228 Porter et al. May 2018 A1
20180134232 Jacques May 2018 A1
20180141850 Dejneka et al. May 2018 A1
20180147985 Brown et al. May 2018 A1
20180149777 Brown May 2018 A1
20180149907 Gahagan et al. May 2018 A1
20180164850 Sim et al. Jun 2018 A1
20180186674 Kumar Jul 2018 A1
20180188869 Boggs Jul 2018 A1
20180188870 Boggs Jul 2018 A1
20180208131 Mattelet et al. Jul 2018 A1
20180208494 Mattelet et al. Jul 2018 A1
20180210118 Gollier et al. Jul 2018 A1
20180215125 Gahagan Aug 2018 A1
20180245125 Tsai et al. Aug 2018 A1
20180304825 Mattelet et al. Oct 2018 A1
20180324964 Yoo et al. Nov 2018 A1
20180345644 Kang et al. Dec 2018 A1
20180364760 Ahn et al. Dec 2018 A1
20180374906 Everaerts et al. Dec 2018 A1
20190034017 Boggs et al. Jan 2019 A1
20190039352 Zhao et al. Feb 2019 A1
20190039935 Couillard et al. Feb 2019 A1
20190069451 Myers et al. Feb 2019 A1
20190077337 Gervelmeyer Mar 2019 A1
20190152831 An et al. May 2019 A1
20190223309 Amin et al. Jul 2019 A1
20190295494 Wang et al. Sep 2019 A1
20190315648 Kumar et al. Oct 2019 A1
20190329531 Brennan et al. Oct 2019 A1
20200064535 Haan et al. Feb 2020 A1
20200301192 Huang et al. Sep 2020 A1
20210055599 Chen et al. Feb 2021 A1
Foreign Referenced Citations (231)
Number Date Country
1587132 Mar 2005 CN
1860081 Nov 2006 CN
101600846 Dec 2009 CN
101684032 Mar 2010 CN
201989544 Sep 2011 CN
102341356 Feb 2012 CN
102464456 May 2012 CN
102566841 Jul 2012 CN
103136490 Jun 2013 CN
103587161 Feb 2014 CN
203825589 Sep 2014 CN
204111583 Jan 2015 CN
104656999 May 2015 CN
104679341 Jun 2015 CN
204463066 Jul 2015 CN
104843976 Aug 2015 CN
105118391 Dec 2015 CN
105511127 Apr 2016 CN
205239166 May 2016 CN
105705330 Jun 2016 CN
106256794 Dec 2016 CN
205905907 Jan 2017 CN
106458683 Feb 2017 CN
206114596 Apr 2017 CN
206114956 Apr 2017 CN
107613809 Jan 2018 CN
107757516 Mar 2018 CN
108519831 Sep 2018 CN
108550587 Sep 2018 CN
108725350 Nov 2018 CN
109070470 Dec 2018 CN
109135605 Jan 2019 CN
109690662 Apr 2019 CN
109743421 May 2019 CN
4415787 Nov 1995 DE
4415878 Nov 1995 DE
69703490 May 2001 DE
102004022008 Dec 2004 DE
102004002208 Aug 2005 DE
102009021938 Nov 2010 DE
102010007204 Aug 2011 DE
102013214108 Feb 2015 DE
102014116798 May 2016 DE
0076924 Apr 1983 EP
0316224 May 1989 EP
0347049 Dec 1989 EP
0418700 Mar 1991 EP
0423698 Apr 1991 EP
0525970 Feb 1993 EP
0664210 Jul 1995 EP
1013622 Jun 2000 EP
1031409 Aug 2000 EP
1046493 Oct 2000 EP
0910721 Nov 2000 EP
1647663 Apr 2006 EP
2236281 Oct 2010 EP
2385630 Nov 2011 EP
2521118 Nov 2012 EP
2852502 Apr 2015 EP
2933718 Oct 2015 EP
3093181 Nov 2016 EP
3100854 Dec 2016 EP
3118174 Jan 2017 EP
3118175 Jan 2017 EP
3144141 Mar 2017 EP
3156286 Apr 2017 EP
3189965 Jul 2017 EP
3288791 Mar 2018 EP
3426614 Jan 2019 EP
3532442 Sep 2019 EP
2750075 Dec 1997 FR
2918411 Jan 2009 FR
3012073 Apr 2015 FR
0805770 Dec 1958 GB
0991867 May 1965 GB
1319846 Jun 1973 GB
2011316 Jul 1979 GB
2281542 Mar 1995 GB
55-154329 Dec 1980 JP
57-048082 Mar 1982 JP
58-073681 May 1983 JP
58-194751 Nov 1983 JP
59-076561 May 1984 JP
63-089317 Apr 1988 JP
63-190730 Aug 1988 JP
03-059337 Jun 1991 JP
3059337 Jun 1991 JP
03-228840 Oct 1991 JP
04-119931 Apr 1992 JP
05-116972 May 1993 JP
06-340029 Dec 1994 JP
10-218630 Aug 1998 JP
11-001349 Jan 1999 JP
11-006029 Jan 1999 JP
11-060293 Mar 1999 JP
2000-260330 Sep 2000 JP
2002-255574 Sep 2002 JP
2003-500260 Jan 2003 JP
2003-276571 Oct 2003 JP
2003-321257 Nov 2003 JP
2004-101712 Apr 2004 JP
2004-284839 Oct 2004 JP
2006-181936 Jul 2006 JP
2007-188035 Jul 2007 JP
2007-197288 Aug 2007 JP
2010-145731 Jul 2010 JP
2012-111661 Jun 2012 JP
2013-084269 May 2013 JP
2014-126564 Jul 2014 JP
2015-502901 Jan 2015 JP
2015-092422 May 2015 JP
5748082 Jul 2015 JP
5796561 Oct 2015 JP
2016-500458 Jan 2016 JP
2016-031696 Mar 2016 JP
2016-517380 Jun 2016 JP
2016-130810 Jul 2016 JP
2016-144008 Aug 2016 JP
5976561 Aug 2016 JP
2016-173794 Sep 2016 JP
2016-530204 Sep 2016 JP
2016-203609 Dec 2016 JP
2016-207200 Dec 2016 JP
6281825 Feb 2018 JP
6281825 Feb 2018 JP
6340029 Jun 2018 JP
2002-0019045 Mar 2002 KR
10-0479282 Aug 2005 KR
10-2008-0023888 Mar 2008 KR
10-2013-0005776 Jan 2013 KR
10-2014-0111403 Sep 2014 KR
10-2015-0026911 Mar 2015 KR
10-2015-0033969 Apr 2015 KR
10-2015-0051458 May 2015 KR
10-1550833 Sep 2015 KR
1550833 Sep 2015 KR
10-2015-0121101 Oct 2015 KR
10-2016-0118746 Oct 2016 KR
10-1674060 Nov 2016 KR
10-2016-0144008 Dec 2016 KR
10-2017-0000208 Jan 2017 KR
10-2017-0106263 Sep 2017 KR
10-2017-0107124 Sep 2017 KR
10-2017-0113822 Oct 2017 KR
10-2017-0121674 Nov 2017 KR
10-2018-0028597 Mar 2018 KR
10-2018-0049484 May 2018 KR
10-2018-0049780 May 2018 KR
10-2019-0001864 Jan 2019 KR
10-2019-0081264 Jul 2019 KR
200704268 Jan 2007 TW
201438895 Oct 2014 TW
201546006 Dec 2015 TW
201636309 Oct 2016 TW
201637857 Nov 2016 TW
58334 Jul 2018 VN
9425272 Nov 1994 WO
9739074 Oct 1997 WO
9801649 Jan 1998 WO
0073062 Dec 2000 WO
2006095005 Sep 2006 WO
2007108861 Sep 2007 WO
2008042731 Apr 2008 WO
2008153484 Dec 2008 WO
2009072530 Jun 2009 WO
2011029852 Mar 2011 WO
2011144359 Nov 2011 WO
2011155403 Dec 2011 WO
2012005307 Jan 2012 WO
2012058084 May 2012 WO
2012166343 Dec 2012 WO
2013072611 May 2013 WO
2013072612 May 2013 WO
2013174715 Nov 2013 WO
2013175106 Nov 2013 WO
2014085663 Jun 2014 WO
2014107640 Jul 2014 WO
2014172237 Oct 2014 WO
2014175371 Oct 2014 WO
2015031594 Mar 2015 WO
2015055583 Apr 2015 WO
2015057552 Apr 2015 WO
2015084902 Jun 2015 WO
2015085283 Jun 2015 WO
2015141966 Sep 2015 WO
2016007815 Jan 2016 WO
2016007843 Jan 2016 WO
2016010947 Jan 2016 WO
2016010949 Jan 2016 WO
2016044360 Mar 2016 WO
2016069113 May 2016 WO
2016070974 May 2016 WO
2016115311 Jul 2016 WO
2016125713 Aug 2016 WO
2016136758 Sep 2016 WO
2016173699 Nov 2016 WO
2016183059 Nov 2016 WO
2016195301 Dec 2016 WO
2016196531 Dec 2016 WO
2016196546 Dec 2016 WO
2016202605 Dec 2016 WO
2017015392 Jan 2017 WO
2017019851 Feb 2017 WO
2017023673 Feb 2017 WO
2017106081 Jun 2017 WO
2017146866 Aug 2017 WO
2017155932 Sep 2017 WO
2017158031 Sep 2017 WO
WO-2017155932 Sep 2017 WO
WO-2017218652 Dec 2017 WO
2018005646 Jan 2018 WO
2018009504 Jan 2018 WO
2018015392 Jan 2018 WO
WO-2018005646 Jan 2018 WO
WO-2018009504 Jan 2018 WO
2018075853 Apr 2018 WO
WO-2018075853 Apr 2018 WO
2018081068 May 2018 WO
WO-2018081068 May 2018 WO
2018102332 Jun 2018 WO
2018125683 Jul 2018 WO
WO-2018129065 Jul 2018 WO
2018160812 Sep 2018 WO
2018200454 Nov 2018 WO
2018200807 Nov 2018 WO
2018213267 Nov 2018 WO
2019055469 Mar 2019 WO
2019055652 Mar 2019 WO
2019074800 Apr 2019 WO
2019075065 Apr 2019 WO
2019151618 Aug 2019 WO
Non-Patent Literature Citations (46)
Entry
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages.
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation C770-16, 2016.
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages.
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages.
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages.
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”.
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages.
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 DIGEST; pp. 1786-1788, v37, 2006.
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages.
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages.
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI.
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017].
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136.
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84.
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass” Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689.
Galuppi L et al: “Optimal cold bending of laminated glass”, 20070101 vol. 52, No. 1/2 Jan. 1, 2007 K2007-01-01), pp. 123-146.
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297.
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office.
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014).
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469.
Pambianchi et al.; “Corning Incorporated: Designing a New Future With Glass and Optics” Chapter 1 In “Materials Research for Manufacturing: An Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016).
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center Cnsole Work Premiere Automotive World; Downloaded Jul. 12, 2017; 2 Pages.
Photodon, “Screen Protectors for Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015).
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Corning Incorporated, 2015, Rev: F_090315, 2 pages.
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10.
Stattler; “New Wave—Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages.
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010).
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550.
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages.
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages.
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages.
Doyle et al; “Manual on Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages.
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. ENGLISH; 181 Pages.
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages.
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages.
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages.
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (eds) (2014); 9 Pages.
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages.
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015)285-300.
Galuppi et al; “Optical Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243.
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age.
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass-New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 Pages.
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International, Feb. 2004 pp. 95-97.
Weijde; “Graduation Plan”; Jan. 2017; 30 Pages.
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages.
European Patent Application No. 20187179.5 European Search Report and Search Opinion dated Dec. 17, 2020; 7 Pages; European Patent Office.
Related Publications (1)
Number Date Country
20210032150 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
62880820 Jul 2019 US