1. Field of the Invention
The present invention relates to power supply circuits, and more particularly to digital power control systems and methods for programming parameters of switched mode power supply circuits.
2. Description of Related Art
Switched mode power supplies are known in the art to convert an available direct current (DC) or alternating current (AC) level voltage to another DC level voltage. A buck converter is one particular type of switched mode power supply that provides a regulated DC output voltage to a load by selectively storing energy in an output inductor coupled to the load by switching the flow of current into the output inductor. It includes two power switches that are typically provided by MOSFET transistors. A filter capacitor coupled in parallel with the load reduces ripple of the output current. A pulse width modulation (PWM) control circuit is used to control the gating of the power switches in an alternating manner to control the flow of current in the output inductor. The PWM control circuit uses signals communicated via a feedback loop reflecting the output voltage and/or current level to adjust the duty cycle applied to the power switches in response to changing load conditions.
Conventional PWM control circuits are constructed using analog circuit components, such as operational amplifiers, comparators and passive components like resistors and capacitors for loop compensation, and some digital circuit components like logic gates and flip-flops. But, it is desirable to use entirely digital circuitry instead of the analog circuit components since digital circuitry takes up less physical space, draws less power, and allows the implementation of programmability features or adaptive control techniques.
A conventional digital control circuit includes an analog-to-digital converter (ADC) that converts an error signal representing the difference between a signal to be controlled (e.g., output voltage (Vo)) and a reference into a digital signal having n bits. The digital control circuit uses the digital error signal to control a digital pulse width modulator, which provides control signals to the power switches having a duty cycle such that the output value of the power supply tracks the reference. The digital control circuit may further include a digital filter, such as an infinite impulse response (IIR) filter having an associate transfer function. The transfer function includes compensation coefficients that define the operation of the IIR filter. It is desirable to have the ability to alter or program these compensation coefficients in order to define the operation of the digital filter for particular load conditions.
Since electronic systems frequently need power provided at several different discrete voltage and current levels, it is known to distribute an intermediate bus voltage throughout the electronic system, and include an individual point-of-load (“POL”) regulator, e.g., a switched mode DC/DC converter, at the point of power consumption within the electronic system. Particularly, a POL regulator would be included with each respective electronic circuit to convert the intermediate bus voltage to the level required by the electronic circuit. An electronic system may include multiple POL regulators to convert the intermediate bus voltage into each of the multiple voltage levels. Ideally, the POL regulator would be physically located adjacent to the corresponding electronic circuit so as to minimize the length of the low voltage, high current lines through the electronic system. The intermediate bus voltage can be delivered to the multiple POL regulators using low current lines that minimize loss.
With this distributed approach, there is a need to coordinate the control and monitoring of the POL regulators of the power system. The POL regulators generally operate in conjunction with a power supply controller that activates, programs, and monitors the individual POL regulators. It is known in the art for the controller to use a multi-connection parallel bus to activate and program each POL regulator. For example, the parallel bus may communicate an enable/disable bit for turning each POL regulator on and off, and voltage identification (VID) code bits for programming the output voltage set-point of the POL regulators. The controller may further use additional connections to monitor the voltage/current that is delivered by each POL regulator so as to detect fault conditions of the POL regulators. A drawback with such a control system is that it adds complexity and size to the overall electronic system.
Thus, it would be advantageous to provide a system and method for digitally controlling a switched mode power supply that overcomes these and other drawbacks of the prior art. It would further be advantageous to provide a system and method for controlling and monitoring the operation of a digitally controlled switched mode power supply within a distributed power system. More particularly, it would be advantageous to provide a system and method for programming the digital filter compensation coefficients of a digitally controlled switched mode power supply within a distributed power system.
The present invention overcomes the drawbacks of the prior art to provide a system and method for programming the digital filter compensation coefficients of a digitally controlled switched mode power supply within a distributed power system.
In an embodiment of the invention, a power control system comprises a plurality of point-of-load (POL) regulators each comprising at least one power switch adapted to convey power to a load and a digital controller adapted to control operation of the power switch responsive to a feedback measurement. The digital controller further comprises a digital filter having a transfer function defined by plural filter coefficients. A serial data bus operatively connects each of the plurality of POL regulators. A system controller is connected to the serial data bus and is adapted to communicate digital data to the plurality of POL regulators via the serial data bus. The digital data includes programming data for programming the plural filter coefficients. The system controller further comprises a user interface adapted to receive the programming data therefrom.
In another embodiment of the invention, a method of controlling a plurality of point-of-load (POL) regulators is provided. Each POL regulator comprises at least one power switch adapted to convey power to a load and a digital controller adapted to control operation of the power switch responsive to a feedback measurement. The digital controller further comprises a digital filter having a transfer function defined by plural filter coefficients. The method includes the steps of: (a) receiving programming data for programming the plural filter coefficients; (b) transmitting the programming data serially over a common data bus operably connected to the plurality of POL regulators; and (c) programming the plural filter coefficients of respective ones of the POL regulators in accordance with the programming data. More particularly, the receiving step further comprises receiving the programming data from a user.
In yet another embodiment of the invention, a point-of-load regulator comprises a power conversion circuit adapted to convert an intermediate voltage to an output voltage. The power conversion circuit comprises at least one power switch adapted to convey power to a load and a digital controller adapted to control operation of the power switch responsive to a feedback measurement. The digital controller further comprises a digital filter having a transfer function defined by plural filter coefficients. A serial data bus interface is adapted to communicate programming information from an external serial data bus connected thereto. A controller is connected to the serial data bus interface and the power conversion circuit, and is adapted to determine the plural filter coefficients from programming data received via the serial data bus interface.
In yet another embodiment of the invention, a method for programming a power control system is provided. The power control system includes a plurality of point-of-load (POL) regulators each comprising at least one power switch adapted to convey power to a load and a digital controller adapted to control operation of the power switch responsive to a feedback measurement. The digital controller further comprises a digital filter having a transfer function defined by plural filter coefficients. The method comprises: (a) displaying at least one screen simulating operation of an exemplary point-of-load regulator, said at least one screen including user selectable values for characteristics of the exemplary point-of-load regulator; (b) receiving user input to select the user selectable values; (c) calculating digital filter coefficients corresponding to the user input; and (d) selectively communicating data corresponding to the calculated filter coefficients to at least one of the plurality of point-of-load regulators for programming said digital filter.
A more complete understanding of the system and method of communicating filter coefficients to a plurality of point-of-load regulators in a power system will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment. Reference will be made to the appended sheets of drawings, which will first be described briefly.
The present invention provides a method for digitally controlling a switched mode power supply. More particularly, the invention provides a a system and method for programming the digital filter compensation coefficients of a digitally controlled switched mode power supply within a distributed power system. In the detailed description that follows, like element numerals are used to describe like elements illustrated in one or more figures.
The digital control circuit 30 receives a feedback signal from the output portion of the power supply 10. As shown in
More particularly, the digital control circuit 30 includes analog-to-digital converter (ADC) 32, digital controller 34, and digital pulse width modulator (DPWM) 36. The ADC 32 further comprises a windowed flash ADC that receives as inputs the feedback signal (i.e., output voltage Vo) and a voltage reference (Ref) and produces a digital voltage error signal (VEdk) representing the difference between the inputs (Ref−Vo). The digital controller 34 has a transfer function G(z) that transforms the voltage error signal VEdk to a digital output provided to the DPWM 36, which converts the signal into a waveform having a proportional pulse width (PWMk). The digital controller 34 receives as inputs filter compensation coefficients used in the transfer function G(z), as will be further described below. As discussed above, the pulse-modulated waveform PWMk produced by the DPWM 36 is coupled to the gate terminals of the power switches 12, 14 through the respective drivers 22, 24.
The ADC 40 further includes a logic device 52 coupled to output terminals of comparators 46A, 46B, 46C and 48A, 48B, 48C. The logic device 52 receives the comparator outputs and provides a multi-bit (e.g., 4-bit) parallel output representing the voltage error VEdk. By way of example, an output voltage Vo that exceeds the reference voltage Ref by one voltage increment (e.g., 5 mV) would cause the outputs of comparators 46B, 46A, 48A, 48B, and 48C to go high, while the outputs of comparators 46C, 46D and 48D remain low. The logic device 52 would interpret this as logic level 9 (or binary 1001) and produce an associated voltage error signal VEdk. It should be understood that the voltage reference Ref is variable so as to shift the window of the ADC 40. If the output voltage Vo exceeds the highest voltage increment of the resistor ladder, the output terminal of comparator 46D provides a HIGH saturation signal. Similarly, if the output voltage Vo is lower than the lowest voltage increment of the resistor ladder, the output terminal of comparator 48D provides a LOW saturation signal.
In
The IIR filter is illustrated in block diagram form and includes a first plurality of delay registers 72, 74, . . . , 76 (each labeled z−1), a first plurality of mathematical operators (multipliers) with coefficients 71, 73, . . . , 77 (labeled C0, C1, . . . , Cn), a second plurality of mathematical operators (adders) 92, 94, 96, a second plurality of delay registers 82, 84, . . . , 86 (each labeled z−1), and a third plurality of mathematical operators (multipliers) with coefficients 83, 87 (labeled B1, . . . , Bn). Each of the first delay registers 72, 74, 76 holds a previous sample of the voltage error VEdk, which is then weighted by a respective one of the coefficients 71, 73, 77. Likewise, each of the second delay registers 82, 84, 86 holds a previous sample of the output PWM′k, which is then weighted by a respective one of the coefficients 83, 87. The adders 92, 94, and 96 combine the weighted input and output samples. It should be appreciated that a greater number of delay registers and coefficients may be included in the IIR filter, and that a limited number is shown in
The error controller 62 receives a plurality of input signals reflecting error conditions of the ADC 40 and the digital filter. Specifically, the error controller 62 receives the HIGH and LOW saturation signals from the ADC 40 reflecting that the output voltage Vo is above and below the voltage window of the ADC, respectively. Each of the mathematical operators (adders) 92, 94, 96 provides an overflow signal to the error controller 62 reflecting an overflow condition (i.e., carry bit) of the mathematical operators. The digital filter further includes a range limiter 81 that clips the output PWM′k if upper or lower range limits are reached. In that situation, the range limiter 81 provides the error controller 62 with a corresponding limit signal.
The error controller 62 uses these input signals to alter the operation of the digital filter in order to improve the responsiveness of the digital filter to changing load conditions. The error controller 62 is coupled to each of the first plurality of delay registers 72, 74, 76 and second plurality of delay registers 82, 84, 86 to enable the resetting and/or presetting of the value stored therein. As used herein, “resetting” refers to the setting of the value to an initial value (e.g., zero), whereas “presetting” refers to the setting of the value to another predetermined number. Particularly, the error controller 62 can replace the previous samples of the voltage error VEdk and output PWM′k with predetermined values that change the behavior of the power supply. The error controller 62 receives as external inputs data values to be used as coefficients 71, 73, . . . , 77 and 83, . . . , 87. It should be appreciated that the characteristics of the digital filter can be programmed by selection of appropriate data values for the coefficients 71, 73, . . . , 77 and 83, . . . , 87.
The digital controller further includes multiplexer 64 that enables selection between the PWM′k output signal and a predetermined output signal provided by the error controller 62. A select signal provided by the error controller 62 determines which signal passes through the multiplexer 64. When the ADC 40 goes into HIGH or LOW saturation, the error controller 62 sets the PWM′k signal to a specific predetermined value (or sequence of values that are dependent in part on the previous samples) by controlling the multiplexer 64. In order to recover smoothly from such a condition, the error controller can also alter the delayed input and output samples by reloading the first plurality of delay registers 72, 74, 76, and second plurality of delay registers 82, 84, 86. This will assure a controlled behavior of the feedback loop as the ADC 40 recovers from saturation.
By way of example, if the ADC 40 experiences a positive saturation, i.e., the LOW signal changing from a low state to a high state, the PWM′k sample can be reset to zero to help to reduce the error. By resetting the PWM′k sample to zero, the pulse width delivered to the high side power switch 12 of the power supply 10 goes to zero, effectively shutting off power to the resistive load 20 (see
In an embodiment of the invention, the switched mode power supply of
Referring now to
The front-end regulator 104 provides an intermediate voltage to the plurality of POL regulators over an intermediate voltage bus, and may simply comprise another POL regulator. The system controller 102 and front-end regulator 104 may be integrated together in a single unit, or may be provided as separate devices. Alternatively, the front-end regulator 104 may provide a plurality of intermediate voltages to the POL regulators over a plurality of intermediate voltage buses. The system controller 102 may draw its power from the intermediate voltage bus.
The system controller 102 communicates with the plurality of POL regulators by writing and/or reading digital data (either synchronously or asynchronous) via a uni-directional or bi-directional serial bus, illustrated in
An exemplary POL regulator 106 of the POL control system 10 is illustrated in greater detail in
The hardwired settings interface 150 communicates with external connections to program the POL regulator without using the serial interface 144. The hardwired settings interface 150 may include as inputs the address setting (Addr) of the POL to alter or set some of the settings as a function of the address (i.e., the identifier of the POL), e.g., phase displacement, enable/disable bit (En), trim, VID code bits, and selecting different (pre-defined) sets of digital filter coefficients optimized for different output filter configurations. Further, the address identifies the POL regulator during communication operations through the serial interface 144. The trim input allows the connection of one or more external resistors to define an output voltage level for the POL regulator. Similarly, the VID code bits can be used to program the POL regulator for a desired output voltage/current level. The enable/disable bit allows the POL regulator to be turned on/off by toggling a digital high/low signal.
The POL controller 146 receives and prioritizes the settings of the POL regulator. If no settings information is received via either the hardwired settings interface 150 or the serial interface 144, the POL controller 146 accesses the parameters stored in the default configuration memory 148. Alternatively, if settings information is received via the hardwired settings interface 150, then the POL controller 146 will apply those parameters. Thus, the default settings apply to all of the parameters that cannot be or are not set through hard wiring. The settings received by the hardwired settings interface 150 can be overwritten by information received via the serial interface 144. The POL regulator can therefore operate in a stand-alone mode, a fully programmable mode, or a combination thereof. This programming flexibility enables a plurality of different power applications to be satisfied with a single generic POL regulator, thereby reducing the cost and simplifying the manufacture of POL regulators.
By way of example, the system controller 102 communicates data values to a particular POL regulator 106 via the synch/data bus for programming the digital filter coefficients. The data values are received by the serial interface 144 and communicated to the POL controller 146. The POL controller then communicates the data values to the power conversion circuit 142 along with suitable instructions to program the digital filter coefficients.
An exemplary system controller 102 of the POL control system 100 is illustrated in
The controller 126 is operably connected to the user interface 122, the POL interface 124, and the memory 128. The controller 126 has an external port for communication a disable signal (FE DIS) to the front-end regulator 104. At start-up of the POL control system 100, the controller 126 reads from the internal memory 128 (and/or the external memory 132) the system settings and programs the POL regulators accordingly via the POL interface 124. Each of the POL regulators is then set up and started in a prescribed manner based on the system programming. During normal operation, the controller 126 decodes and executes any command or message coming from the user or the POL regulators. The controller 126 monitors the performance of the POL regulators and reports this information back to the user through the user interface 122. The POL regulators may also be programmed by the user through the controller 126 to execute specific, autonomous reactions to faults, such as over current or over voltage conditions. Alternatively, the POL regulators may be programmed to only report fault conditions to the system controller 102, which will then determine the appropriate corrective action in accordance with predefined settings, e.g., shut down the front-end regulator via the FE DIS control line.
A monitoring block 130 may optionally be provided to monitor the state of one or more voltage or current levels of other power systems not operably connected to the controller 102 via the synch/data or OK/fault buses. The monitoring block 130 may provide this information to the controller 126 for reporting to the user through the user interface in the same manner as other information concerning the POL control system 10. This way, the POL control system 10 can provide some backward compatibility with power systems that are already present in an electronic system.
As discussed above, the system controller 102 has an interface for communicating with a user system for programming and monitoring performance of the POL control system. The user system would include a computer coupled to the interface, either directly or through a network, having suitable software adapted to communicate with the system controller 102. As known in the art, the computer would be equipped with a graphics-based user interface (GUI) that incorporates movable windows, icons and a mouse, such as based on the Microsoft Windows™ interface. The GUI may include standard preprogrammed formats for representing text and graphics, as generally understood in the art. Information received from the system controller 102 is displayed on the computer screen by the GUI, and the user can program and monitor the operation of the POL control system by making changes on the particular screens of the GUI.
The GUI permits a user to define values of various parameters of the POL regulator in order to simulate its operation. Each user definable parameter includes a field that permits a user to enter desired data values. The user can select parameters of the output voltages, such as by defining the voltage at the first end of the pi-filter V1, the voltage at the second end of the pi-filter V2, voltage delay, rise and fall times, and power switch drive pulse width and period. The user can also select load distribution parameters, including defining the resistances, capacitances and inductance of the pi-filter. The user can also define the load resistance and load current characteristics.
Once the user has selected desired parameters for the POL regulator, the GUI can run a simulation based on the selected parameters.
Having thus described a preferred embodiment of a system and method for programming the digital filter compensation coefficients of a digitally controlled switched mode power supply within a distributed power system, it should be apparent to those skilled in the art that certain advantages of the system have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.
This patent application is a divisional application pursuant to 35 U.S.C. § 120 to U.S. patent application Ser. No. 10/889,806, filed Jul. 12, 2004, now issued as U.S. Pat. No. 7,249,267 on Jul. 24, 2007, which claims priority to provisional patent application Ser. No. 60/544,553, filed Feb. 12, 2004, and which also claims priority as a continuation-in-part pursuant to 35 § U.S.C. § 120 to patent applications Ser. No. 10/361,667, filed Feb. 10, 2003 now U.S. Pat. No. 6,933,709, and Ser. No. 10/326,222, filed Dec. 21, 2002 now U.S. Pat. No. 7,000,125.
Number | Name | Date | Kind |
---|---|---|---|
3660672 | Berger et al. | May 1972 | A |
4194147 | Payne et al. | Mar 1980 | A |
4204249 | Dye et al. | May 1980 | A |
4328429 | Kublick et al. | May 1982 | A |
4335445 | Nercessian | Jun 1982 | A |
4350943 | Pritchard | Sep 1982 | A |
4451773 | Papathomas et al. | May 1984 | A |
4538073 | Freige et al. | Aug 1985 | A |
4538101 | Shimpo et al. | Aug 1985 | A |
4607330 | McMurray et al. | Aug 1986 | A |
4616142 | Upadhyay et al. | Oct 1986 | A |
4622627 | Rodriguez et al. | Nov 1986 | A |
4630187 | Henze | Dec 1986 | A |
4654769 | Middlebrook | Mar 1987 | A |
4677566 | Whittaker et al. | Jun 1987 | A |
4761725 | Henze | Aug 1988 | A |
4940930 | Detweiler | Jul 1990 | A |
4988942 | Ekstrand | Jan 1991 | A |
5004972 | Roth | Apr 1991 | A |
5053920 | Staffiere et al. | Oct 1991 | A |
5073848 | Steigerwald et al. | Dec 1991 | A |
5079498 | Cleasby et al. | Jan 1992 | A |
5117430 | Berglund | May 1992 | A |
5168208 | Schultz et al. | Dec 1992 | A |
5229699 | Chu et al. | Jul 1993 | A |
5270904 | Gulczynski | Dec 1993 | A |
5272614 | Brunk et al. | Dec 1993 | A |
5287055 | Cini et al. | Feb 1994 | A |
5349523 | Inou et al. | Sep 1994 | A |
5377090 | Steigerwald | Dec 1994 | A |
5398029 | Toyama et al. | Mar 1995 | A |
5426425 | Conrad et al. | Jun 1995 | A |
5481140 | Maruyama et al. | Jan 1996 | A |
5489904 | Hadidi | Feb 1996 | A |
5508606 | Ryczek | Apr 1996 | A |
5532577 | Doluca | Jul 1996 | A |
5610826 | Whetsel | Mar 1997 | A |
5627460 | Bazinet et al. | May 1997 | A |
5631550 | Castro et al. | May 1997 | A |
5646509 | Berglund et al. | Jul 1997 | A |
5675480 | Stanford | Oct 1997 | A |
5684686 | Reddy | Nov 1997 | A |
5727208 | Brown | Mar 1998 | A |
5752047 | Darty et al. | May 1998 | A |
5815018 | Soborski | Sep 1998 | A |
5847950 | Bhagwat | Dec 1998 | A |
5870296 | Schaffer | Feb 1999 | A |
5872984 | Berglund et al. | Feb 1999 | A |
5874912 | Hasegawa | Feb 1999 | A |
5883797 | Amaro et al. | Mar 1999 | A |
5889392 | Moore et al. | Mar 1999 | A |
5892933 | Voltz | Apr 1999 | A |
5905370 | Bryson | May 1999 | A |
5917719 | Hoffman et al. | Jun 1999 | A |
5929618 | Boylan et al. | Jul 1999 | A |
5929620 | Dobkin et al. | Jul 1999 | A |
5935252 | Berglund et al. | Aug 1999 | A |
5943227 | Bryson et al. | Aug 1999 | A |
5946495 | Scholhamer et al. | Aug 1999 | A |
5990669 | Brown | Nov 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6005377 | Chen et al. | Dec 1999 | A |
6021059 | Kennedy | Feb 2000 | A |
6055163 | Wagner et al. | Apr 2000 | A |
6057607 | Rader, III et al. | May 2000 | A |
6079026 | Berglund et al. | Jun 2000 | A |
6100676 | Burstein et al. | Aug 2000 | A |
6111396 | Line et al. | Aug 2000 | A |
6115441 | Douglass et al. | Sep 2000 | A |
6121760 | Marshall et al. | Sep 2000 | A |
6136143 | Winter et al. | Oct 2000 | A |
6137280 | Ackermann | Oct 2000 | A |
6150803 | Varga | Nov 2000 | A |
6157093 | Giannopoulos et al. | Dec 2000 | A |
6157182 | Tanaka et al. | Dec 2000 | A |
6160697 | Edel | Dec 2000 | A |
6163143 | Shimamori | Dec 2000 | A |
6163178 | Stark et al. | Dec 2000 | A |
6170062 | Henrie | Jan 2001 | B1 |
6177787 | Hobrecht | Jan 2001 | B1 |
6181029 | Berglund et al. | Jan 2001 | B1 |
6191566 | Petricek et al. | Feb 2001 | B1 |
6194856 | Kobayashi et al. | Feb 2001 | B1 |
6194883 | Shimamori | Feb 2001 | B1 |
6198261 | Schultz et al. | Mar 2001 | B1 |
6199130 | Berglund et al. | Mar 2001 | B1 |
6208127 | Doluca | Mar 2001 | B1 |
6211579 | Blair | Apr 2001 | B1 |
6246219 | Lynch et al. | Jun 2001 | B1 |
6249111 | Nguyen | Jun 2001 | B1 |
6262900 | Suntio | Jul 2001 | B1 |
6288595 | Hirakata et al. | Sep 2001 | B1 |
6291975 | Snodgrass | Sep 2001 | B1 |
6294954 | Melanson | Sep 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304823 | Smit et al. | Oct 2001 | B1 |
6320768 | Pham et al. | Nov 2001 | B1 |
6351108 | Burnstein et al. | Feb 2002 | B1 |
6355990 | Mitchell | Mar 2002 | B1 |
6366069 | Nguyen et al. | Apr 2002 | B1 |
6373334 | Melanson | Apr 2002 | B1 |
6385024 | Olson | May 2002 | B1 |
6392577 | Swanson et al. | May 2002 | B1 |
6396169 | Voegeli et al. | May 2002 | B1 |
6396250 | Bridge | May 2002 | B1 |
6400127 | Giannopoulos | Jun 2002 | B1 |
6411071 | Schultz et al. | Jun 2002 | B1 |
6411072 | Feldman | Jun 2002 | B1 |
6421259 | Brooks et al. | Jul 2002 | B1 |
6429630 | Pohlman et al. | Aug 2002 | B2 |
6448745 | Killat | Sep 2002 | B1 |
6448746 | Carlson | Sep 2002 | B1 |
6456044 | Darmawaskita | Sep 2002 | B1 |
6465909 | Soo et al. | Oct 2002 | B1 |
6465993 | Clarkin et al. | Oct 2002 | B1 |
6469478 | Curtin | Oct 2002 | B1 |
6469484 | L'Hermite et al. | Oct 2002 | B2 |
6476589 | Umminger et al. | Nov 2002 | B2 |
6556158 | Steensgaard-Madsen | Apr 2003 | B2 |
6563294 | Duffy et al. | May 2003 | B2 |
6583608 | Zafarana et al. | Jun 2003 | B2 |
6590369 | Burstein et al. | Jul 2003 | B2 |
6608402 | Soo et al. | Aug 2003 | B2 |
6614612 | Menegoli et al. | Sep 2003 | B1 |
6621259 | Jones et al. | Sep 2003 | B2 |
6665525 | Dent et al. | Dec 2003 | B2 |
6683494 | Stanley | Jan 2004 | B2 |
6686831 | Cook | Feb 2004 | B2 |
6693811 | Bowman et al. | Feb 2004 | B1 |
6717389 | Johnson | Apr 2004 | B1 |
6731023 | Rothleitner et al. | May 2004 | B2 |
6744243 | Daniels et al. | Jun 2004 | B2 |
6771052 | Ostojic | Aug 2004 | B2 |
6778414 | Chang et al. | Aug 2004 | B2 |
6788033 | Vinciarelli | Sep 2004 | B2 |
6788035 | Bassett et al. | Sep 2004 | B2 |
6791298 | Shenai et al. | Sep 2004 | B2 |
6791302 | Tang et al. | Sep 2004 | B2 |
6791368 | Tzeng et al. | Sep 2004 | B2 |
6795009 | Duffy et al. | Sep 2004 | B2 |
6801027 | Hann et al. | Oct 2004 | B2 |
6807070 | Ribarich | Oct 2004 | B2 |
6816758 | Maxwell, Jr. et al. | Nov 2004 | B2 |
6819537 | Pohlman et al. | Nov 2004 | B2 |
6825644 | Kernahan et al. | Nov 2004 | B2 |
6828765 | Schultz et al. | Dec 2004 | B1 |
6829547 | Law et al. | Dec 2004 | B2 |
6833691 | Chapuis | Dec 2004 | B2 |
6850046 | Chapuis | Feb 2005 | B2 |
6850049 | Kono | Feb 2005 | B2 |
6850426 | Kojori et al. | Feb 2005 | B2 |
6853169 | Burstein et al. | Feb 2005 | B2 |
6853174 | Inn | Feb 2005 | B1 |
6888339 | Travaglini et al. | May 2005 | B1 |
6903949 | Ribarich | Jun 2005 | B2 |
6911808 | Shimamori | Jun 2005 | B1 |
6915440 | Berglund et al. | Jul 2005 | B2 |
6917186 | Klippel et al. | Jul 2005 | B2 |
6928560 | Fell, III et al. | Aug 2005 | B1 |
6933709 | Chapuis | Aug 2005 | B2 |
6933711 | Sutardja et al. | Aug 2005 | B2 |
6936999 | Chapuis | Aug 2005 | B2 |
6947273 | Bassett et al. | Sep 2005 | B2 |
6949916 | Chapuis | Sep 2005 | B2 |
6963190 | Asanuma et al. | Nov 2005 | B2 |
6965220 | Kernahan et al. | Nov 2005 | B2 |
6965502 | Duffy et al. | Nov 2005 | B2 |
6975494 | Tang et al. | Dec 2005 | B2 |
6977492 | Sutardja et al. | Dec 2005 | B2 |
7000125 | Chapuis et al. | Feb 2006 | B2 |
7000315 | Chua et al. | Feb 2006 | B2 |
7007176 | Goodfellow et al. | Feb 2006 | B2 |
7023192 | Sutardja et al. | Apr 2006 | B2 |
7023672 | Goodfellow et al. | Apr 2006 | B2 |
7049798 | Chapuis et al. | May 2006 | B2 |
7068021 | Chapuis | Jun 2006 | B2 |
7080265 | Thaker et al. | Jul 2006 | B2 |
7141956 | Chapuis | Nov 2006 | B2 |
7266709 | Chapuis et al. | Sep 2007 | B2 |
7315157 | Chapuis | Jan 2008 | B2 |
7315160 | Fosler | Jan 2008 | B2 |
7394445 | Chapuis et al. | Jul 2008 | B2 |
20010052862 | Roelofs | Dec 2001 | A1 |
20020070718 | Rose | Jun 2002 | A1 |
20020073347 | Zafarana et al. | Jun 2002 | A1 |
20020075710 | Lin | Jun 2002 | A1 |
20020104031 | Tomlinson et al. | Aug 2002 | A1 |
20020105227 | Nerone et al. | Aug 2002 | A1 |
20020144163 | Goodfellow et al. | Oct 2002 | A1 |
20030006650 | Tang et al. | Jan 2003 | A1 |
20030067404 | Ruha et al. | Apr 2003 | A1 |
20030122429 | Zhang | Jul 2003 | A1 |
20030137912 | Ogura | Jul 2003 | A1 |
20030142513 | Vinciarelli | Jul 2003 | A1 |
20030201761 | Harris | Oct 2003 | A1 |
20040080044 | Moriyama et al. | Apr 2004 | A1 |
20040093533 | Chapuis et al. | May 2004 | A1 |
20040123164 | Chapuis et al. | Jun 2004 | A1 |
20040123167 | Chapuis | Jun 2004 | A1 |
20040174147 | Vinciarelli | Sep 2004 | A1 |
20040178780 | Chapuis | Sep 2004 | A1 |
20040189271 | Hanson et al. | Sep 2004 | A1 |
20040201279 | Templeton | Oct 2004 | A1 |
20040225811 | Fosler | Nov 2004 | A1 |
20040246754 | Chapuis | Dec 2004 | A1 |
20050093594 | Kim et al. | May 2005 | A1 |
20050117376 | Wilson | Jun 2005 | A1 |
20050146312 | Kenny et al. | Jul 2005 | A1 |
20050200344 | Chapuis | Sep 2005 | A1 |
20050289373 | Chapuis et al. | Dec 2005 | A1 |
20060022656 | Leung et al. | Feb 2006 | A1 |
20060149396 | Templeton | Jul 2006 | A1 |
20060174145 | Chapuis et al. | Aug 2006 | A1 |
20060244570 | Leung et al. | Nov 2006 | A1 |
20060250120 | King | Nov 2006 | A1 |
20070114985 | Latham et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
2521825 | Nov 2002 | CN |
0255258 | Feb 1988 | EP |
0315366 | May 1989 | EP |
0401562 | Dec 1990 | EP |
0660487 | Jun 1995 | EP |
0875994 | Nov 1998 | EP |
0877468 | Nov 1998 | EP |
0997825 | May 2000 | EP |
2377094 | Dec 2002 | GB |
60-244111 | Dec 1985 | JP |
1185329 | Mar 1999 | JP |
200284495 | Aug 2002 | KR |
1359874 | Dec 1985 | RU |
1814177 | May 1993 | RU |
WO9319415 | Sep 1993 | WO |
WO0122585 | Mar 2001 | WO |
WO0231943 | Apr 2002 | WO |
WO0231951 | Apr 2002 | WO |
WO0250690 | Jun 2002 | WO |
WO02063688 | Aug 2002 | WO |
WO 03030369 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080186006 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60544553 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10889806 | Jul 2004 | US |
Child | 11778647 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10361667 | Feb 2003 | US |
Child | 10889806 | US | |
Parent | 10326222 | Dec 2002 | US |
Child | 10361667 | US |