Method and system for communicating with and controlling an alarm system from a remote server

Information

  • Patent Grant
  • 10747216
  • Patent Number
    10,747,216
  • Date Filed
    Monday, June 6, 2011
    13 years ago
  • Date Issued
    Tuesday, August 18, 2020
    4 years ago
  • CPC
  • Field of Search
    • US
    • 340 506000
    • 340 531000
    • 340 521000
    • 340 541000
    • 340 540000
    • 340 539100
    • CPC
    • G08B3/10
    • G08B25/14
  • International Classifications
    • G08B29/00
    • G05B23/02
    • Term Extension
      281
Abstract
A communication system is provided that can be added to a legacy alarm system to provide a plurality of communication modes to a remote server system from the legacy alarm system and provide remote control and monitoring to a user of the system via two-way communication links. The communication system can be configured to communicate with an alarm processor of the legacy alarm system through use of a keypad bus typically used by the legacy alarm system for communication between the alarm processor and one or more keypads. Communication modes that can be provided by embodiments of the present invention can include, for example, communication over a public switched telephone network, cellular transmission, broadband transmission, and the like. The communication system can monitor all configured communication modes and determine which communication mode is the best for providing communication between the alarm system and the remote server. Through these communication modes and by virtue of being coupled to the alarm processor via the keypad bus, the communication system can provide both transmission to the remote server of the status and alarm condition of the legacy alarm system as well as provide control signals from the remote server to the legacy alarm system. The remote server provides pre-determined responses to information received from the alarm system, including providing alarm system condition information to a user or a monitoring station for response.
Description
FIELD OF THE INVENTION

The present invention relates to the field of security systems, and more particularly relates to coupling a legacy alarm system to a server coupled to an external network via a plurality of monitored communication modes, enabling the server to provide control information to the legacy alarm system, and the legacy alarm system to report status and alarm conditions to the server.


BACKGROUND OF THE INVENTION

Security systems alert occupants of a dwelling and emergency authorities of a violation of premises secured by the security system. A typical security system includes a controller connected by wireless or wired connections to sensors deployed at various locations throughout the secured dwelling. In a home, sensors are usually deployed in doorways, windows, and other points of entry. Motion sensors can also be placed strategically within the home to detect unauthorized movement, while smoke and heat sensors can detect the presence of fire.


Security systems are usually connected to a central monitoring service system via a telecommunications line coupled to a public switched telephone network (PSTN). The central monitoring service system can be maintained by a security service provider and continuously monitors all activated subscriber security systems for alarms. Sensor activity occurs when a sensor detects, for example, an opening of a door or window, or presence of movement, or a fire. Sensor activity causes the sensor to send a signal to the controller of the security system. Responsive to receiving the signal, the controller can determine whether the signal represents an alarm condition and, if so, issue an audible alarm to alert the occupants of the dwelling and can originate a data transmission to the central monitoring service system via the telecommunications line. Upon receiving notification of an alarm, the central monitoring service system can determine the type of activity, attempt to contact the dwelling occupants, and alert appropriate authorities of an emergency situation.


Typically, the telecommunications line interconnecting the security system to the central monitoring service system is the dwelling occupant's telephone line. This line usually emanates from and is accessible from the exterior of the dwelling. It is this telecommunications line which delivers a security breach signal to the central monitoring service system via a PSTN.


One drawback of such a security system is that the telecommunications line becomes a potential single point of failure for providing a security breach signal to the central monitoring service system. Should the telephone line be rendered inoperative, for example, by an intruder cutting the telecommunications line prior to attempting entry, or due to other types of telecommunications systems failure, then the security breach signal will fail to be provided to the central monitoring service system and further action, such as notification of the authorities will not occur. Such links between a security system and a central monitoring service system are typically one-way, providing only data from the security system to the central monitoring system, which is another drawback. Such a one-way communication link does not allow for remote access of the security system to monitor or control the system.


Other security systems exist that can provide either a redundant communication mode or two-way communication between the security system and a remote server, either accessed by a central monitoring service system or a user. The drawbacks with regard to these prior art systems are that should a dwelling already have a security system such as that described above, the legacy security system would have to be deinstalled and then replaced by a security system providing redundant communication modes and/or two-way communication. There is no capacity to add such functionality to an existing alarm system. Such replacement of a legacy security system entails high costs, as the controller unit of the legacy security system must be replaced, and the sensors need to be rewired to a new controller unit.


It is therefore desirable to provide a cost-effective solution for enabling legacy (pre-installed) security systems to be remotely controlled and monitored by either a user of the system (e.g., a home owner) or a central monitoring service system, through a plurality of continuously-monitored communication modes.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.



FIG. 1 is a simplified block diagram illustrating elements of an alarm system usable with embodiments of the present invention.



FIG. 2 is a simplified block diagram of components of a legacy alarm system coupled to a communications system, in accord with embodiments of the present invention.



FIG. 3 is a simplified flow diagram illustrating steps performed in providing a signal received from a keypad bus to an external network over a selected communication mode, in accord with embodiments of the present invention.



FIG. 4 is a simplified flow diagram illustrating steps for providing information in an alarm signal received from alarm processor's telephone interface to an external network, in accord with embodiments of the present invention.



FIG. 5 is a simplified flow diagram illustrating steps performed in providing control information generated by a remote server to a legacy alarm system, in accord with embodiments of the present invention.



FIG. 6 is a simplified flow diagram illustrating a method performed by a remote server system in response to receiving data from a communications unit, in accord with embodiments of the present invention.



FIG. 7 is a simplified block diagram illustrating one example of a connection between a communication unit and a legacy alarm system controller, in accord with embodiments of the present invention.



FIG. 8 depicts a block diagram of a computer system suitable for implementing embodiments of the present invention.





DETAILED DESCRIPTION

Embodiments of the present invention provide a communication system that can be added to a legacy alarm system to provide a plurality of communication modes to a remote server system from the legacy alarm system and provide remote control and monitoring to a user of the system via two-way communication links. Embodiments of the present invention can be configured to communicate with an alarm processor of the alarm system through use of a keypad bus typically used by the legacy alarm system for communications between the alarm processor and one or more keypads. Communication modes to the remote server system that can be provided by embodiments of the present invention can include, for example, communication over a public switched telephone network, cellular transmission, broadband transmission, and the like. Embodiments of the present invention can monitor all configured communication modes and determine which communication mode is the best for providing communication between the alarm system and the remote server. Through these communication modes and by virtue of being coupled to the alarm processor via the keypad bus, embodiments of the present invention can provide both transmission to the remote server of the status and alarm condition of the legacy alarm system as well as provide control signals from the remote server to the legacy alarm system.



FIG. 1 is a simplified block diagram illustrating elements of a legacy alarm system 100. Alarm system 100 includes a controller unit 110. Controller unit 110 includes an alarm processor 120, which is coupled to sensors 130(1)-(N). Sensors 130(1)-(N) can be installed at various points of entry for a building to detect when such a point of entry is reached, and can also include, for example, motion, smoke, and fire detectors. Alarm processor 120 can define zones each of which can include one or more alarm sensors 130(1)-(N). Alarm processor 120 is further coupled to a telephone line interface 140. In the event of a triggering of one of sensors 130(1)-(N), alarm processor 120 can instruct telephone line interface 140 to dial a call through public switched telephone network (PSTN) 150 to a central monitoring service system 160. Alarm processor 120 can then send data through the connection to the central monitoring service system, providing information related to the type of security breach (e.g., identification of zone, fire or intrusion alarm, etc.).


Alarm processor 120 is also coupled to a keypad 170. Keypad 170 allows a user in the building to control the alarm system by performing tasks such as arming and disarming the alarm system, activating an alarm sequence to activate an audible alarm and call to the central monitoring service system, sending a silent distress signal to the central monitoring service system, and programming and configuring alarm system 100. Keypad 170 includes a keypad processor 175, which is coupled to keys 180 through which the user can enter commands. Keypad 170 can also include, for example, visual indicators of the status of the alarm system such as LEDs or a display, which are coupled to the keypad processor. Alarm processor 120 is coupled to keypad processor 175 through a keypad bus 190. Keypad bus 190 provides communication between the alarm processor and keypad processor using, for example, a serial digital protocol transmitted and received by the processors. One or more keypads can be connected to the alarm processor via the keypad bus.


Through the use of the keypad bus serial digital protocol, the alarm processor can provide to the keypad information such as whether the alarm is armed or disarmed, and whether zones are tripped or not. The keypad processor can provide arming codes and other control information to the alarm processor.



FIG. 2 is a simplified block diagram of components of a legacy alarm system coupled to a communications system in accord with embodiments of the present invention. As discussed above, alarm controller 110 includes a microprocessor 120 that is coupled to sensors 130(1)-(N). Alarm processor 120 is coupled via keypad bus 190 to keypad processor 175 within keypad 170. Communications unit 210 provides a communications processor 220 that is coupled to alarm processor 120 and keypad processor 175 via keypad bus 190. Thus, communications processor 220 can exchange data with alarm processor 120 using the serial digital protocol of keypad bus 190. Communications processor 220 can be configured to automatically determine the type of serial digital protocol being used in communications between alarm processor 120 and keypad processor 175 as part of an initial configuration of communications unit 210 upon being coupled to the keypad bus.


Communications processor 220 is also coupled to controller unit 110 via telecommunications link 222, which is coupled to the outgoing port of telephone line interface 140. Communications processor 220 is further coupled to PSTN 150 by telecommunications link 226, thereby breaking the direct link between telephone line interface 140 and PSTN 150 illustrated in FIG. 1. Communications processor 220 then serves as an intermediary between alarm unit 110 and PSTN 150. It is through this link that communications processor 220 can provide communication from alarm controller unit 110 to a remote server system 270 via the PSTN, should that be a selected communication mode (as described below).


Remote server system 270 can be a network-coupled computer system that provides, in part, responsive communication to information received from communications unit 210. Such responsive communication can be provided to, for example, the user of the alarm system (e.g., a homeowner) or to emergency responders to alarm conditions. Remote server system 270 can also provide communication to communications unit 210, including, for example, configuration information and updates.


Communications processor 220 can also be coupled to a cellular interface 230 that can provide cellular transmission to a cell tower 240 that is also coupled, directly or indirectly, to a private cellular network 265, which is further coupled to a network 260. Through this link, communications processor 220 can provide a cellular transmission communication mode to server system 270, which is also coupled to network 260.


Communications processor 220 can also be coupled to a network interface 250. Network interface 250 can provide a broadband connection to network 260 (e.g., the Internet), which is also coupled to server system 270. Through network interface 250, communications processor 220 can provide a broadband communications mode to server system 270.


In alternate embodiments of communications unit 210, communications processor 220 can be coupled to other communication interfaces that can provide wireless broadband, Wi-Fi communication, and the like.


The multiple communication modes provided by communication unit 210 avoid the single point of failure (e.g., an external telephone line) present in legacy alarm systems. To this end, it is preferable that multiple communication modes not be transmitted over a common link from a building in which an alarm system is installed.


Communications processor 220 can monitor all of the available communication modes to determine which communication mode is the best for transmitting data to and from server system 270 at any point in time. For example, the communications processor, through network interface 250, can monitor whether there is an active connection to network 260. Such monitoring can be performed by, for example, by periodically establishing, or attempting to establish, a connection with server system 270 and monitoring a heartbeat signal. Alternatively, the communications processor can determine availability and viability of a network connection to the server system using, for example, network echo packets (e.g., pinging). Similarly, through cellular interface 230, communications processor 220 can periodically establish, or attempt to establish, a connection with server system 270 through private cellular network 265 and network 260. With regard to connections via PSTN 150, the communications processor can, for example, determine whether there is an appropriate voltage over the telecommunications link 226 from the PSTN. In an event of a voltage drop on telecommunications link 226, the communications processor can interpret such a drop as an event that needs to be communicated to the remote server (over either the broadband or cellular connection).


As the communications processor determines the best communication mode, that mode is then used for communication between communication unit 210 and server system 270 until a determination is made that an alternate communication mode is more appropriate. Alternatively, the communications processor can be configured to give primary preference to a particular communications mode (e.g., broadband), and then secondary preference to a different communications mode (e.g., cellular), and so on. In such a case, the communications processor will use the primary communications mode unless that communications mode is unavailable and then switch to a secondary (or lower) communications mode, depending upon availability of that mode.


An example communication mode configuration for the controller unit can provide for broadband being the primary communication mode, since broadband connections can be relatively inexpensive to maintain a constant link through and data rates are relatively high. The secondary communication mode can be a cellular connection because of difficulty involved in severing such a connection. But data rates may be lower for the cellular connection, as well as relatively more expensive. Thus, the communication unit can be configured, for example through control settings provided by server 270, to only communicate a subset of events through cellular connections. To compensate for this reduced event data bandwidth, the communications unit can cache event information, along with time stamps, in a memory local to the communications unit and provide all those events to the server when the broadband connection is restored. Further, PSTN communication can be configured as a tertiary communication mode. Data rates through PSTN can determine a different subset of events reportable through PSTN, and again the communication unit can be configured with that subset. For example, data rates over PSTN can limit the communication unit to only transmit alarm event information over that communication mode. Alternatively, PSTN communication can result in some or all non-alarm, reportable events being cached for later transmission through the PSTN. Further, PSTN communication may limit communication unit-to-server communication to a one-way link, rather than two-way communication provided by broadband and cellular.


As stated above, communications processor 220 and alarm unit 110 are coupled over telecommunications link 222 in order for the communications processor to function as an intermediary between the alarm unit and PSTN 150. In a legacy system, when alarm processor 120 detects an alarm situation, alarm processor 120 instructs telephone line interface 140 to dial out over PSTN 150 to communicate with the central monitoring service system. Communications processor 220 can simulate the phone service and the central monitoring system and interpret the alarm signals provided by alarm processor 120. Alarm processor 120 provides such communication using, for example, a ContactID format. Communications processor 220 can read the data supplied by alarm processor 120 over the telecommunications link, interpret that data, and transmit an appropriate signal over the chosen communication mode to server system 270.


Communications processor 220 can also interpret signals provided by alarm processor 120 over keypad bus 190, and provide that information to server system 270 over the chosen communication mode. As stated above, such information can include arm/disarm indicators, zone trip information, system trouble (e.g., low battery, clock reset, no power), and the like.


As stated above, communications processor 220 interprets event signals received from alarm processor 120 over either keypad bus 190 or telephone line interface 140. Communications processor 220 will then generate a signal to send over the selected communication mode to server system 270. This signal corresponds to the interpretation of the event signal received from the alarm processor. In the case of alarm events received over the telephone line interface, the communications processor can also encapsulate original data received for transmission to the server system. In this manner, should the server system need to further analyze the alarm indication in order to determine a proper response, that data is provided in its original form.


Communications processor 220 can also receive information provided by server system 270 over a communication mode selected by the server system. Communications processor 220 can interpret that received information and format the information for the appropriate serial digital protocol of keypad bus 190. Communications processor 220 can then provide the information to alarm processor 120 over keypad bus 190. Through such communication, communications processor 220 emulates keypad communication to alarm processor 120. Thus, there is no need to reprogram the legacy alarm system to allow the legacy alarm system to be controlled through communication unit 210.



FIG. 3 is a simplified flow diagram illustrating steps performed in providing a signal received from a keypad bus to an external network over a communication mode, in accord with embodiments of the present invention. A data signal is received from a connection to a keypad bus (310), for example, by a communications processor 220. Prior to receiving the signal, and typically upon initial startup of the communications unit when connected to the keypad bus, an identification of the serial digital protocol of the keypad bus is made. Such a determination of the keypad bus protocol can be made by one of several methods including, for example, analyzing the received data signal from the keypad bus and comparing that signal to expected signal formats for keypad bus protocols, or transmitting a test command from one of a plurality of possible keypad bus protocols and analyzing a received responsive signal for conformity with the protocol of the transmitted signal, or analyzing signals transmitted by a keypad 170 in response to a predetermined code entered into keys 180, or analyzing timing parameters of the serial digital signal to determine the protocol type.


Using the determined keypad bus protocol, the signal received from the keypad bus can be interpreted (320). This interpretation can include determining the nature of the keypad bus signal (e.g., arm/disarm, zone tripped/not tripped, alarm controller status). A determination can then be made as to whether a communication mode to an external network has been previously selected (330). If not, then a selection of a communication mode to the external network can be made (335). As discussed above, the selection of a communication mode is made in response to periodic or continuous monitoring of the communication modes available to the communications unit. When a communication mode has been selected, a signal can then be generated corresponding to the protocol of the selected communication mode, wherein that signal includes information corresponding to the signal received from the keypad bus (340). That generated signal can then be transmitted to the external network via the selected communication mode (350). In order to perform such a transmission, it may be necessary to establish a link with the external network and ultimately to a remote server system coupled to the external network (e.g., 270) in order to effect the data transfer.



FIG. 4 is a simplified flow diagram illustrating steps for providing information in an alarm signal received from alarm processor's telephone interface to an external network, in accord with embodiments of the present invention. As discussed above, upon detecting an alarm condition, such as a sensor breach, an alarm processor of a legacy alarm system will use a phone line to contact a central monitoring service system. Embodiments of the present invention are coupled to the telephone interface of the legacy alarm system and will receive an off hook indication generated by the alarm controller unit telecommunication interface (410). In response to receiving the off hook indication, the communications processor can simulate the response to the off hook signal expected by the alarm controller unit (420). A “connection” will then be established between the alarm controller unit's telecommunication interface and the communications processor (430), for example, by the communications processor simulating responses that the alarm controller unit would expect to receive from a central monitoring service system (e.g., a handshake signal).


The alarm processor will then provide data related to the alarm condition that triggered the dial out. This data will be received from the alarm controller unit's telecommunications interface (435). Such data can be provided in a form of, for example, a set of dual tone multi-frequency signals (e.g., tone dialing) or through a modem-like exchange. The received data can then be interpreted, for example, in accord with the ContactID format (440). As with FIG. 3, a determination can be made as to whether a communication mode for communicating over an external network to a remote server has been selected (450). If a communication mode has not been selected, then a communication mode can be selected from among the available communication modes, as discussed above (455). Once a communication mode has been selected, a signal can be generated in the protocol of the selected communication mode that includes the information received from the telephone interface (460). The generated signal can then be transmitted to the external network via the selected communication mode. In this manner, alarm conditions can be supplied to a remote server system coupled to the selected external network.



FIG. 5 is a simplified flow diagram illustrating steps performed in providing control information generated by a remote server to a legacy alarm system, in accord with embodiments of the present invention. For example, in response to a user command or for network system maintenance, a remote server (e.g., 270) can generate a signal containing control information for the legacy alarm system. The remote server can transmit that information to the control unit via a communication mode selected by the remote server. While the remote server can be periodically provided with information related to the communication unit's selected communication mode (as well as other status information related to the communication unit), the remote server can itself determine a preferred communication mode and use that mode. The remote server can track and provide information regarding the communication unit's selected communication mode.


A signal from the remote server containing the control information can be received (510). The received signal can then be interpreted to determine the nature of the control information contained in the signal (520). The interpreted information can then be transmitted to the keypad bus using a signal formatted for the appropriate keypad bus protocol (530).


As stated above, the remote server system (e.g., remote server system 270) is a computer system coupled to a network external to communications unit 210. The remote server system can receive status and alarm information from the communications unit and store and/or communicate the received status or alarm information to a user of the alarm system or to a monitoring station (e.g., a central station at which an operator can determine the appropriate authorities to contact based upon the nature of an alarm condition). The remote server system can also provide control information to the communications unit, including, for example, configuration information and updates to the communications unit and/or the alarm system. The remote server system can be configured to respond to the various status and/or alarm conditions by the user of the alarm system or an administrator of the remote server system, as discussed more fully below.



FIG. 6 is a simplified flow diagram illustrating a method followed by a remote server system in response to receiving data from a communications unit, in accord with embodiments of the present invention. The remote server system can receive data transmitted by a communications unit (e.g., 210) (610). The data will be received by the remote server system over a communication mode selected by the communication unit, as discussed above.


The data received can correspond to, for example, status information related to alarm controller unit 110 or communications unit 210, or alarm information related to a security breach. The remote server system will analyze the received data to determine whether the data contains reportable information, such as an alarm condition (620). If the data is related to reportable information, the server system will determine the nature of the reportable information (e.g., an alarm condition such as a fire or an unauthorized breach of a zone) (625). Based upon that determination, the remote server system can then contact a monitoring station to appraise an operator of the monitoring system, or an automated system, of the nature of the reportable information (630). Should the data received from the communication unit not contain reportable information, then the remote server system can determine the type of event described by the received data (640).


In either situation (reportable or non-reportable event), the remote server system can then identify a proper response to the event type described by the received data (650). Such an identification of a proper response can be performed through a search of a set of responses stored by the remote server system each of which are mapped to one or more event types. The set of responses can be defined, at least in part, by the user of the alarm system or an administrator of the remote server system. The remote server system can enable an authorized user to log on and can provide an interface (e.g., a set of web browser pages using, for example, HTML or XML or applets) through which the various responses can be added, deleted, or modified. For example, a user can configure the remote server system to alert a specified person when the remote server system receives data from the communications unit indicating that a specified disarm sequence has been provided through a keypad. Such an alert to the user can be provided by a specified communication path (e.g., electronic mail, text message, instant message, telephone or cellular phone call, RSS feed, a web page update or an applet).


Once a proper response to an event type is identified, the remote server system can then perform the identified response (660). For example, the remote server system can contact identified individuals and inform them of the nature of an event type, using a chosen communication delivery method such as electronic mail, text or instant messages, telephone calls, or an update to a web page or applet. The remote server system can also be configured to accept inputs from a user or administrator that correspond to control information for the alarm system controller unit (e.g., 110) or the communications unit (e.g., 210). An authorized user for a particular alarm system can access interfaces provided by the remote server system for entering such control information (e.g., web pages). The remote server system can then interpret the control information and provide that information to the communications unit over a communications mode selected by the remote server system. The communications unit will then receive that control information and provide the control information, as appropriate, to the alarm system controller unit as discussed above with regard to FIG. 5. An example of control information that can be provided by a user to the alarm system via the remote server system can include remotely arming or disarming the alarm system.


One of the advantages of the present invention is that the communication unit provides two-way communication over a plurality of communication modes to a legacy alarm system. Thus, without replacing the legacy alarm system, a user of the system gains added functionality such as redundant connectivity and the ability to monitor and remotely control the legacy alarm system. Such an addition of functionality, rather than a whole scale replacement of an alarm system, can be provided at a substantially lower cost than replacing the system.



FIG. 7 is a simplified block diagram illustrating one example of a connection between a communication unit 210 and a legacy alarm system controller unit 110. Typically, a legacy alarm system controller is housed in a wall-mounted metal housing 710. Such an alarm system controller housing will typically have a key-lockable door (not shown) in order to restrict access to the circuitry and connections inside. One embodiment of a communications unit of the present invention can be housed in a housing 720 that can be attached to the alarm control unit housing 710. Coupling between communications unit housing 720 and alarm control unit housing 710 can be performed by creating a hole in the alarm control unit's housing (typically by cutting out a pre-etched punch out in the housing) and passing through that hole a connector 730 that is rigidly mounted to the exterior of the communication unit housing and securing that connector to the alarm control unit's housing 710 (e.g., through use of a nut 735 threaded on the connector). Connector 730 can allow for passage into alarm control unit housing 710 of a cable 740 that includes necessary connector wires for coupling the communications unit to, for example, alarm system power, the keypad bus, and the telecommunications link to the alarm processor (all coupled to an alarm printed circuit board 750), and the telephone line interface 760. Typically, connections can be made to the alarm system power, keypad bus, etc. through already present screw down connections coupled to the alarm printed circuit board, or to modular jack connections (e.g., the telephone line interface). For ease of providing such connections, cable 740 can terminate in a hub 770 that provides connectors for the various coupling lines to the alarm printed circuit board 750 and telephone line interface 760. Thus, connection of a communications unit to the alarm system can be performed by a homeowner, rather than a paid installer, thereby further reducing the cost, both to the user and to a supplier of the communications unit.


Embodiments of the present invention therefore provide a cost-effective solution for providing a legacy alarm system with a capacity to communicate over a selected one of a plurality of communication modes, thereby avoiding a single point of failure of many legacy alarm systems, and provides the added functionality of two-way communication from a remote server allowing control over the legacy alarm system from a location other than within the premises in which the alarm system is installed.


An Example Computing Environment


As shown above, the present invention can be implemented using a variety of computer systems, for example with regard to server system 270. An example of one such computing environment is described below with reference to FIG. 8.



FIG. 8 depicts a block diagram of a computer system 810 suitable for implementing embodiments of the present invention. Computer system 810 includes a bus 812 which interconnects major subsystems of computer system 810, such as a central processor 814, a system memory 817 (typically RAM, but which may also include ROM, flash RAM, or the like), an input/output controller 818, an external audio device, such as a speaker system 820 via an audio output interface 822, an external device, such as a display screen 824 via display adapter 826, serial ports 828 and 830, a keyboard 832 (interfaced with a keyboard controller 833), a storage interface 834, a floppy disk drive 837 operative to receive a floppy disk 838, a host bus adapter (HBA) interface card 835A operative to connect with a Fibre Channel network 890, a host bus adapter (HBA) interface card 835B operative to connect to a SCSI bus 839, and an optical disk drive 840 operative to receive an optical disk 842. Also included are a mouse 846 (or other point-and-click device, coupled to bus 812 via serial port 828), a modem 847 (coupled to bus 812 via serial port 830), and a network interface 848 (coupled directly to bus 812).


Bus 812 allows data communication between central processor 814 and system memory 817, which may include read-only memory (ROM) or flash memory (neither shown), and random access memory (RAM) (not shown), as previously noted. The RAM is generally the main memory into which the operating system and application programs are loaded. The ROM or flash memory can contain, among other code, the Basic Input-Output system (BIOS) which controls basic hardware operation such as the interaction with peripheral components. Applications resident with computer system 810 are generally stored on and accessed via a computer readable medium, such as a hard disk drive (e.g., fixed disk 844), an optical drive (e.g., optical drive 840), a floppy disk unit 837, or other storage medium. Additionally, applications can be in the form of electronic signals modulated in accordance with the application and data communication technology when accessed via network modem 847 or interface 848.


Storage interface 834, as with the other storage interfaces of computer system 810, can connect to a standard computer readable medium for storage and/or retrieval of information, such as a fixed disk drive 844. Fixed disk drive 844 may be a part of computer system 810 or may be separate and accessed through other interface systems. Modem 847 may provide a direct connection to a remote computer, or a communications unit 210, via a telephone link through a PSTN. Network interface 848 may provide a direct connection to a remote computer, or a communications unit 210, via a direct network link to the Internet via a POP (point of presence). Network interface 848 may provide such connection using wireless techniques, including digital cellular telephone connection, Cellular Digital Packet Data (CDPD) connection, digital satellite data connection or the like.


Many other devices or subsystems (not shown) may be connected in a similar manner (e.g., document scanners, digital cameras and so on). Conversely, all of the devices shown in FIG. 8 need not be present to practice the present invention. The devices and subsystems can be interconnected in different ways from that shown in FIG. 8. The operation of a computer system such as that shown in FIG. 8 is readily known in the art and is not discussed in detail in this application. Code to implement the present invention can be stored in computer-readable storage media such as one or more of system memory 817, fixed disk 844, optical disk 842, or floppy disk 838. The operating system provided on computer system 810 may be MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®, or another known operating system.


Moreover, regarding the signals described herein, those skilled in the art will recognize that a signal can be directly transmitted from a first block to a second block, or a signal can be modified (e.g., amplified, attenuated, delayed, latched, buffered, inverted, filtered, or otherwise modified) between the blocks. Although the signals of the above described embodiment are characterized as transmitted from one block to the next, other embodiments of the present invention may include modified signals in place of such directly transmitted signals as long as the informational and/or functional aspect of the signal is transmitted between blocks. To some extent, a signal input at a second block can be conceptualized as a second signal derived from a first signal output from a first block due to physical limitations of the circuitry involved (e.g., there will inevitably be some attenuation and delay). Therefore, as used herein, a second signal derived from a first signal includes the first signal or any modifications to the first signal, whether due to circuit limitations or due to passage through other circuit elements which do not change the informational and/or final functional aspect of the first signal.


OTHER EMBODIMENTS

The present invention is well adapted to attain the advantages mentioned as well as others inherent therein. While the present invention has been depicted, described, and is defined by reference to particular embodiments of the present invention, such references do not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function as will occur to those ordinarily skilled in the pertinent arts. The depicted and described embodiments are examples only, and are not exhaustive of the scope of the invention.


The foregoing describes embodiments including components contained within other components (e.g., the various elements shown as components of communications unit 210). Such architectures are merely examples, and, in fact, many other architectures can be implemented which achieve the same functionality. In an abstract but still definite sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components. Likewise, any two components so associated can also be viewed as being “operably connected” or “operably coupled” to each other to achieve the desired functionality.


The foregoing detailed description has set forth various examples of the present invention via the use of block diagrams, flow charts, and examples. It will be understood by those within the art that each block diagram component, flow chart step, operation and/or component illustrated by the use of examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof.


The above description is intended to be illustrative of the invention and should not be taken to be limiting. Other embodiments within the scope of the present invention are possible. Those skilled in the art will readily implement the steps necessary to provide the structures and the methods disclosed herein, and will understand that the process parameters and sequence of steps are given by way of example only and can be varied to achieve the desired structure as well as modifications that are within the scope of the invention. Variations and modifications of the embodiments disclosed herein can be made based on the description set forth herein, without departing from the scope of the invention.


Consequently, the invention is intended to be limited only by the scope of the appended claims, giving full cognizance to equivalence in all respects.


Although the present invention has been described in connection with several embodiments, the invention is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the invention as defined by the appended claims.

Claims
  • 1. A system comprising: one or more premises devices located at a premises; anda first communication device, located at the premises, configured to: receive, from a second communication device located at the premises, event data associated with the one or more premises devices;send, based on a determination that a connection of a first channel is better than a connection of a second channel that has a higher priority than the first channel, a first message associated with the event data to a server located external to the premises via the first channel; andsend, based on a determined change in the connection of the second channel, a second message associated with the event data to the server via the second channel.
  • 2. The system of claim 1, wherein the first communication device is further configured to: receive second event data;determine a third channel; andsend, via the third determined channel and to the server, the second event data.
  • 3. The system of claim 1, wherein at least one of the first channel or the second channel comprises a channel of at least one of a telephone network, a cellular network, a broadband network, or a wireless network.
  • 4. The system of claim 1, wherein the first communication device is configured to determine that the connection of the first channel is better than the connection of the second channel by: sending, via at least one of the first channel or the second channel and to the server, a request for a status of the server; andreceiving, via the at least one of the first channel or the second channel, a response to the request.
  • 5. The system of claim 1, wherein the first communication device is configured to determine that the connection of the first channel is better than the connection of the second channel by receiving, via the first channel, a heartbeat signal of the server.
  • 6. The system of claim 1, wherein the one or more premises devices comprise at least one of a sensor, a premises management system controller, a security system controller, or a keypad.
  • 7. The system of claim 1, wherein at least one of the connection of the first channel or the connection of the second channel comprises at least one of an active state or an inactive state.
  • 8. The system of claim 1, wherein the connection of the second channel changing comprises at least one of a connection with the server via the second channel being restored, a connection with a network via the second channel being restored, a heartbeat signal being present via the second channel, an availability of the second channel changing, or a voltage of the second channel changing.
  • 9. The system of claim 1, wherein determining that the connection of the first channel is better than the connection of the second channel comprises determining that there is a connection with the server via the first channel and there is not a connection with the server via the second channel.
  • 10. A method comprising: receiving, by a first communication device located at a premises and from a second communication device located at the premises, event data associated with one or more premises devices located at the premises;sending, based on a determination that a connection of a first channel is better than a connection of a second channel that has a higher priority than the first channel, a first message associated with the event data to a server located external to the premises via the first channel; andsending, based on a determined change in the connection of the second channel, a second message associated with the event data to the server via the second channel.
  • 11. The method of claim 10, further comprising: receiving second event data;determining a third channel; andsending, via the third channel and to the server, the second event data.
  • 12. The method of claim 10, wherein at least one of the first channel or the second channel is assigned to a plurality of event types, and wherein the sending the first message associated with the event data via the first channel is further based on an event type of the event data.
  • 13. The method of claim 10, wherein the event data is received via a serial protocol, and wherein the event data is sent via a protocol associated with the at least one of the first channel or the second channel.
  • 14. The method of claim 10, wherein the event data comprises at least one of an indication of an armed state of the one or more premises devices, an indication of a power state of the one or more premises devices, or an indication of a status of a clock associated with the one or more premises device.
  • 15. A first communication device located at a premises, wherein the first communication device comprises: one or more processors; andmemory storing instructions that, when executed by the one or more processors, cause the first communication device to: receive, from a second communication device located at the premises, event data associated with one or more premises devices located at the premises;send, based on a determination that a connection of a first channel is better than a connection of a second channel that has a higher priority than the first channel, a first message associated with the event data to a server located external to the premises via the first channel; andsend, based on a determined change in the connection of the second channel, a second message associated with the event data to the server via the second channel.
  • 16. The first communication device of claim 15, wherein the instructions, when executed by the one or more processors, further cause the first communication device to: receive second event data;determine a third channel; andsend, via the third determined channel and to the server, the second event data.
  • 17. The first communication device of claim 15, wherein the event data comprises at least one of an indication of an alarm event, an indication of a non-alarm event, an indication of control information, or an indication of a status of the one or more premises devices.
  • 18. A system comprising: a server located external to a premises; anda first communication device, located at the premises, configured to: receive, from a second communication device located at the premises, event data associated with one or more premises devices located at the premises;send, based on a determination that a connection of a first channel is better than a connection of a second channel that has a higher priority than the first channel, a first message associated with the event data to the server via the first channel; andsend, based on a determined change in the connection of the second channel, a second message associated with the event data to the server via the second channel.
  • 19. The system of claim 18, wherein the first communication device is configured to continuously determine at least one connection of one or more channels.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/620,047 filed Nov. 17, 2009, now U.S. Pat. No. 7,956,736 entitled “Method and System for Communicating with and Controlling an Alarm System from a Remote Server” and naming Alan Wade Cohn, Ronald E. Battles, David Proft, and Scott William Shumate as inventors; which is a continuation of Ser. No. 11/711,972, filed Feb. 28, 2007, now U.S. Pat. No. 9,633,385 entitled “Method and System for Communicating with and Controlling an Alarm System from a Remote Server”, and naming Alan Wade Cohn, Ronald E. Battles, David Proft, and Scott William Shumate as inventors. These applications are hereby incorporated by reference in their entirety and for all purposes.

US Referenced Citations (1893)
Number Name Date Kind
686838 Appel Nov 1901 A
1738540 Replogle et al. Dec 1929 A
3803576 Dobrzanski et al. Apr 1974 A
3852541 Altenberger Dec 1974 A
4006460 Hewitt et al. Feb 1977 A
4141006 Braxton Feb 1979 A
4257038 Rounds et al. Mar 1981 A
4286331 Anderson et al. Aug 1981 A
4304970 Fahey et al. Dec 1981 A
4363031 Reinowitz Dec 1982 A
4520503 Kirst et al. May 1985 A
4559526 Tani et al. Dec 1985 A
4559527 Kirby Dec 1985 A
4567557 Burns Jan 1986 A
4574305 Campbell et al. Mar 1986 A
4581606 Mallory Apr 1986 A
4591834 Kyle May 1986 A
D284084 Ferrara, Jr. Jun 1986 S
4641127 Hogan et al. Feb 1987 A
4652859 Van Wienen Mar 1987 A
4670739 Kelly, Jr. Jun 1987 A
4683460 Nakatsugawa Jul 1987 A
4694282 Tamura et al. Sep 1987 A
4716973 Cobern Jan 1988 A
4730184 Bach Mar 1988 A
4754261 Marino Jun 1988 A
4755792 Pezzolo et al. Jul 1988 A
4779007 Schlanger et al. Oct 1988 A
4801924 Burgmann et al. Jan 1989 A
4812820 Chatwin Mar 1989 A
4818970 Natale et al. Apr 1989 A
4833339 Luchaco et al. May 1989 A
4833449 Gaffigan May 1989 A
4855713 Brunius Aug 1989 A
4860185 Brewer et al. Aug 1989 A
4887064 Drori et al. Dec 1989 A
4897630 Nykerk Jan 1990 A
4918623 Lockitt et al. Apr 1990 A
4918717 Bissonnette et al. Apr 1990 A
4951029 Severson Aug 1990 A
4959713 Morotomi et al. Sep 1990 A
4962473 Crain Oct 1990 A
4980666 Hwang Dec 1990 A
4993059 Smith et al. Feb 1991 A
4994787 Kratt et al. Feb 1991 A
4996646 Farrington Feb 1991 A
5023901 Sloan et al. Jun 1991 A
5083106 Kostusiak et al. Jan 1992 A
5086385 Launey et al. Feb 1992 A
5091780 Pomerleau Feb 1992 A
5109278 Erickson et al. Apr 1992 A
5132968 Cephus Jul 1992 A
5134644 Garton et al. Jul 1992 A
5159315 Schultz et al. Oct 1992 A
5160879 Tortola et al. Nov 1992 A
5164703 Rickman Nov 1992 A
5164979 Choi Nov 1992 A
D337569 Kando Jul 1993 S
5227776 Starefoss Jul 1993 A
5237305 Ishikuro et al. Aug 1993 A
5245694 Zwern Sep 1993 A
5280527 Gullman et al. Jan 1994 A
5283816 Gomez Diaz Feb 1994 A
5299971 Hart Apr 1994 A
5319394 Dukek Jun 1994 A
5319698 Glidewell et al. Jun 1994 A
5334974 Simms et al. Aug 1994 A
5400011 Sutton Mar 1995 A
5400246 Wilson et al. Mar 1995 A
5406260 Cummings et al. Apr 1995 A
5410343 Coddington et al. Apr 1995 A
5412708 Katz May 1995 A
5414409 Voosen et al. May 1995 A
5414833 Hershey et al. May 1995 A
5428293 Sinclair et al. Jun 1995 A
5438607 Przygoda, Jr. et al. Aug 1995 A
5446445 Bloomfield et al. Aug 1995 A
5448290 Vanzeeland Sep 1995 A
5452344 Larson Sep 1995 A
5465081 Todd Nov 1995 A
5471194 Guscott Nov 1995 A
5483224 Rankin et al. Jan 1996 A
5486812 Todd Jan 1996 A
5499014 Greenwaldt Mar 1996 A
5499196 Pacheco Mar 1996 A
5510975 Ziegler, Jr. Apr 1996 A
5519878 Dolin, Jr. May 1996 A
RE35268 Frolov et al. Jun 1996 E
5525966 Parish Jun 1996 A
5526428 Arnold Jun 1996 A
5534845 Issa et al. Jul 1996 A
5541585 Duhame et al. Jul 1996 A
5543778 Stouffer Aug 1996 A
5546072 Creuseremee et al. Aug 1996 A
5546074 Bernal et al. Aug 1996 A
5546447 Skarbo et al. Aug 1996 A
5548646 Aziz et al. Aug 1996 A
5550984 Gelb Aug 1996 A
5557254 Johnson et al. Sep 1996 A
5570079 Dockery Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5578989 Pedtke Nov 1996 A
5579197 Mengelt et al. Nov 1996 A
5579221 Mun Nov 1996 A
D377034 Matsushita Dec 1996 S
5587705 Morris Dec 1996 A
5598086 Somerville Jan 1997 A
5602918 Chen et al. Feb 1997 A
5604493 Behlke Feb 1997 A
5606615 Lapointe et al. Feb 1997 A
5621662 Humphries et al. Apr 1997 A
5623601 Vu Apr 1997 A
5625338 Pildner et al. Apr 1997 A
5625410 Washino et al. Apr 1997 A
5629687 Sutton et al. May 1997 A
5630216 McEwan May 1997 A
5631630 McSweeney May 1997 A
5638046 Malinowski Jun 1997 A
5650773 Chiarello Jul 1997 A
5651070 Blunt Jul 1997 A
5652567 Traxler Jul 1997 A
5654694 Newham Aug 1997 A
5675321 McBride Oct 1997 A
5680131 Utz Oct 1997 A
5682133 Johnson et al. Oct 1997 A
5686885 Bergman Nov 1997 A
5686896 Bergman Nov 1997 A
5689235 Sugimoto et al. Nov 1997 A
5689708 Regnier et al. Nov 1997 A
5691697 Carvalho et al. Nov 1997 A
5694335 Hollenberg Dec 1997 A
5694595 Jacobs et al. Dec 1997 A
5696486 Poliquin et al. Dec 1997 A
5696898 Baker et al. Dec 1997 A
D389501 Mascarenas, Sr. et al. Jan 1998 S
5706191 Bassett et al. Jan 1998 A
5712679 Coles Jan 1998 A
5714933 Le Van Suu Feb 1998 A
5715394 Jabs Feb 1998 A
5717378 Malvaso et al. Feb 1998 A
5717379 Peters Feb 1998 A
5717578 Afzal Feb 1998 A
5719551 Flick Feb 1998 A
5726912 Krall et al. Mar 1998 A
5731756 Roddy Mar 1998 A
5736927 Stebbins et al. Apr 1998 A
5737391 Dame et al. Apr 1998 A
5748084 Isikoff May 1998 A
5748089 Sizemore May 1998 A
5757616 May et al. May 1998 A
5761206 Kackman Jun 1998 A
5774051 Kostusiak Jun 1998 A
5777551 Hess Jul 1998 A
5777837 Eckel et al. Jul 1998 A
5784461 Shaffer et al. Jul 1998 A
5784463 Chen et al. Jul 1998 A
5793028 Wagener et al. Aug 1998 A
5793763 Mayes et al. Aug 1998 A
5794128 Brockel et al. Aug 1998 A
5796401 Winer Aug 1998 A
5798701 Bernal et al. Aug 1998 A
5801618 Jenkins Sep 1998 A
5805056 Mueller et al. Sep 1998 A
5805064 Yorkey Sep 1998 A
5809013 Kackman Sep 1998 A
5812054 Cohen Sep 1998 A
5819124 Somner et al. Oct 1998 A
5821937 Tonelli Oct 1998 A
5844599 Hildin Dec 1998 A
5845070 Ikudome Dec 1998 A
5854588 Dockery Dec 1998 A
5859966 Hayman et al. Jan 1999 A
5861804 Fansa et al. Jan 1999 A
5867484 Shaunfield Feb 1999 A
5874952 Morgan Feb 1999 A
5877696 Powell Mar 1999 A
5880775 Ross Mar 1999 A
5881226 Veneklase Mar 1999 A
5886894 Rakoff Mar 1999 A
5892442 Ozery Apr 1999 A
5898831 Hall et al. Apr 1999 A
5905438 Weiss et al. May 1999 A
5907279 Bruins et al. May 1999 A
5909183 Borgstahl et al. Jun 1999 A
5914655 Clifton et al. Jun 1999 A
5924069 Kowalkowski et al. Jul 1999 A
5926209 Glatt Jul 1999 A
5933098 Haxton Aug 1999 A
5940387 Humpleman Aug 1999 A
5943394 Ader et al. Aug 1999 A
5952815 Rouillard et al. Sep 1999 A
5955946 Beheshti et al. Sep 1999 A
5958053 Denker Sep 1999 A
5959528 Right et al. Sep 1999 A
5959529 Kail, IV Sep 1999 A
5963916 Kaplan Oct 1999 A
5967975 Ridgeway Oct 1999 A
D416910 Vasquez Nov 1999 S
5982418 Ely Nov 1999 A
5991795 Howard et al. Nov 1999 A
6002430 McCall et al. Dec 1999 A
6009320 Dudley Dec 1999 A
6011921 Takahashi et al. Jan 2000 A
6032036 Maystre et al. Feb 2000 A
6037991 Thro et al. Mar 2000 A
6038289 Sands Mar 2000 A
6040770 Britton Mar 2000 A
6049272 Lee et al. Apr 2000 A
6049273 Hess Apr 2000 A
6049598 Peters et al. Apr 2000 A
6052052 Delmonaco Apr 2000 A
6058115 Sawyer et al. May 2000 A
6060994 Chen May 2000 A
6067346 Akhteruzzaman et al. May 2000 A
6067440 Diefes May 2000 A
6069655 Seeley et al. May 2000 A
6078253 Fowler Jun 2000 A
6078257 Ferraro Jun 2000 A
6078649 Small et al. Jun 2000 A
6085030 Whitehead et al. Jul 2000 A
6091771 Seeley et al. Jul 2000 A
6094134 Cohen Jul 2000 A
6097429 Seeley et al. Aug 2000 A
6104785 Chen Aug 2000 A
6107918 Klein et al. Aug 2000 A
6107930 Behlke et al. Aug 2000 A
6108034 Kim Aug 2000 A
6112237 Donaldson et al. Aug 2000 A
6117182 Alpert et al. Sep 2000 A
6124882 Voois et al. Sep 2000 A
6128653 Del et al. Oct 2000 A
6134303 Chen Oct 2000 A
6134591 Nickles Oct 2000 A
6138249 Nolet Oct 2000 A
6139177 Venkatraman et al. Oct 2000 A
6140987 Stein et al. Oct 2000 A
6144993 Fukunaga et al. Nov 2000 A
6154133 Ross et al. Nov 2000 A
6157943 Meyer Dec 2000 A
6161182 Nadooshan Dec 2000 A
6167186 Kawasaki et al. Dec 2000 A
6181341 Shinagawa Jan 2001 B1
6192282 Smith et al. Feb 2001 B1
6192418 Hale et al. Feb 2001 B1
6198475 Kunimatsu et al. Mar 2001 B1
6198479 Humpleman et al. Mar 2001 B1
6208247 Agre et al. Mar 2001 B1
6208952 Goertzel et al. Mar 2001 B1
6209011 Vong et al. Mar 2001 B1
6211783 Wang Apr 2001 B1
6215404 Morales Apr 2001 B1
6218938 Lin Apr 2001 B1
6219677 Howard Apr 2001 B1
6226031 Barraclough et al. May 2001 B1
6229429 Horon May 2001 B1
6230271 Wadlow et al. May 2001 B1
6239892 Davidson May 2001 B1
6243683 Peters Jun 2001 B1
6246320 Monroe Jun 2001 B1
6271752 Vaios Aug 2001 B1
6275227 DeStefano Aug 2001 B1
6281790 Kimmel et al. Aug 2001 B1
6282569 Wallis et al. Aug 2001 B1
6286038 Reichmeyer et al. Sep 2001 B1
6288716 Humpleman et al. Sep 2001 B1
6289382 Bowman-Amuah Sep 2001 B1
6292766 Mattos et al. Sep 2001 B1
6292827 Raz Sep 2001 B1
6295346 Markowitz et al. Sep 2001 B1
6314425 Serbinis et al. Nov 2001 B1
6320506 Ferraro Nov 2001 B1
6323897 Kogane et al. Nov 2001 B1
D451529 Vasquez Dec 2001 S
6331122 Wu Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6347393 Alpert et al. Feb 2002 B1
6351213 Hirsch et al. Feb 2002 B1
6351595 Kim Feb 2002 B1
6351829 Dupont et al. Feb 2002 B1
6353853 Gravlin Mar 2002 B1
6353891 Borella et al. Mar 2002 B1
6359560 Budge et al. Mar 2002 B1
6363417 Howard et al. Mar 2002 B1
6363422 Hunter et al. Mar 2002 B1
6369695 Horon Apr 2002 B1
6369705 Kennedy Apr 2002 B1
6370436 Howard et al. Apr 2002 B1
6374079 Hsu Apr 2002 B1
6377861 York Apr 2002 B1
6378109 Young et al. Apr 2002 B1
6385772 Courtney May 2002 B1
6392538 Shere May 2002 B1
6400265 Saylor et al. Jun 2002 B1
6405348 Fallah-Tehrani et al. Jun 2002 B1
6411802 Cardina et al. Jun 2002 B1
D460472 Wang Jul 2002 S
6418037 Zhang Jul 2002 B1
6421080 Lambert Jul 2002 B1
6430629 Smyers Aug 2002 B1
6433683 Robinson Aug 2002 B1
6434700 Alonso et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6441723 Mansfield et al. Aug 2002 B1
6442241 Tsumpes Aug 2002 B1
6445291 Addy et al. Sep 2002 B2
6446192 Narasimhan et al. Sep 2002 B1
6452490 Garland et al. Sep 2002 B1
6452923 Gerszberg et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464328 Vasquez et al. Oct 2002 S
D464948 Vasquez et al. Oct 2002 S
6462507 Fisher et al. Oct 2002 B2
6462663 Wilson et al. Oct 2002 B1
6467084 Howard et al. Oct 2002 B1
6476858 Ramirez et al. Nov 2002 B1
6480901 Weber et al. Nov 2002 B1
6493020 Stevenson et al. Dec 2002 B1
6496927 McGrane et al. Dec 2002 B1
6499131 Savithri et al. Dec 2002 B1
6504479 Lemons et al. Jan 2003 B1
6507589 Ramasubramani et al. Jan 2003 B1
6526581 Edson Feb 2003 B1
6529230 Chong Mar 2003 B1
6529723 Bentley Mar 2003 B1
6542075 Barker et al. Apr 2003 B2
6542992 Peirce et al. Apr 2003 B1
6552647 Thiessen et al. Apr 2003 B1
6553336 Johnson et al. Apr 2003 B1
6559769 Anthony et al. May 2003 B2
6563800 Salo et al. May 2003 B1
6563910 Menard et al. May 2003 B2
6567122 Anderson et al. May 2003 B1
6567502 Zellner et al. May 2003 B2
6574234 Myer et al. Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6587046 Joao Jul 2003 B2
6587455 Ray et al. Jul 2003 B1
6587736 Howard et al. Jul 2003 B2
6587739 Abrams et al. Jul 2003 B1
6591094 Bentley Jul 2003 B1
6597703 Li et al. Jul 2003 B1
6601086 Howard et al. Jul 2003 B1
6603488 Humpleman et al. Aug 2003 B2
6609127 Lee et al. Aug 2003 B1
6611206 Eshelman et al. Aug 2003 B2
6615088 Myer et al. Sep 2003 B1
6621827 Rezvani et al. Sep 2003 B1
6624750 Marman et al. Sep 2003 B1
6631416 Bendinelli et al. Oct 2003 B2
6636893 Fong Oct 2003 B1
6643652 Helgeson et al. Nov 2003 B2
6643669 Novak et al. Nov 2003 B1
6643795 Sicola et al. Nov 2003 B1
6648682 Wu Nov 2003 B1
6658091 Naidoo et al. Dec 2003 B1
6661340 Saylor et al. Dec 2003 B1
6662340 Rawat et al. Dec 2003 B2
6667688 Menard et al. Dec 2003 B1
6674767 Kadyk et al. Jan 2004 B1
6675365 Elzinga Jan 2004 B2
6680730 Shields et al. Jan 2004 B1
6686838 Rezvani et al. Feb 2004 B1
6690411 Naidoo et al. Feb 2004 B2
6693530 Dowens et al. Feb 2004 B1
6693545 Brown et al. Feb 2004 B2
6697103 Fernandez et al. Feb 2004 B1
6704786 Gupta et al. Mar 2004 B1
6720990 Walker et al. Apr 2004 B1
6721689 Markle et al. Apr 2004 B2
6721740 Skinner et al. Apr 2004 B1
6721747 Lipkin Apr 2004 B2
6721802 Wright et al. Apr 2004 B1
6727811 Fendis Apr 2004 B1
6728233 Park et al. Apr 2004 B1
6728688 Hirsch et al. Apr 2004 B1
6738824 Blair May 2004 B1
6741171 Palka et al. May 2004 B2
6754717 Day, III et al. Jun 2004 B1
6756896 Ford Jun 2004 B2
6756998 Bilger Jun 2004 B1
6759956 Menard et al. Jul 2004 B2
6762686 Tabe Jul 2004 B1
6771181 Hughen, Jr. Aug 2004 B1
6778085 Faulkner et al. Aug 2004 B2
6779019 Mousseau et al. Aug 2004 B1
6781509 Oppedahl et al. Aug 2004 B1
6785542 Blight et al. Aug 2004 B1
6789147 Kessler et al. Sep 2004 B1
6795322 Aihara et al. Sep 2004 B2
6795863 Doty, Jr. Sep 2004 B1
6798344 Faulkner et al. Sep 2004 B2
6804638 Fiedler Oct 2004 B2
6810409 Fry et al. Oct 2004 B1
6826173 Kung et al. Nov 2004 B1
6826233 Oosawa Nov 2004 B1
6829478 Layton et al. Dec 2004 B1
6834208 Gonzales et al. Dec 2004 B2
6850252 Hoffberg Feb 2005 B1
6856236 Christensen et al. Feb 2005 B2
6857026 Cain Feb 2005 B1
6865690 Kocin Mar 2005 B2
6871193 Campbell et al. Mar 2005 B1
6873256 Lemelson et al. Mar 2005 B2
6885362 Suomela Apr 2005 B2
D504889 Andre et al. May 2005 S
6891838 Petite et al. May 2005 B1
6912429 Bilger Jun 2005 B1
6914533 Petite Jul 2005 B2
6918112 Bourke-Dunphy et al. Jul 2005 B2
6920502 Araujo et al. Jul 2005 B2
6920615 Campbell et al. Jul 2005 B1
6928148 Simon et al. Aug 2005 B2
6930598 Weiss Aug 2005 B2
6930599 Naidoo et al. Aug 2005 B2
6930730 Maxson et al. Aug 2005 B2
6931445 Davis Aug 2005 B2
6941258 Van Heijningen et al. Sep 2005 B2
6943681 Rezvani et al. Sep 2005 B2
6956477 Chun Oct 2005 B2
6957186 Guheen et al. Oct 2005 B1
6957275 Sekiguchi Oct 2005 B1
6959341 Leung Oct 2005 B1
6959393 Hollis et al. Oct 2005 B2
6963908 Lynch et al. Nov 2005 B1
6963981 Bailey et al. Nov 2005 B1
6965294 Elliott et al. Nov 2005 B1
6965313 Saylor et al. Nov 2005 B1
6970183 Monroe Nov 2005 B1
6971076 Chen Nov 2005 B2
6972676 Kimmel et al. Dec 2005 B1
6975220 Foodman et al. Dec 2005 B1
6977485 Wei Dec 2005 B1
6983432 Hayes Jan 2006 B2
6990591 Pearson Jan 2006 B1
6993658 Engberg et al. Jan 2006 B1
6999562 Winick Feb 2006 B2
6999992 Deen et al. Feb 2006 B1
7015806 Naidoo et al. Mar 2006 B2
7016970 Harumoto et al. Mar 2006 B2
7019639 Stilp Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7020701 Gelvin et al. Mar 2006 B1
7023913 Monroe Apr 2006 B1
7023914 Furukawa et al. Apr 2006 B2
7023975 Mansfield et al. Apr 2006 B2
7024676 Klopfenstein Apr 2006 B1
7028328 Kogane et al. Apr 2006 B2
7030752 Tyroler Apr 2006 B2
7032002 Rezvani et al. Apr 2006 B1
7034681 Yamamoto et al. Apr 2006 B2
7035907 Decasper et al. Apr 2006 B1
7039391 Rezvani et al. May 2006 B2
7043537 Pratt May 2006 B1
7047088 Nakamura et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7050388 Kim et al. May 2006 B2
7053764 Stilp May 2006 B2
7053765 Clark May 2006 B1
7068164 Duncan et al. Jun 2006 B1
7072934 Helgeson et al. Jul 2006 B2
7073140 Li et al. Jul 2006 B1
7075429 Marshall Jul 2006 B2
7079020 Stilp Jul 2006 B2
7080046 Rezvani et al. Jul 2006 B1
7081813 Winick et al. Jul 2006 B2
7082460 Hansen et al. Jul 2006 B2
7084756 Stilp Aug 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7085937 Rezvani et al. Aug 2006 B1
7086018 Ito Aug 2006 B2
7099944 Anschutz et al. Aug 2006 B1
7099994 Thayer et al. Aug 2006 B2
7103152 Naidoo et al. Sep 2006 B2
7106176 La et al. Sep 2006 B2
7107322 Freeny, Jr. Sep 2006 B1
7110774 Davis et al. Sep 2006 B1
7113090 Saylor et al. Sep 2006 B1
7113099 Tyroler et al. Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7119609 Naidoo et al. Oct 2006 B2
7119674 Sefton Oct 2006 B2
7120139 Kung et al. Oct 2006 B1
7120232 Naidoo et al. Oct 2006 B2
7120233 Naidoo et al. Oct 2006 B2
7126473 Powell Oct 2006 B1
7130383 Naidoo et al. Oct 2006 B2
7130585 Ollis et al. Oct 2006 B1
7134138 Scherr Nov 2006 B2
7136711 Duncan et al. Nov 2006 B1
7142503 Grant et al. Nov 2006 B1
7147147 Enright et al. Dec 2006 B1
7148810 Bhat Dec 2006 B2
7149798 Rezvani et al. Dec 2006 B2
7149814 Neufeld et al. Dec 2006 B2
7158026 Feldkamp et al. Jan 2007 B2
7158776 Estes et al. Jan 2007 B1
7158920 Ishikawa Jan 2007 B2
7164907 Cochran et al. Jan 2007 B2
7166987 Lee et al. Jan 2007 B2
7171466 Van Der Meulen Jan 2007 B2
7171686 Jansen et al. Jan 2007 B1
7174018 Patil et al. Feb 2007 B1
7174564 Weatherspoon et al. Feb 2007 B1
7180889 Kung et al. Feb 2007 B1
7181207 Chow et al. Feb 2007 B1
7181716 Dahroug Feb 2007 B1
7183907 Simon et al. Feb 2007 B2
7184848 Krzyzanowski et al. Feb 2007 B2
7187279 Chung Mar 2007 B2
7187986 Johnson et al. Mar 2007 B2
7194003 Danner et al. Mar 2007 B2
7194446 Bromley et al. Mar 2007 B1
7203486 Patel Apr 2007 B2
7209945 Hicks et al. Apr 2007 B2
7212570 Akiyama et al. May 2007 B2
7213061 Hite et al. May 2007 B1
7218217 Adonailo et al. May 2007 B2
7222359 Freund et al. May 2007 B2
7229012 Enright et al. Jun 2007 B1
7237267 Rayes et al. Jun 2007 B2
7240327 Singh et al. Jul 2007 B2
7246044 Imamura et al. Jul 2007 B2
7248150 Mackjust et al. Jul 2007 B2
7248161 Spoltore et al. Jul 2007 B2
7249177 Miller Jul 2007 B1
7249317 Nakagawa et al. Jul 2007 B1
7250854 Rezvani et al. Jul 2007 B2
7250859 Martin et al. Jul 2007 B2
7254779 Rezvani et al. Aug 2007 B1
7262690 Heaton et al. Aug 2007 B2
7277010 Joao Oct 2007 B2
7292142 Simon et al. Nov 2007 B2
7293083 Ranous et al. Nov 2007 B1
7298253 Petricoin et al. Nov 2007 B2
7305461 Ullman Dec 2007 B2
7310115 Tanimoto Dec 2007 B2
7313102 Stephenson et al. Dec 2007 B2
D558460 Yu et al. Jan 2008 S
D558756 Andre et al. Jan 2008 S
7337217 Wang Feb 2008 B2
7337473 Chang et al. Feb 2008 B2
7340314 Duncan et al. Mar 2008 B1
7343619 Ofek et al. Mar 2008 B2
7346338 Calhoun et al. Mar 2008 B1
7349682 Bennett, III et al. Mar 2008 B1
7349761 Cruse Mar 2008 B1
7349967 Wang Mar 2008 B2
7356372 Duncan et al. Apr 2008 B1
7359843 Keller et al. Apr 2008 B1
7362221 Katz Apr 2008 B2
7367045 Ofek et al. Apr 2008 B2
7370115 Bae et al. May 2008 B2
7383339 Meenan et al. Jun 2008 B1
7383522 Murgai et al. Jun 2008 B2
7391298 Campbell et al. Jun 2008 B1
7403838 Deen et al. Jul 2008 B2
7409045 Naidoo et al. Aug 2008 B2
7409451 Meenan et al. Aug 2008 B1
7412447 Hilbert et al. Aug 2008 B2
7425101 Cheng Sep 2008 B2
7428585 Owens, II et al. Sep 2008 B1
7430614 Shen et al. Sep 2008 B2
7437753 Nahum Oct 2008 B2
7440434 Chaskar et al. Oct 2008 B2
7440767 Ballay et al. Oct 2008 B2
7447775 Zhu et al. Nov 2008 B1
7454731 Oh et al. Nov 2008 B2
7457869 Kernan Nov 2008 B2
7466223 Sefton Dec 2008 B2
7469139 Van De Groenendaal Dec 2008 B2
7469294 Luo et al. Dec 2008 B1
7469381 Ording Dec 2008 B2
7469391 Carrere et al. Dec 2008 B2
D584738 Kim et al. Jan 2009 S
D585399 Hwang Jan 2009 S
7477629 Tsirtsis et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7480713 Ullman Jan 2009 B2
7480724 Zimler et al. Jan 2009 B2
7483958 Elabbady et al. Jan 2009 B1
7493651 Vaenskae et al. Feb 2009 B2
7498695 Gaudreau et al. Mar 2009 B2
7502672 Kolls Mar 2009 B1
7506052 Qian et al. Mar 2009 B2
7509687 Ofek et al. Mar 2009 B2
7511614 Stilp et al. Mar 2009 B2
7512965 Amdur et al. Mar 2009 B1
7526539 Hsu Apr 2009 B1
7526762 Astala et al. Apr 2009 B1
7528723 Fast et al. May 2009 B2
7542721 Bonner et al. Jun 2009 B1
7549134 Li et al. Jun 2009 B1
7551071 Bennett, III Jun 2009 B2
7554934 Abraham et al. Jun 2009 B2
7558379 Winick Jul 2009 B2
7558903 Kinstler Jul 2009 B2
7562323 Bai et al. Jul 2009 B1
7564855 Georgiou Jul 2009 B1
7568018 Hove et al. Jul 2009 B1
7571459 Ganesh et al. Aug 2009 B2
7577420 Srinivasan et al. Aug 2009 B2
7583191 Zinser Sep 2009 B2
7587464 Moorer et al. Sep 2009 B2
7590953 Chang Sep 2009 B2
7595816 Enright et al. Sep 2009 B1
7596622 Owen et al. Sep 2009 B2
D602014 Andre et al. Oct 2009 S
D602015 Andre et al. Oct 2009 S
D602017 Andre et al. Oct 2009 S
D602486 Andre et al. Oct 2009 S
D602487 Maskatia Oct 2009 S
7606767 Couper et al. Oct 2009 B1
7610555 Klein et al. Oct 2009 B2
7619512 Trundle et al. Nov 2009 B2
7620427 Shanahan Nov 2009 B2
7627665 Barker et al. Dec 2009 B2
7633385 Cohn et al. Dec 2009 B2
7634519 Creamer et al. Dec 2009 B2
7639157 Whitley et al. Dec 2009 B1
7651530 Winick Jan 2010 B2
7653911 Doshi et al. Jan 2010 B2
7671729 Hershkovitz et al. Mar 2010 B2
7679503 Mason et al. Mar 2010 B2
7681201 Dale et al. Mar 2010 B2
7697028 Johnson Apr 2010 B1
7701970 Krits et al. Apr 2010 B2
D615083 Andre et al. May 2010 S
7711796 Gutt et al. May 2010 B2
7720654 Hollis May 2010 B2
7733371 Monroe Jun 2010 B1
7734020 Elliot et al. Jun 2010 B2
7734286 Almeda et al. Jun 2010 B2
7734906 Orlando et al. Jun 2010 B2
7739596 Clarke-Martin et al. Jun 2010 B2
7747975 Dinter et al. Jun 2010 B2
7751409 Carolan Jul 2010 B1
7755472 Grossman Jul 2010 B2
7755506 Clegg et al. Jul 2010 B1
7761275 Chopra et al. Jul 2010 B2
7787863 Groenendaal et al. Aug 2010 B2
7804760 Schmukler et al. Sep 2010 B2
D624896 Park et al. Oct 2010 S
D626437 Lee et al. Nov 2010 S
7825793 Spillman et al. Nov 2010 B1
7827252 Hopmann et al. Nov 2010 B2
7847675 Thyen et al. Dec 2010 B1
7855635 Cohn et al. Dec 2010 B2
7859404 Chul et al. Dec 2010 B2
7882466 Ishikawa Feb 2011 B2
7882537 Okajo et al. Feb 2011 B2
7884855 Ortiz Feb 2011 B2
7890612 Todd et al. Feb 2011 B2
7890915 Celik et al. Feb 2011 B2
7899732 Van Beaumont et al. Mar 2011 B2
7904074 Karaoguz et al. Mar 2011 B2
7904187 Hoffberg et al. Mar 2011 B2
7911341 Raji et al. Mar 2011 B2
D636769 Wood et al. Apr 2011 S
7921686 Bagepalli et al. Apr 2011 B2
D637596 Akana et al. May 2011 S
7949960 Roessler et al. May 2011 B2
D639805 Song et al. Jun 2011 S
D640663 Arnholt et al. Jun 2011 S
7956736 Cohn et al. Jun 2011 B2
7970863 Fontaine Jun 2011 B1
D641018 Lee et al. Jul 2011 S
7974235 Ghozati et al. Jul 2011 B2
D642563 Akana et al. Aug 2011 S
8001219 Moorer et al. Aug 2011 B2
D645015 Lee et al. Sep 2011 S
D645435 Kim et al. Sep 2011 S
D645833 Seflic et al. Sep 2011 S
8022833 Cho Sep 2011 B2
8028041 Olliphant et al. Sep 2011 B2
8032881 Holmberg et al. Oct 2011 B2
8042049 Killian et al. Oct 2011 B2
8046411 Hayashi et al. Oct 2011 B2
8069194 Manber et al. Nov 2011 B1
D650381 Park et al. Dec 2011 S
8073931 Dawes et al. Dec 2011 B2
8086702 Baum et al. Dec 2011 B2
8086703 Baum et al. Dec 2011 B2
D654460 Kim et al. Feb 2012 S
D654497 Lee Feb 2012 S
8122131 Baum et al. Feb 2012 B2
8125184 Raji et al. Feb 2012 B2
D656137 Chung et al. Mar 2012 S
8140658 Gelvin et al. Mar 2012 B1
8144836 Naidoo et al. Mar 2012 B2
8149849 Osborn et al. Apr 2012 B2
8159519 Kurtz et al. Apr 2012 B2
8159945 Muro et al. Apr 2012 B2
8160425 Kisliakov Apr 2012 B2
8196064 Krzyzanowski et al. Jun 2012 B2
8200827 Hunyady et al. Jun 2012 B1
8205181 Singla et al. Jun 2012 B1
8209400 Baum et al. Jun 2012 B2
D663298 Song et al. Jul 2012 S
D664540 Kim et al. Jul 2012 S
8214494 Slavin Jul 2012 B1
8214496 Gutt et al. Jul 2012 B2
8229812 Raleigh Jul 2012 B2
D664954 Kim et al. Aug 2012 S
D666198 Van Den Nieuwenhuizen et al. Aug 2012 S
8239477 Sharma et al. Aug 2012 B2
D667395 Lee Sep 2012 S
D667396 Koh Sep 2012 S
D667397 Koh Sep 2012 S
D667398 Koh Sep 2012 S
D667399 Koh Sep 2012 S
8269376 Elberbaum Sep 2012 B1
8269623 Addy et al. Sep 2012 B2
8271629 Winters et al. Sep 2012 B1
8271881 Moorer et al. Sep 2012 B2
8272053 Markham et al. Sep 2012 B2
8275830 Raleigh Sep 2012 B2
D668650 Han Oct 2012 S
D668651 Kim et al. Oct 2012 S
D668652 Kim et al. Oct 2012 S
D669469 Kang Oct 2012 S
D670692 Akana et al. Nov 2012 S
D671514 Kim et al. Nov 2012 S
8311526 Forstall et al. Nov 2012 B2
D671938 Hsu et al. Dec 2012 S
D672344 Li Dec 2012 S
D672345 Li Dec 2012 S
D672739 Sin Dec 2012 S
D672768 Huang et al. Dec 2012 S
8335842 Raji et al. Dec 2012 B2
8335854 Eldering Dec 2012 B2
8336010 Chang et al. Dec 2012 B1
D673561 Hyun et al. Jan 2013 S
D673948 Andre et al. Jan 2013 S
D673950 Li et al. Jan 2013 S
D674369 Jaewoong Jan 2013 S
D675203 Yang Jan 2013 S
8350694 Trundle et al. Jan 2013 B1
D675588 Park Feb 2013 S
D675612 Andre et al. Feb 2013 S
D676443 Canizares et al. Feb 2013 S
D676819 Choi Feb 2013 S
8373313 Maurer Feb 2013 B2
D677255 McManigal et al. Mar 2013 S
D677640 Kim et al. Mar 2013 S
D677659 Akana et al. Mar 2013 S
D677660 Groene et al. Mar 2013 S
D678271 Chiu Mar 2013 S
D678272 Groene et al. Mar 2013 S
D678877 Groene et al. Mar 2013 S
8396766 Enright et al. Mar 2013 B1
8400767 Yeom et al. Mar 2013 B2
D679706 Tang et al. Apr 2013 S
D680151 Katori Apr 2013 S
D680524 Feng et al. Apr 2013 S
D681032 Akana et al. Apr 2013 S
8413204 White et al. Apr 2013 B2
D681583 Park May 2013 S
D681591 Sung May 2013 S
D681632 Akana et al. May 2013 S
D682239 Yeh et al. May 2013 S
8451986 Cohn et al. May 2013 B2
D684553 Kim et al. Jun 2013 S
D684968 Smith et al. Jun 2013 S
8456293 Trundle et al. Jun 2013 B1
8473619 Baum et al. Jun 2013 B2
D685778 Fahrendorff et al. Jul 2013 S
D685783 Bryan et al. Jul 2013 S
8478450 Lu et al. Jul 2013 B2
8478844 Baum et al. Jul 2013 B2
8478871 Gutt et al. Jul 2013 B2
8483853 Lambourne Jul 2013 B1
8493202 Trundle et al. Jul 2013 B1
8499038 Vucurevich Jul 2013 B1
8520068 Naidoo et al. Aug 2013 B2
8520072 Slavin et al. Aug 2013 B1
8525664 Hadizad et al. Sep 2013 B2
8543665 Ansari et al. Sep 2013 B2
D692042 Dawes et al. Oct 2013 S
8554478 Hartman Oct 2013 B2
8560041 Flaherty et al. Oct 2013 B2
8570993 Austin et al. Oct 2013 B2
8584199 Chen et al. Nov 2013 B1
D695735 Kitchen et al. Dec 2013 S
8599018 Kellen Dec 2013 B2
8612591 Dawes et al. Dec 2013 B2
8634533 Strasters Jan 2014 B2
8635350 Gutt et al. Jan 2014 B2
8635499 Cohn et al. Jan 2014 B2
8638211 Cohn et al. Jan 2014 B2
8649386 Ansari et al. Feb 2014 B2
8666560 Lu et al. Mar 2014 B2
8675071 Slavin et al. Mar 2014 B1
8700769 Alexander et al. Apr 2014 B2
8713132 Baum et al. Apr 2014 B2
8723671 Foisy et al. May 2014 B2
8730834 Marusca et al. May 2014 B2
8738765 Wyatt et al. May 2014 B2
8812654 Gelvin et al. Aug 2014 B2
8819178 Baum et al. Aug 2014 B2
8825871 Baum et al. Sep 2014 B2
8836467 Cohn et al. Sep 2014 B1
8885552 Bedingfield, Sr. et al. Nov 2014 B2
8902740 Hicks, III Dec 2014 B2
8914526 Lindquist et al. Dec 2014 B1
8935236 Morita et al. Jan 2015 B2
8937658 Hicks et al. Jan 2015 B2
8953479 Hall et al. Feb 2015 B2
8953749 Naidoo et al. Feb 2015 B2
8963713 Dawes et al. Feb 2015 B2
8976763 Shrestha et al. Mar 2015 B2
8988217 Piccolo, III Mar 2015 B2
8988221 Raji et al. Mar 2015 B2
8996665 Baum et al. Mar 2015 B2
9047753 Dawes et al. Jun 2015 B2
9059863 Baum et al. Jun 2015 B2
9064394 Trundle Jun 2015 B1
9094407 Matthieu et al. Jul 2015 B1
9100446 Cohn et al. Aug 2015 B2
9141276 Dawes et al. Sep 2015 B2
9144143 Raji et al. Sep 2015 B2
9147337 Cohn et al. Sep 2015 B2
9160784 Jeong et al. Oct 2015 B2
9170707 Laska et al. Oct 2015 B1
9172532 Fuller et al. Oct 2015 B1
9172553 Dawes et al. Oct 2015 B2
9172605 Hardy et al. Oct 2015 B2
9189934 Jentoft et al. Nov 2015 B2
9202362 Hyland et al. Dec 2015 B2
9246921 Vlaminck et al. Jan 2016 B1
9286772 Shapiro et al. Mar 2016 B2
9287727 Egan Mar 2016 B1
9300921 Naidoo et al. Mar 2016 B2
9306809 Dawes et al. Apr 2016 B2
9310864 Klein et al. Apr 2016 B1
9412248 Cohn et al. Aug 2016 B1
9426720 Cohn et al. Aug 2016 B2
9450776 Baum et al. Sep 2016 B2
9462041 Hagins et al. Oct 2016 B1
9510065 Cohn et al. Nov 2016 B2
9529344 Hagins et al. Dec 2016 B1
9600945 Naidoo et al. Mar 2017 B2
9609003 Chmielewski et al. Mar 2017 B1
9613524 Lamb et al. Apr 2017 B1
9621408 Gutt et al. Apr 2017 B2
9721461 Zeng et al. Aug 2017 B2
9729342 Cohn et al. Aug 2017 B2
9779595 Thibault Oct 2017 B2
9843458 Cronin Dec 2017 B2
9876651 Cho et al. Jan 2018 B2
9882985 Esam et al. Jan 2018 B1
9978238 Fadell et al. May 2018 B2
9979625 Mclaughlin et al. May 2018 B2
10002507 Wilson et al. Jun 2018 B2
10025473 Sarao et al. Jul 2018 B2
10051078 Burd et al. Aug 2018 B2
10062245 Fulker et al. Aug 2018 B2
10062273 Raji et al. Aug 2018 B2
10078958 Cohn et al. Sep 2018 B2
10079839 Bryan et al. Sep 2018 B1
10120354 Rolston et al. Nov 2018 B1
10127801 Raji et al. Nov 2018 B2
10140840 Cohn et al. Nov 2018 B2
10142392 Raji et al. Nov 2018 B2
10156831 Raji et al. Dec 2018 B2
10156959 Fulker et al. Dec 2018 B2
10237237 Dawes et al. Mar 2019 B2
10237757 Raleigh et al. Mar 2019 B2
10264138 Raleigh et al. Apr 2019 B2
10313303 Baum et al. Jun 2019 B2
10339791 Baum et al. Jul 2019 B2
10380873 Halverson Aug 2019 B1
10430887 Parker et al. Oct 2019 B1
20010016501 King Aug 2001 A1
20010022836 Bremer et al. Sep 2001 A1
20010025349 Sharood et al. Sep 2001 A1
20010029585 Simon Oct 2001 A1
20010030597 Inoue et al. Oct 2001 A1
20010034209 Tong et al. Oct 2001 A1
20010034754 Elwahab et al. Oct 2001 A1
20010034759 Chiles et al. Oct 2001 A1
20010036192 Chiles et al. Nov 2001 A1
20010042137 Ota et al. Nov 2001 A1
20010044835 Schober et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20010047474 Takagi et al. Nov 2001 A1
20010053207 Jeon et al. Dec 2001 A1
20010054115 Ferguson et al. Dec 2001 A1
20020000913 Hamamoto et al. Jan 2002 A1
20020003575 Marchese Jan 2002 A1
20020004828 Davis et al. Jan 2002 A1
20020005894 Foodman et al. Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020018057 Sano Feb 2002 A1
20020019751 Rothschild et al. Feb 2002 A1
20020026476 Miyazaki et al. Feb 2002 A1
20020026531 Keane et al. Feb 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020028696 Hirayama et al. Mar 2002 A1
20020029276 Bendinelli et al. Mar 2002 A1
20020031120 Rakib Mar 2002 A1
20020032853 Preston et al. Mar 2002 A1
20020037004 Bossemeyer et al. Mar 2002 A1
20020038380 Brawn et al. Mar 2002 A1
20020046280 Fujita Apr 2002 A1
20020052719 Alexander et al. May 2002 A1
20020052913 Yamada et al. May 2002 A1
20020055977 Nishi May 2002 A1
20020059078 Valdes et al. May 2002 A1
20020059148 Rosenhaft et al. May 2002 A1
20020059637 Rakib May 2002 A1
20020068558 Janik Jun 2002 A1
20020068984 Alexander et al. Jun 2002 A1
20020072868 Bartone et al. Jun 2002 A1
20020077077 Rezvani et al. Jun 2002 A1
20020083342 Webb et al. Jun 2002 A1
20020085488 Kobayashi Jul 2002 A1
20020091815 Anderson et al. Jul 2002 A1
20020095490 Barker et al. Jul 2002 A1
20020099809 Lee Jul 2002 A1
20020099829 Richards et al. Jul 2002 A1
20020099854 Jorgensen Jul 2002 A1
20020103898 Moyer et al. Aug 2002 A1
20020103927 Parent Aug 2002 A1
20020107910 Zhao Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111698 Graziano et al. Aug 2002 A1
20020112051 Ullman Aug 2002 A1
20020112182 Chang et al. Aug 2002 A1
20020114439 Dunlap Aug 2002 A1
20020116117 Martens et al. Aug 2002 A1
20020118107 Yamamoto et al. Aug 2002 A1
20020118796 Menard et al. Aug 2002 A1
20020120696 Mousseau et al. Aug 2002 A1
20020120698 Tamargo Aug 2002 A1
20020120790 Schwalb Aug 2002 A1
20020126009 Oyagi et al. Sep 2002 A1
20020128728 Murakami et al. Sep 2002 A1
20020131404 Mehta et al. Sep 2002 A1
20020133539 Monday Sep 2002 A1
20020133578 Wu Sep 2002 A1
20020143805 Hayes et al. Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020147982 Naidoo et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020156564 Preston et al. Oct 2002 A1
20020156899 Sekiguchi Oct 2002 A1
20020163534 Choi et al. Nov 2002 A1
20020163997 Bergman et al. Nov 2002 A1
20020164997 Parry Nov 2002 A1
20020165006 Haller et al. Nov 2002 A1
20020166125 Fulmer Nov 2002 A1
20020174367 Kimmel et al. Nov 2002 A1
20020174434 Lee et al. Nov 2002 A1
20020177428 Menard et al. Nov 2002 A1
20020177482 Cheong et al. Nov 2002 A1
20020178211 Singhal et al. Nov 2002 A1
20020180579 Nagaoka et al. Dec 2002 A1
20020184301 Parent Dec 2002 A1
20020184527 Chun et al. Dec 2002 A1
20020191636 Hallenbeck Dec 2002 A1
20030005030 Sutton et al. Jan 2003 A1
20030009552 Benfield et al. Jan 2003 A1
20030009553 Benfield et al. Jan 2003 A1
20030010243 Roller Jan 2003 A1
20030023839 Burkhardt et al. Jan 2003 A1
20030025599 Monroe Feb 2003 A1
20030028294 Yanagi Feb 2003 A1
20030028398 Yamashita et al. Feb 2003 A1
20030030548 Kovacs et al. Feb 2003 A1
20030031165 O'Brien Feb 2003 A1
20030038730 Imafuku et al. Feb 2003 A1
20030038849 Craven et al. Feb 2003 A1
20030039242 Moore Feb 2003 A1
20030041137 Horie et al. Feb 2003 A1
20030041167 French et al. Feb 2003 A1
20030050731 Rosenblum Mar 2003 A1
20030051009 Shah et al. Mar 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030052905 Gordon et al. Mar 2003 A1
20030052923 Porter Mar 2003 A1
20030056012 Modeste et al. Mar 2003 A1
20030056014 Verberkt et al. Mar 2003 A1
20030060900 Lo et al. Mar 2003 A1
20030061344 Monroe Mar 2003 A1
20030061615 Van Der Meulen Mar 2003 A1
20030061621 Petty et al. Mar 2003 A1
20030062997 Naidoo et al. Apr 2003 A1
20030065407 Johnson et al. Apr 2003 A1
20030065757 Mentze et al. Apr 2003 A1
20030065791 Garg et al. Apr 2003 A1
20030067923 Ju et al. Apr 2003 A1
20030071724 D'Amico Apr 2003 A1
20030073406 Benjamin et al. Apr 2003 A1
20030081768 Caminschi et al. May 2003 A1
20030090473 Joshi May 2003 A1
20030096590 Satoh May 2003 A1
20030101243 Donahue et al. May 2003 A1
20030101459 Edson May 2003 A1
20030103088 Dresti et al. Jun 2003 A1
20030110262 Hasan et al. Jun 2003 A1
20030110302 Hodges et al. Jun 2003 A1
20030112866 Yu et al. Jun 2003 A1
20030113100 Hecht et al. Jun 2003 A1
20030115345 Chien et al. Jun 2003 A1
20030123634 Chee Jul 2003 A1
20030128114 Quigley Jul 2003 A1
20030128115 Giacopelli et al. Jul 2003 A1
20030132018 Okita et al. Jul 2003 A1
20030134590 Suda et al. Jul 2003 A1
20030137426 Anthony et al. Jul 2003 A1
20030137991 Doshi et al. Jul 2003 A1
20030147534 Ablay et al. Aug 2003 A1
20030149671 Yamamoto et al. Aug 2003 A1
20030153325 Veerepalli et al. Aug 2003 A1
20030155757 Larsen et al. Aug 2003 A1
20030158609 Chiu Aug 2003 A1
20030158635 Pillar et al. Aug 2003 A1
20030159135 Hiller et al. Aug 2003 A1
20030169728 Choi Sep 2003 A1
20030174154 Yukie et al. Sep 2003 A1
20030174648 Wang et al. Sep 2003 A1
20030174717 Zabarski et al. Sep 2003 A1
20030177236 Goto et al. Sep 2003 A1
20030182396 Reich et al. Sep 2003 A1
20030182640 Alani et al. Sep 2003 A1
20030184436 Seales et al. Oct 2003 A1
20030187920 Redkar Oct 2003 A1
20030187938 Mousseau et al. Oct 2003 A1
20030189509 Hayes et al. Oct 2003 A1
20030197847 Shinoda Oct 2003 A1
20030200285 Hansen et al. Oct 2003 A1
20030200325 Krishnaswamy et al. Oct 2003 A1
20030201889 Zulkowski Oct 2003 A1
20030208610 Rochetti et al. Nov 2003 A1
20030210126 Kanazawa Nov 2003 A1
20030214775 Fukuta et al. Nov 2003 A1
20030217110 Weiss Nov 2003 A1
20030217136 Cho et al. Nov 2003 A1
20030225883 Greaves et al. Dec 2003 A1
20030227382 Breed Dec 2003 A1
20030230934 Cordelli et al. Dec 2003 A1
20030233155 Slemmer et al. Dec 2003 A1
20030233332 Keeler Dec 2003 A1
20030234725 Lemelson et al. Dec 2003 A1
20030236841 Epshteyn Dec 2003 A1
20040003051 Krzyzanowski et al. Jan 2004 A1
20040003241 Sengodan et al. Jan 2004 A1
20040008724 Devine et al. Jan 2004 A1
20040015572 Kang Jan 2004 A1
20040024851 Naidoo et al. Feb 2004 A1
20040034697 Fairhurst et al. Feb 2004 A1
20040034798 Yamada et al. Feb 2004 A1
20040036615 Candela Feb 2004 A1
20040037295 Tanaka et al. Feb 2004 A1
20040041910 Naidoo et al. Mar 2004 A1
20040054789 Breh et al. Mar 2004 A1
20040056665 Iwanaga et al. Mar 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040083015 Patwari Apr 2004 A1
20040086088 Naidoo et al. May 2004 A1
20040086090 Naidoo et al. May 2004 A1
20040086093 Schranz May 2004 A1
20040093492 Daude et al. May 2004 A1
20040095943 Korotin May 2004 A1
20040103308 Paller May 2004 A1
20040107027 Boudrieau Jun 2004 A1
20040107299 Lee et al. Jun 2004 A1
20040113770 Falk et al. Jun 2004 A1
20040113778 Script et al. Jun 2004 A1
20040113937 Sawdey Jun 2004 A1
20040117068 Lee Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040117462 Bodin et al. Jun 2004 A1
20040117465 Bodin et al. Jun 2004 A1
20040123149 Tyroler Jun 2004 A1
20040125146 Gerlach et al. Jul 2004 A1
20040125782 Chang Jul 2004 A1
20040133689 Vasisht Jul 2004 A1
20040137915 Diener et al. Jul 2004 A1
20040139227 Takeda Jul 2004 A1
20040143749 Tajalli et al. Jul 2004 A1
20040153171 Brandt et al. Aug 2004 A1
20040155757 Litwin et al. Aug 2004 A1
20040160309 Stilp Aug 2004 A1
20040162902 Davis Aug 2004 A1
20040163073 Krzyzanowski et al. Aug 2004 A1
20040163118 Mottur Aug 2004 A1
20040169288 Hsieh et al. Sep 2004 A1
20040170120 Reunamaki et al. Sep 2004 A1
20040170155 Omar et al. Sep 2004 A1
20040172396 Vanska et al. Sep 2004 A1
20040177163 Casey et al. Sep 2004 A1
20040181693 Milliot Sep 2004 A1
20040183756 Freitas et al. Sep 2004 A1
20040189460 Heaton et al. Sep 2004 A1
20040189471 Ciarcia et al. Sep 2004 A1
20040189871 Kurosawa et al. Sep 2004 A1
20040196844 Hagino Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040199645 Rouhi Oct 2004 A1
20040201472 McGunn et al. Oct 2004 A1
20040202351 Park et al. Oct 2004 A1
20040212494 Stilp Oct 2004 A1
20040212497 Stilp Oct 2004 A1
20040212500 Stilp Oct 2004 A1
20040212503 Stilp Oct 2004 A1
20040212687 Patwari Oct 2004 A1
20040213150 Krause et al. Oct 2004 A1
20040215694 Podolsky Oct 2004 A1
20040215700 Shenfield et al. Oct 2004 A1
20040215750 Stilp Oct 2004 A1
20040215955 Tamai et al. Oct 2004 A1
20040220830 Moreton et al. Nov 2004 A1
20040223605 Donnelly Nov 2004 A1
20040225516 Bruskotter et al. Nov 2004 A1
20040225719 Kisley et al. Nov 2004 A1
20040229569 Franz Nov 2004 A1
20040243714 Wynn et al. Dec 2004 A1
20040243835 Terzis et al. Dec 2004 A1
20040243996 Sheehy et al. Dec 2004 A1
20040246339 Ooshima et al. Dec 2004 A1
20040249613 Sprogis et al. Dec 2004 A1
20040249922 Hackman et al. Dec 2004 A1
20040257433 Lia et al. Dec 2004 A1
20040260407 Wimsatt Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20040260527 Stanculescu Dec 2004 A1
20040263314 Dorai et al. Dec 2004 A1
20040266493 Bahl et al. Dec 2004 A1
20040267385 Lingemann Dec 2004 A1
20040267937 Klemets Dec 2004 A1
20050002417 Kelly et al. Jan 2005 A1
20050007967 Keskar et al. Jan 2005 A1
20050010866 Humpleman et al. Jan 2005 A1
20050015805 Iwamura Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050022210 Zintel et al. Jan 2005 A1
20050023858 Bingle et al. Feb 2005 A1
20050024203 Wolfe Feb 2005 A1
20050030928 Virtanen et al. Feb 2005 A1
20050033513 Gasbarro Feb 2005 A1
20050038325 Moll Feb 2005 A1
20050038326 Mathur Feb 2005 A1
20050044061 Klemow Feb 2005 A1
20050049746 Rosenblum Mar 2005 A1
20050052831 Chen Mar 2005 A1
20050055575 Evans et al. Mar 2005 A1
20050055716 Louie et al. Mar 2005 A1
20050057361 Giraldo et al. Mar 2005 A1
20050060163 Barsness et al. Mar 2005 A1
20050060411 Coulombe et al. Mar 2005 A1
20050066045 Johnson et al. Mar 2005 A1
20050066912 Korbitz et al. Mar 2005 A1
20050069098 Kalervo et al. Mar 2005 A1
20050071483 Motoyama Mar 2005 A1
20050075764 Horst et al. Apr 2005 A1
20050079855 Jethi et al. Apr 2005 A1
20050081161 MacInnes et al. Apr 2005 A1
20050086126 Patterson Apr 2005 A1
20050086211 Mayer Apr 2005 A1
20050086366 Luebke et al. Apr 2005 A1
20050088983 Wesslen et al. Apr 2005 A1
20050089023 Barkley et al. Apr 2005 A1
20050090915 Geiwitz Apr 2005 A1
20050091435 Han et al. Apr 2005 A1
20050091696 Wolfe et al. Apr 2005 A1
20050096753 Arling et al. May 2005 A1
20050097478 Killian et al. May 2005 A1
20050101314 Levi May 2005 A1
20050102152 Hodges May 2005 A1
20050102497 Buer May 2005 A1
20050105530 Kono May 2005 A1
20050108091 Sotak et al. May 2005 A1
20050108369 Sather et al. May 2005 A1
20050114528 Suito May 2005 A1
20050114900 Ladd et al. May 2005 A1
20050119913 Hornreich et al. Jun 2005 A1
20050120082 Hesselink et al. Jun 2005 A1
20050125083 Kiko Jun 2005 A1
20050128068 Winick et al. Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128093 Genova et al. Jun 2005 A1
20050144312 Kadyk et al. Jun 2005 A1
20050148356 Ferguson et al. Jul 2005 A1
20050149639 Vrielink et al. Jul 2005 A1
20050149746 Lu et al. Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050154774 Giaffreda et al. Jul 2005 A1
20050156568 Yueh Jul 2005 A1
20050156737 Al-Khateeb Jul 2005 A1
20050159823 Hayes et al. Jul 2005 A1
20050159911 Funk et al. Jul 2005 A1
20050169288 Kamiwada et al. Aug 2005 A1
20050174229 Feldkamp et al. Aug 2005 A1
20050179531 Tabe Aug 2005 A1
20050182681 Bruskotter et al. Aug 2005 A1
20050184865 Han et al. Aug 2005 A1
20050188315 Campbell et al. Aug 2005 A1
20050197847 Smith Sep 2005 A1
20050200474 Behnke Sep 2005 A1
20050204076 Cumpson et al. Sep 2005 A1
20050207429 Akita et al. Sep 2005 A1
20050210532 Winick Sep 2005 A1
20050216302 Raji et al. Sep 2005 A1
20050216580 Raji et al. Sep 2005 A1
20050220123 Wybenga et al. Oct 2005 A1
20050222820 Chung et al. Oct 2005 A1
20050222933 Wesby Oct 2005 A1
20050229016 Addy Oct 2005 A1
20050231349 Bhat Oct 2005 A1
20050232284 Karaoguz et al. Oct 2005 A1
20050234568 Chung et al. Oct 2005 A1
20050237182 Wang Oct 2005 A1
20050246119 Koodali Nov 2005 A1
20050249199 Albert et al. Nov 2005 A1
20050253706 Spoltore et al. Nov 2005 A1
20050256608 King et al. Nov 2005 A1
20050257013 Ma Nov 2005 A1
20050257260 Lenoir et al. Nov 2005 A1
20050259673 Lu et al. Nov 2005 A1
20050260973 Van De Groenendaal Nov 2005 A1
20050262241 Gubbi Nov 2005 A1
20050267605 Lee et al. Dec 2005 A1
20050270151 Winick Dec 2005 A1
20050273831 Slomovich et al. Dec 2005 A1
20050276389 Hinkson et al. Dec 2005 A1
20050280964 Richmond et al. Dec 2005 A1
20050282557 Mikko et al. Dec 2005 A1
20050283823 Okajo et al. Dec 2005 A1
20050285934 Carter Dec 2005 A1
20050285941 Haigh et al. Dec 2005 A1
20060009863 Lingemann Jan 2006 A1
20060010078 Rezvani et al. Jan 2006 A1
20060015943 Mahieu Jan 2006 A1
20060018328 Mody et al. Jan 2006 A1
20060018479 Chen Jan 2006 A1
20060022816 Yukawa Feb 2006 A1
20060023847 Tyroler et al. Feb 2006 A1
20060025132 Karaoguz et al. Feb 2006 A1
20060026301 Maeda et al. Feb 2006 A1
20060031852 Chu et al. Feb 2006 A1
20060041655 Holloway et al. Feb 2006 A1
20060045074 Lee Mar 2006 A1
20060050692 Petrescu et al. Mar 2006 A1
20060050862 Shen et al. Mar 2006 A1
20060051122 Kawazu et al. Mar 2006 A1
20060052884 Staples et al. Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060053491 Khuti et al. Mar 2006 A1
20060058923 Kruk et al. Mar 2006 A1
20060063534 Kokkonen et al. Mar 2006 A1
20060064305 Alonso Mar 2006 A1
20060064478 Sirkin Mar 2006 A1
20060067344 Sakurai Mar 2006 A1
20060067356 Kim et al. Mar 2006 A1
20060067484 Elliot et al. Mar 2006 A1
20060075235 Renkis Apr 2006 A1
20060077254 Shu et al. Apr 2006 A1
20060078344 Kawazu et al. Apr 2006 A1
20060080465 Conzola et al. Apr 2006 A1
20060088092 Chen et al. Apr 2006 A1
20060092011 Simon May 2006 A1
20060093365 Dybsetter May 2006 A1
20060101062 Godman et al. May 2006 A1
20060103510 Chen et al. May 2006 A1
20060103520 Clark May 2006 A1
20060104312 Friar May 2006 A1
20060105713 Zheng et al. May 2006 A1
20060106933 Huang et al. May 2006 A1
20060109113 Reyes et al. May 2006 A1
20060109860 Matsunaga et al. May 2006 A1
20060111095 Weigand May 2006 A1
20060121924 Rengaraju et al. Jun 2006 A1
20060123212 Yagawa Jun 2006 A1
20060129837 Im et al. Jun 2006 A1
20060132302 Stilp Jun 2006 A1
20060136558 Sheehan et al. Jun 2006 A1
20060142880 Deen et al. Jun 2006 A1
20060142968 Han et al. Jun 2006 A1
20060143268 Chatani Jun 2006 A1
20060145842 Stilp Jul 2006 A1
20060154642 Scannell, Jr. Jul 2006 A1
20060155851 Ma et al. Jul 2006 A1
20060159032 Ukrainetz et al. Jul 2006 A1
20060161270 Luskin et al. Jul 2006 A1
20060161662 Ng et al. Jul 2006 A1
20060161960 Benoit Jul 2006 A1
20060167784 Hoffberg Jul 2006 A1
20060167919 Hsieh Jul 2006 A1
20060168178 Hwang et al. Jul 2006 A1
20060176146 Krishan et al. Aug 2006 A1
20060176167 Dohrmann Aug 2006 A1
20060181406 Petite et al. Aug 2006 A1
20060182100 Li et al. Aug 2006 A1
20060183460 Srinivasan et al. Aug 2006 A1
20060187900 Akbar Aug 2006 A1
20060190458 Mishina et al. Aug 2006 A1
20060190529 Morozumi et al. Aug 2006 A1
20060197660 Luebke et al. Sep 2006 A1
20060200845 Foster et al. Sep 2006 A1
20060206220 Amundson Sep 2006 A1
20060208872 Yu et al. Sep 2006 A1
20060208880 Funk et al. Sep 2006 A1
20060209857 Hicks, III Sep 2006 A1
20060215650 Wollmershauser et al. Sep 2006 A1
20060218593 Afshary et al. Sep 2006 A1
20060220830 Bennett, III Oct 2006 A1
20060221184 Vallone et al. Oct 2006 A1
20060222153 Tarkoff et al. Oct 2006 A1
20060229746 Ollis et al. Oct 2006 A1
20060230270 Goffin Oct 2006 A1
20060233372 Shaheen et al. Oct 2006 A1
20060235963 Wetherly et al. Oct 2006 A1
20060238372 Jung et al. Oct 2006 A1
20060238617 Tamir Oct 2006 A1
20060242395 Fausak Oct 2006 A1
20060245369 Schimmelpfeng et al. Nov 2006 A1
20060246886 Benco et al. Nov 2006 A1
20060246919 Park et al. Nov 2006 A1
20060250235 Astrin Nov 2006 A1
20060258342 Fok et al. Nov 2006 A1
20060265489 Moore Nov 2006 A1
20060271695 Lavian Nov 2006 A1
20060274764 Mah et al. Dec 2006 A1
20060281435 Shearer et al. Dec 2006 A1
20060282886 Gaug Dec 2006 A1
20060288288 Girgensohn et al. Dec 2006 A1
20060291507 Sarosi et al. Dec 2006 A1
20060294565 Walter Dec 2006 A1
20070001818 Small et al. Jan 2007 A1
20070002833 Bajic Jan 2007 A1
20070005736 Hansen et al. Jan 2007 A1
20070005957 Sahita et al. Jan 2007 A1
20070006177 Aiber et al. Jan 2007 A1
20070008099 Kimmel et al. Jan 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070043954 Fox Feb 2007 A1
20070047585 Gillespie et al. Mar 2007 A1
20070052675 Chang Mar 2007 A1
20070055770 Karmakar et al. Mar 2007 A1
20070058627 Smith Mar 2007 A1
20070061018 Callaghan et al. Mar 2007 A1
20070061020 Bovee et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061430 Kim Mar 2007 A1
20070061878 Hagiu Mar 2007 A1
20070063836 Hayden et al. Mar 2007 A1
20070063866 Webb Mar 2007 A1
20070064714 Bi et al. Mar 2007 A1
20070079151 Connor et al. Apr 2007 A1
20070079385 Williams et al. Apr 2007 A1
20070083668 Kelsey et al. Apr 2007 A1
20070090944 Du Breuil Apr 2007 A1
20070094716 Farino et al. Apr 2007 A1
20070096981 Abraham May 2007 A1
20070101345 Takagi May 2007 A1
20070103433 Katz May 2007 A1
20070105072 Koljonen May 2007 A1
20070106124 Kuriyama et al. May 2007 A1
20070109975 Reckamp et al. May 2007 A1
20070116020 Cheever et al. May 2007 A1
20070117464 Freeman May 2007 A1
20070118609 Mullan et al. May 2007 A1
20070127510 Bossemeyer et al. Jun 2007 A1
20070130286 Hopmann et al. Jun 2007 A1
20070140267 Yang Jun 2007 A1
20070142022 Madonna et al. Jun 2007 A1
20070142044 Fitzgerald et al. Jun 2007 A1
20070143440 Reckamp et al. Jun 2007 A1
20070146127 Stilp et al. Jun 2007 A1
20070146484 Horton et al. Jun 2007 A1
20070147419 Tsujimoto et al. Jun 2007 A1
20070150616 Baek et al. Jun 2007 A1
20070154010 Wong Jul 2007 A1
20070155325 Bambic et al. Jul 2007 A1
20070160017 Meier et al. Jul 2007 A1
20070161372 Rogalski et al. Jul 2007 A1
20070162228 Mitchell Jul 2007 A1
20070162680 Mitchell et al. Jul 2007 A1
20070164779 Weston et al. Jul 2007 A1
20070168860 Takayama et al. Jul 2007 A1
20070182543 Luo Aug 2007 A1
20070182819 Monroe Aug 2007 A1
20070183345 Fahim et al. Aug 2007 A1
20070185989 Corbett et al. Aug 2007 A1
20070192486 Wilson et al. Aug 2007 A1
20070198698 Boyd et al. Aug 2007 A1
20070208521 Petite et al. Sep 2007 A1
20070214262 Buchbinder et al. Sep 2007 A1
20070214264 Koister Sep 2007 A1
20070216764 Kwak Sep 2007 A1
20070216783 Ortiz et al. Sep 2007 A1
20070218895 Saito et al. Sep 2007 A1
20070223465 Wang et al. Sep 2007 A1
20070223500 Lee et al. Sep 2007 A1
20070226182 Sobotka et al. Sep 2007 A1
20070230415 Malik Oct 2007 A1
20070245223 Siedzik et al. Oct 2007 A1
20070255856 Reckamp Nov 2007 A1
20070256105 Tabe Nov 2007 A1
20070257986 Ivanov et al. Nov 2007 A1
20070260713 Moorer et al. Nov 2007 A1
20070262857 Jackson Nov 2007 A1
20070263782 Stock et al. Nov 2007 A1
20070265866 Fehling et al. Nov 2007 A1
20070271398 Manchester et al. Nov 2007 A1
20070275703 Lim et al. Nov 2007 A1
20070282665 Buehler et al. Dec 2007 A1
20070283001 Spiess et al. Dec 2007 A1
20070286210 Gutt et al. Dec 2007 A1
20070286369 Gutt et al. Dec 2007 A1
20070287405 Radtke Dec 2007 A1
20070288849 Moorer et al. Dec 2007 A1
20070288858 Pereira Dec 2007 A1
20070290830 Gurley Dec 2007 A1
20070291118 Shu et al. Dec 2007 A1
20070296814 Cooper et al. Dec 2007 A1
20070298772 Owens et al. Dec 2007 A1
20080001734 Stilp Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080027587 Nickerson et al. Jan 2008 A1
20080042826 Hevia et al. Feb 2008 A1
20080043107 Coogan et al. Feb 2008 A1
20080048861 Naidoo et al. Feb 2008 A1
20080048975 Leibow Feb 2008 A1
20080052348 Adler et al. Feb 2008 A1
20080056261 Osborn et al. Mar 2008 A1
20080059533 Krikorian Mar 2008 A1
20080059622 Hite et al. Mar 2008 A1
20080065681 Fontijn et al. Mar 2008 A1
20080065685 Frank Mar 2008 A1
20080072244 Eker et al. Mar 2008 A1
20080074258 Bennett et al. Mar 2008 A1
20080074993 Vainola Mar 2008 A1
20080082186 Hood et al. Apr 2008 A1
20080084294 Zhiying et al. Apr 2008 A1
20080084296 Kutzik et al. Apr 2008 A1
20080086564 Putman et al. Apr 2008 A1
20080091793 Diroo et al. Apr 2008 A1
20080102845 Zhao May 2008 A1
20080103608 Gough May 2008 A1
20080104215 Excoffier et al. May 2008 A1
20080104516 Lee May 2008 A1
20080109302 Salokannel et al. May 2008 A1
20080109650 Shim et al. May 2008 A1
20080112340 Luebke May 2008 A1
20080112405 Cholas et al. May 2008 A1
20080117029 Dohrmann et al. May 2008 A1
20080117201 Martinez et al. May 2008 A1
20080117922 Cockrell et al. May 2008 A1
20080120405 Son et al. May 2008 A1
20080122575 Lavian et al. May 2008 A1
20080126535 Zhu et al. May 2008 A1
20080128444 Schininger et al. Jun 2008 A1
20080129484 Dahl et al. Jun 2008 A1
20080129821 Howarter et al. Jun 2008 A1
20080130949 Ivanov et al. Jun 2008 A1
20080133725 Shaouy Jun 2008 A1
20080134343 Pennington et al. Jun 2008 A1
20080137572 Park et al. Jun 2008 A1
20080140868 Kalayjian et al. Jun 2008 A1
20080141303 Walker et al. Jun 2008 A1
20080141341 Vinogradov et al. Jun 2008 A1
20080144884 Habibi Jun 2008 A1
20080147834 Quinn et al. Jun 2008 A1
20080155080 Marlow et al. Jun 2008 A1
20080155470 Khedouri et al. Jun 2008 A1
20080163355 Chu Jul 2008 A1
20080168404 Ording Jul 2008 A1
20080170511 Shorty et al. Jul 2008 A1
20080180240 Raji et al. Jul 2008 A1
20080181239 Wood et al. Jul 2008 A1
20080183483 Hart Jul 2008 A1
20080183842 Raji et al. Jul 2008 A1
20080189609 Larson et al. Aug 2008 A1
20080201468 Titus Aug 2008 A1
20080204190 Cohn et al. Aug 2008 A1
20080204219 Cohn et al. Aug 2008 A1
20080208399 Pham Aug 2008 A1
20080209505 Ghai et al. Aug 2008 A1
20080209506 Ghai et al. Aug 2008 A1
20080215450 Gates et al. Sep 2008 A1
20080215613 Grasso Sep 2008 A1
20080219239 Bell et al. Sep 2008 A1
20080221715 Krzyzanowski et al. Sep 2008 A1
20080235326 Parsi et al. Sep 2008 A1
20080235600 Harper et al. Sep 2008 A1
20080239075 Mehrotra et al. Oct 2008 A1
20080240372 Frenette Oct 2008 A1
20080240696 Kucharyson Oct 2008 A1
20080253391 Krits et al. Oct 2008 A1
20080259818 Balassanian Oct 2008 A1
20080261540 Rohani et al. Oct 2008 A1
20080266080 Leung et al. Oct 2008 A1
20080266257 Chiang Oct 2008 A1
20080271150 Boerger et al. Oct 2008 A1
20080284580 Babich et al. Nov 2008 A1
20080284587 Saigh et al. Nov 2008 A1
20080284592 Collins et al. Nov 2008 A1
20080288639 Ruppert et al. Nov 2008 A1
20080294588 Morris et al. Nov 2008 A1
20080297599 Donovan et al. Dec 2008 A1
20080303903 Bentley et al. Dec 2008 A1
20080313316 Hite et al. Dec 2008 A1
20080316024 Chantelou et al. Dec 2008 A1
20090003252 Salomone et al. Jan 2009 A1
20090003820 Law et al. Jan 2009 A1
20090007596 Goldstein et al. Jan 2009 A1
20090013210 McIntosh et al. Jan 2009 A1
20090019141 Bush et al. Jan 2009 A1
20090036142 Yan Feb 2009 A1
20090041467 Carleton et al. Feb 2009 A1
20090042649 Hsieh et al. Feb 2009 A1
20090046664 Aso Feb 2009 A1
20090049488 Stransky Feb 2009 A1
20090051769 Kuo et al. Feb 2009 A1
20090055760 Whatcott et al. Feb 2009 A1
20090063582 Anna et al. Mar 2009 A1
20090066534 Sivakkolundhu Mar 2009 A1
20090066788 Baum et al. Mar 2009 A1
20090066789 Baum et al. Mar 2009 A1
20090067395 Curtis et al. Mar 2009 A1
20090067441 Ansari et al. Mar 2009 A1
20090070436 Dawes et al. Mar 2009 A1
20090070473 Baum et al. Mar 2009 A1
20090070477 Baum et al. Mar 2009 A1
20090070681 Dawes et al. Mar 2009 A1
20090070682 Dawes et al. Mar 2009 A1
20090070692 Dawes et al. Mar 2009 A1
20090072988 Haywood Mar 2009 A1
20090074184 Baum et al. Mar 2009 A1
20090076211 Yang et al. Mar 2009 A1
20090076879 Sparks et al. Mar 2009 A1
20090077167 Baum et al. Mar 2009 A1
20090077622 Baum et al. Mar 2009 A1
20090077623 Baum et al. Mar 2009 A1
20090077624 Baum et al. Mar 2009 A1
20090079547 Oksanen et al. Mar 2009 A1
20090086660 Sood et al. Apr 2009 A1
20090092283 Whillock et al. Apr 2009 A1
20090100329 Espinoza Apr 2009 A1
20090100492 Hicks, III et al. Apr 2009 A1
20090113344 Nesse et al. Apr 2009 A1
20090119397 Neerdaels May 2009 A1
20090125708 Woodring et al. May 2009 A1
20090128365 Laskin May 2009 A1
20090134998 Baum et al. May 2009 A1
20090138600 Baum et al. May 2009 A1
20090138958 Baum et al. May 2009 A1
20090146846 Grossman Jun 2009 A1
20090158189 Itani Jun 2009 A1
20090158292 Rattner et al. Jun 2009 A1
20090161609 Bergstrom Jun 2009 A1
20090165114 Baum et al. Jun 2009 A1
20090172443 Rothman et al. Jul 2009 A1
20090177298 McFarland et al. Jul 2009 A1
20090177906 Paniagua, Jr. et al. Jul 2009 A1
20090187297 Kish et al. Jul 2009 A1
20090193373 Abbaspour et al. Jul 2009 A1
20090202250 Dizechi et al. Aug 2009 A1
20090204693 Andreev et al. Aug 2009 A1
20090221368 Yen et al. Sep 2009 A1
20090224875 Rabinowitz et al. Sep 2009 A1
20090228445 Gangal Sep 2009 A1
20090240353 Songkakul et al. Sep 2009 A1
20090240730 Wood Sep 2009 A1
20090240787 Denny Sep 2009 A1
20090240814 Brubacher et al. Sep 2009 A1
20090240946 Yeap et al. Sep 2009 A1
20090256708 Hsiao et al. Oct 2009 A1
20090259515 Belimpasakis et al. Oct 2009 A1
20090260052 Bathula et al. Oct 2009 A1
20090260430 Zamfes Oct 2009 A1
20090265042 Mollenkopf et al. Oct 2009 A1
20090265193 Collins et al. Oct 2009 A1
20090289787 Dawson et al. Nov 2009 A1
20090303100 Zemany Dec 2009 A1
20090307255 Park Dec 2009 A1
20090313693 Rogers Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090324010 Hou Dec 2009 A1
20090327483 Thompson et al. Dec 2009 A1
20100000791 Alberty Jan 2010 A1
20100001812 Kausch Jan 2010 A1
20100004949 O'Brien Jan 2010 A1
20100008274 Kneckt et al. Jan 2010 A1
20100013917 Hanna et al. Jan 2010 A1
20100023865 Fulker et al. Jan 2010 A1
20100026481 Oh et al. Feb 2010 A1
20100026487 Hershkovitz Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100030810 Marr Feb 2010 A1
20100039958 Ge et al. Feb 2010 A1
20100041380 Hewes et al. Feb 2010 A1
20100052612 Raji et al. Mar 2010 A1
20100066530 Cohn et al. Mar 2010 A1
20100067371 Gogic et al. Mar 2010 A1
20100074112 Derr et al. Mar 2010 A1
20100077111 Holmes et al. Mar 2010 A1
20100082744 Raji et al. Apr 2010 A1
20100095111 Gutt et al. Apr 2010 A1
20100095369 Gutt et al. Apr 2010 A1
20100100269 Ekhaguere et al. Apr 2010 A1
20100102951 Rutledge Apr 2010 A1
20100121521 Kiribayashi May 2010 A1
20100122091 Huang et al. May 2010 A1
20100138758 Mizumori et al. Jun 2010 A1
20100138764 Hatambeiki et al. Jun 2010 A1
20100141762 Siann et al. Jun 2010 A1
20100145485 Duchene et al. Jun 2010 A1
20100150170 Lee et al. Jun 2010 A1
20100153853 Dawes et al. Jun 2010 A1
20100159898 Krzyzanowski et al. Jun 2010 A1
20100159967 Pounds et al. Jun 2010 A1
20100164736 Byers et al. Jul 2010 A1
20100165897 Sood Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100177750 Essinger et al. Jul 2010 A1
20100185857 Neitzel et al. Jul 2010 A1
20100197219 Issa et al. Aug 2010 A1
20100204839 Behm et al. Aug 2010 A1
20100210240 Mahaffey et al. Aug 2010 A1
20100212012 Touboul et al. Aug 2010 A1
20100218104 Lewis Aug 2010 A1
20100238286 Boghossian et al. Sep 2010 A1
20100241711 Ansari et al. Sep 2010 A1
20100245107 Fulker et al. Sep 2010 A1
20100248681 Phills Sep 2010 A1
20100267390 Lin et al. Oct 2010 A1
20100274366 Fata et al. Oct 2010 A1
20100277300 Cohn et al. Nov 2010 A1
20100277302 Cohn et al. Nov 2010 A1
20100277315 Cohn et al. Nov 2010 A1
20100280635 Cohn et al. Nov 2010 A1
20100280637 Cohn et al. Nov 2010 A1
20100281135 Cohn et al. Nov 2010 A1
20100281161 Cohn et al. Nov 2010 A1
20100281312 Cohn et al. Nov 2010 A1
20100298024 Choi Nov 2010 A1
20100308990 Simon et al. Dec 2010 A1
20100321151 Matsuura et al. Dec 2010 A1
20100325107 Kenton et al. Dec 2010 A1
20100332164 Aisa et al. Dec 2010 A1
20110000521 Tachibana Jan 2011 A1
20110029875 Milch Feb 2011 A1
20110030056 Tokunaga Feb 2011 A1
20110037593 Foisy et al. Feb 2011 A1
20110040415 Nickerson et al. Feb 2011 A1
20110040877 Foisy Feb 2011 A1
20110051638 Jeon et al. Mar 2011 A1
20110068921 Shafer Mar 2011 A1
20110080267 Clare et al. Apr 2011 A1
20110093799 Hatambeiki et al. Apr 2011 A1
20110096678 Ketonen Apr 2011 A1
20110102588 Trundle et al. May 2011 A1
20110125333 Gray May 2011 A1
20110125846 Ham et al. May 2011 A1
20110128378 Raji Jun 2011 A1
20110156914 Sheharri et al. Jun 2011 A1
20110169637 Siegler et al. Jul 2011 A1
20110197327 McElroy et al. Aug 2011 A1
20110200052 Mungo et al. Aug 2011 A1
20110208359 Duchene et al. Aug 2011 A1
20110212706 Uusilehto Sep 2011 A1
20110218777 Chen et al. Sep 2011 A1
20110230160 Felgate Sep 2011 A1
20110234392 Cohn et al. Sep 2011 A1
20110257953 Li et al. Oct 2011 A1
20110283006 Ramamurthy Nov 2011 A1
20110286437 Austin et al. Nov 2011 A1
20110289517 Sather et al. Nov 2011 A1
20110302497 Garrett et al. Dec 2011 A1
20110309929 Myers Dec 2011 A1
20120014363 Hassan et al. Jan 2012 A1
20120016607 Cottrell et al. Jan 2012 A1
20120020060 Myer et al. Jan 2012 A1
20120023151 Bennett, III et al. Jan 2012 A1
20120030130 Smith et al. Feb 2012 A1
20120062026 Raji et al. Mar 2012 A1
20120062370 Feldstein et al. Mar 2012 A1
20120066608 Fulker Mar 2012 A1
20120066632 Fulker Mar 2012 A1
20120081842 Ewing et al. Apr 2012 A1
20120143383 Cooperrider et al. Jun 2012 A1
20120154126 Kitchen Jun 2012 A1
20120154138 Cohn et al. Jun 2012 A1
20120172027 Partheesh et al. Jul 2012 A1
20120182245 Hutton Jul 2012 A1
20120209951 Enns et al. Aug 2012 A1
20120214502 Qiang Aug 2012 A1
20120232788 Diao Sep 2012 A1
20120242788 Chuang et al. Sep 2012 A1
20120257061 Edwards et al. Oct 2012 A1
20120260184 Dawes et al. Oct 2012 A1
20120265892 Ma et al. Oct 2012 A1
20120269199 Chan et al. Oct 2012 A1
20120278877 Baum et al. Nov 2012 A1
20120280790 Gerhardt et al. Nov 2012 A1
20120296486 Marriam et al. Nov 2012 A1
20120307646 Xia et al. Dec 2012 A1
20120309354 Du Dec 2012 A1
20120314901 Hanson et al. Dec 2012 A1
20120315848 Smith et al. Dec 2012 A1
20120327242 Barley et al. Dec 2012 A1
20120331109 Wood Dec 2012 A1
20130007871 Meenan et al. Jan 2013 A1
20130038730 Peterson et al. Feb 2013 A1
20130038800 Yoo Feb 2013 A1
20130073746 Singh et al. Mar 2013 A1
20130082835 Shapiro et al. Apr 2013 A1
20130082836 Watts Apr 2013 A1
20130085620 Lu et al. Apr 2013 A1
20130103207 Ruff et al. Apr 2013 A1
20130115972 Ziskind et al. May 2013 A1
20130120134 Hicks, III May 2013 A1
20130136102 Macwan et al. May 2013 A1
20130154822 Kumar et al. Jun 2013 A1
20130155229 Thornton et al. Jun 2013 A1
20130163491 Singh et al. Jun 2013 A1
20130174239 Kim et al. Jul 2013 A1
20130183924 Saigh Jul 2013 A1
20130184874 Frader-Thompson et al. Jul 2013 A1
20130191755 Balog et al. Jul 2013 A1
20130218959 Sa et al. Aug 2013 A1
20130222133 Schultz et al. Aug 2013 A1
20130223279 Tinnakornsrisuphap et al. Aug 2013 A1
20130261821 Lu et al. Oct 2013 A1
20130266193 Tiwari et al. Oct 2013 A1
20130314542 Jackson Nov 2013 A1
20130318231 Gutt Nov 2013 A1
20130318443 Bachman et al. Nov 2013 A1
20130331109 Dhillon et al. Dec 2013 A1
20130344875 Chowdhury Dec 2013 A1
20140032034 Raptopoulos et al. Jan 2014 A1
20140035726 Schoner et al. Feb 2014 A1
20140053246 Huang et al. Feb 2014 A1
20140068486 Sellers et al. Mar 2014 A1
20140075464 McCrea Mar 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140112405 Jafarian et al. Apr 2014 A1
20140126425 Dawes May 2014 A1
20140136242 Weekes et al. May 2014 A1
20140136936 Patel et al. May 2014 A1
20140140575 Wolf May 2014 A1
20140143695 Fulker May 2014 A1
20140143851 Dawes May 2014 A1
20140143854 Lopez et al. May 2014 A1
20140146171 Brady et al. May 2014 A1
20140153695 Yanagisawa et al. Jun 2014 A1
20140167928 Burd Jun 2014 A1
20140172957 Dawes Jun 2014 A1
20140176797 Silva et al. Jun 2014 A1
20140180968 Song et al. Jun 2014 A1
20140201291 Russell Jul 2014 A1
20140218517 Kim et al. Aug 2014 A1
20140233951 Cook Aug 2014 A1
20140236325 Sasaki et al. Aug 2014 A1
20140266678 Shapiro et al. Sep 2014 A1
20140266736 Cretu-Petra Sep 2014 A1
20140278281 Vaynriber et al. Sep 2014 A1
20140282048 Shapiro et al. Sep 2014 A1
20140282934 Miasnik et al. Sep 2014 A1
20140289384 Kao et al. Sep 2014 A1
20140289388 Ghosh et al. Sep 2014 A1
20140293046 Ni Oct 2014 A1
20140316616 Kugelmass Oct 2014 A1
20140340216 Puskarich Nov 2014 A1
20140355588 Cho et al. Dec 2014 A1
20140359101 Wales Dec 2014 A1
20140359524 Sasaki et al. Dec 2014 A1
20140368331 Quain Dec 2014 A1
20140369584 Fan et al. Dec 2014 A1
20140372599 Gutt Dec 2014 A1
20140372811 Cohn et al. Dec 2014 A1
20150009325 Kardashov Jan 2015 A1
20150019714 Shaashua et al. Jan 2015 A1
20150054947 Dawes Feb 2015 A1
20150074206 Baldwin Mar 2015 A1
20150077553 Dawes Mar 2015 A1
20150082414 Dawes Mar 2015 A1
20150088982 Johnson et al. Mar 2015 A1
20150097949 Ure et al. Apr 2015 A1
20150097961 Ure et al. Apr 2015 A1
20150106721 Cha et al. Apr 2015 A1
20150116108 Fadell et al. Apr 2015 A1
20150142991 Zaloom May 2015 A1
20150161875 Cohn et al. Jun 2015 A1
20150205465 Robison et al. Jul 2015 A1
20150222517 McLaughlin et al. Aug 2015 A1
20150261427 Sasaki Sep 2015 A1
20150325106 Dawes et al. Nov 2015 A1
20150331662 Lambourne Nov 2015 A1
20150334087 Dawes Nov 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150365217 Scholten et al. Dec 2015 A1
20150373149 Lyons Dec 2015 A1
20160012715 Hazbun Jan 2016 A1
20160019763 Hazbun Jan 2016 A1
20160019778 Raji et al. Jan 2016 A1
20160023475 Bevier et al. Jan 2016 A1
20160027295 Raji et al. Jan 2016 A1
20160036944 Kitchen Feb 2016 A1
20160042637 Cahill Feb 2016 A1
20160062624 Sundermeyer et al. Mar 2016 A1
20160065413 Sundermeyer et al. Mar 2016 A1
20160065414 Sundermeyer et al. Mar 2016 A1
20160077935 Zheng et al. Mar 2016 A1
20160100348 Cohn et al. Apr 2016 A1
20160107749 Mucci Apr 2016 A1
20160116914 Mucci Apr 2016 A1
20160127641 Gove May 2016 A1
20160161277 Park et al. Jun 2016 A1
20160163185 Ramasubbu et al. Jun 2016 A1
20160164923 Dawes Jun 2016 A1
20160171853 Naidoo et al. Jun 2016 A1
20160180719 Wouhaybi et al. Jun 2016 A1
20160183073 Saito et al. Jun 2016 A1
20160189509 Malhotra et al. Jun 2016 A1
20160189527 Peterson et al. Jun 2016 A1
20160189549 Marcus Jun 2016 A1
20160191265 Cohn et al. Jun 2016 A1
20160191621 Oh et al. Jun 2016 A1
20160225240 Voddhi et al. Aug 2016 A1
20160226732 Kim et al. Aug 2016 A1
20160231916 Dawes Aug 2016 A1
20160232780 Cohn et al. Aug 2016 A1
20160234075 Sirpal et al. Aug 2016 A1
20160260135 Zomet et al. Sep 2016 A1
20160261932 Fadell et al. Sep 2016 A1
20160266579 Chen et al. Sep 2016 A1
20160267751 Fulker et al. Sep 2016 A1
20160269191 Cronin Sep 2016 A1
20160274759 Dawes Sep 2016 A1
20160364089 Blackman et al. Dec 2016 A1
20160371961 Narang et al. Dec 2016 A1
20160373453 Ruffner et al. Dec 2016 A1
20170004714 Rhee Jan 2017 A1
20170005818 Gould Jan 2017 A1
20170006107 Dawes et al. Jan 2017 A1
20170019644 K et al. Jan 2017 A1
20170039413 Nadler Feb 2017 A1
20170052513 Raji Feb 2017 A1
20170054571 Kitchen et al. Feb 2017 A1
20170054594 Dawes Feb 2017 A1
20170063967 Kitchen et al. Mar 2017 A1
20170063968 Kitchen et al. Mar 2017 A1
20170068419 Sundermeyer et al. Mar 2017 A1
20170070361 Sundermeyer et al. Mar 2017 A1
20170070563 Sundermeyer et al. Mar 2017 A1
20170078298 Vlaminck et al. Mar 2017 A1
20170103646 Naidoo et al. Apr 2017 A1
20170109999 Cohn et al. Apr 2017 A1
20170118037 Kitchen et al. Apr 2017 A1
20170154507 Dawes et al. Jun 2017 A1
20170155545 Baum et al. Jun 2017 A1
20170180198 Dawes Jun 2017 A1
20170180306 Gutt Jun 2017 A1
20170185277 Sundermeyer et al. Jun 2017 A1
20170185278 Sundermeyer et al. Jun 2017 A1
20170192402 Karp et al. Jul 2017 A1
20170227965 Decenzo et al. Aug 2017 A1
20170244573 Baum et al. Aug 2017 A1
20170255452 Barnes et al. Sep 2017 A1
20170257257 Dawes Sep 2017 A1
20170279629 Raji Sep 2017 A1
20170289360 Baum et al. Oct 2017 A1
20170301216 Cohn et al. Oct 2017 A1
20170302469 Cohn et al. Oct 2017 A1
20170310500 Dawes Oct 2017 A1
20170331781 Gutt Nov 2017 A1
20170337806 Cohn et al. Nov 2017 A1
20170353324 Baum et al. Dec 2017 A1
20180004377 Kitchen et al. Jan 2018 A1
20180019890 Dawes Jan 2018 A1
20180054774 Cohn et al. Feb 2018 A1
20180063248 Dawes et al. Mar 2018 A1
20180083831 Baum et al. Mar 2018 A1
20180092046 Egan et al. Mar 2018 A1
20180096568 Cohn et al. Apr 2018 A1
20180191720 Dawes Jul 2018 A1
20180191740 Decenzo et al. Jul 2018 A1
20180191741 Dawes et al. Jul 2018 A1
20180191742 Dawes Jul 2018 A1
20180191807 Dawes Jul 2018 A1
20180197387 Dawes Jul 2018 A1
20180198688 Dawes Jul 2018 A1
20180198755 Domangue et al. Jul 2018 A1
20180198756 Dawes Jul 2018 A1
20180198788 Helen et al. Jul 2018 A1
20180198802 Dawes Jul 2018 A1
20180198841 Chmielewski et al. Jul 2018 A1
20180278701 Diem Sep 2018 A1
Foreign Referenced Citations (135)
Number Date Country
2005223267 Dec 2010 AU
2005223267 Dec 2010 AU
2010297957 May 2012 AU
2011250886 Jan 2013 AU
2011250886 Jan 2013 AU
2011305163 May 2013 AU
2013284428 Feb 2015 AU
2010297957 Oct 2016 AU
2011305163 Dec 2016 AU
2017201365 Mar 2017 AU
2017201585 Mar 2017 AU
1008939 Oct 1996 BE
2203813 Jun 1996 CA
2174482 Oct 1997 CA
2346638 Apr 2000 CA
2389958 Mar 2003 CA
2878117 Jan 2014 CA
2559842 May 2014 CA
2559842 May 2014 CA
2992429 Dec 2016 CA
2976682 Feb 2018 CA
2976802 Feb 2018 CA
0295146 Dec 1988 EP
0308046 Mar 1989 EP
0591585 Apr 1994 EP
1117214 Jul 2001 EP
1119837 Aug 2001 EP
0978111 Nov 2001 EP
1881716 Jan 2008 EP
2112784 Oct 2009 EP
2868039 May 2015 EP
3031206 Jun 2016 EP
1738540 Oct 2017 EP
3285238 Feb 2018 EP
3308222 Apr 2018 EP
2584217 Jan 1987 FR
2661023 Oct 1991 FR
2793334 Nov 2000 FR
2222288 Feb 1990 GB
2273593 Jun 1994 GB
2286423 Aug 1995 GB
2291554 Jan 1996 GB
2319373 May 1998 GB
2320644 Jun 1998 GB
2324630 Oct 1998 GB
2325548 Nov 1998 GB
2335523 Sep 1999 GB
2349293 Oct 2000 GB
2370400 Jun 2002 GB
2428821 Feb 2007 GB
2442628 Apr 2008 GB
2442633 Apr 2008 GB
2442640 Apr 2008 GB
2428821 Jun 2008 GB
452015 Nov 2015 IN
042016 Jan 2016 IN
63-033088 Feb 1988 JP
05-167712 Jul 1993 JP
06-339183 Dec 1993 JP
8227491 Sep 1996 JP
10-004451 Jan 1998 JP
2000-006343 Jan 2000 JP
2000-023146 Jan 2000 JP
2000-278671 Oct 2000 JP
2001-006088 Jan 2001 JP
2001-006343 Jan 2001 JP
2001-069209 Mar 2001 JP
2002055895 Feb 2002 JP
2002-185629 Jun 2002 JP
2003085258 Mar 2003 JP
2003141659 May 2003 JP
2003-281647 Oct 2003 JP
2004192659 Jul 2004 JP
2007-529826 Oct 2007 JP
2010-140091 Jun 2010 JP
20060021605 Mar 2006 KR
340934 Sep 1998 TW
I239176 Sep 2005 TW
I480839 Apr 2015 TW
I480840 Apr 2015 TW
I509579 Nov 2015 TW
I517106 Jan 2016 TW
WO-8907855 Aug 1989 WO
8911187 Nov 1989 WO
WO-9403881 Feb 1994 WO
9513944 May 1995 WO
WO-9636301 Nov 1996 WO
9713230 Apr 1997 WO
9825243 Jun 1998 WO
9852343 Nov 1998 WO
WO-9849663 Nov 1998 WO
9859256 Dec 1998 WO
WO-9934339 Jul 1999 WO
0021053 Apr 2000 WO
0036812 Jun 2000 WO
0072598 Nov 2000 WO
0111586 Feb 2001 WO
WO-0152478 Jul 2001 WO
0171489 Sep 2001 WO
WO-0199078 Dec 2001 WO
0211444 Feb 2002 WO
WO-0221300 Mar 2002 WO
2002100083 Dec 2002 WO
WO-02097584 Dec 2002 WO
2003026305 Mar 2003 WO
WO-03040839 May 2003 WO
WO-2004004222 Jan 2004 WO
WO-2004098127 Nov 2004 WO
WO-2004107710 Dec 2004 WO
WO-2005091218 Sep 2005 WO
WO-2005091218 Jul 2006 WO
WO-2007038872 Apr 2007 WO
WO-2007124453 Nov 2007 WO
2008056320 May 2008 WO
WO-2009006670 Jan 2009 WO
2009023647 Feb 2009 WO
2009029590 Mar 2009 WO
2009029597 Mar 2009 WO
2009064795 May 2009 WO
WO-2009145747 Dec 2009 WO
2010019624 Feb 2010 WO
2010025468 Mar 2010 WO
2010127009 Nov 2010 WO
2010127194 Nov 2010 WO
2010127200 Nov 2010 WO
2010127203 Nov 2010 WO
2011038409 Mar 2011 WO
2011063354 May 2011 WO
2011143273 Nov 2011 WO
2012040653 Mar 2012 WO
2014004911 Jan 2014 WO
2015021469 Feb 2015 WO
2015134520 Sep 2015 WO
2016201033 Dec 2016 WO
201302668 Jun 2014 ZA
Non-Patent Literature Citations (313)
Entry
Alarm.com—Interactive Security Systems, Elders [retrieved on Nov. 4, 2003], 1 page.
Alarm.com—Interactive Security Systems, Frequently Asked Questions [retrieved on Nov. 4, 2003], 3 pages.
Alarm.com—Interactive Security Systems, Overview [retrieved on Nov. 4, 2003], 2 pages.
Alarm.com—Interactive Security Systems, Product Advantages [retrieved on Nov. 4, 2003], 3 pages.
Australian Patent App. No. 2010297957.
Australian Patent App. No. 2011250886.
Australian Patent App. No. 2011305163.
Canadian Patent App. No. 2559842.
Chinese Patent App. No. 201080053845.7.
Chinese Patent App. No. 201180034090.0.
Control Panel Standard—Features for False Alarm Reduction, The Security Industry Association, SIA 2009, pp. 1-48.
Co-pending U.S. Appl. No. 11/761,745, filed Jun. 12, 2007.
Co-pending U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Co-pending U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Co-pending U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Co-pending U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/197,946, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/198,039, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/198,051, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/198,060, filed May 28, 2008.
Co-pending U.S. Appl. No. 12/198,066, filed Aug. 25, 2008.
Co-pending U.S. Appl. No. 12/269,735, filed Nov. 12, 2008.
Co-pending U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Co-pending U.S. Appl. No. 12/568,718, filed Sep. 29, 2009.
Co-pending U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Co-pending U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Co-pending U.S. Appl. No. 12/718,385, filed Mar. 5, 2010.
Co-pending U.S. Appl. No. 12/732,879, filed Mar. 26, 2010.
Co-pending U.S. Appl. No. 12/750,470, filed Mar. 30, 2010.
Co-pending U.S. Appl. No. 12/770,253, filed Apr. 29, 2010.
Co-pending U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Co-pending U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/771,372, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Co-pending U.S. Appl. No. 12/892,303, filed Sep. 28, 2010.
Co-pending U.S. Appl. No. 12/892,801, filed Sep. 28, 2010.
Co-pending U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Co-pending U.S. Appl. No. 12/970,313, filed Dec. 16, 2010.
Co-pending U.S. Appl. No. 12/971,282, filed Dec. 17, 2010.
Co-pending U.S. Appl. No. 12/972,740, filed Dec. 20, 2010.
Co-pending U.S. Appl. No. 13/099,293, filed May 2, 2011.
Co-pending U.S. Appl. No. 13/104,932, filed May 10, 2011.
Co-pending U.S. Appl. No. 13/104,936, filed May 10, 2011.
Co-pending U.S. Appl. No. 13/153,807, filed Jun. 6, 2011.
Co-pending U.S. Appl. No. 13/244,008, filed Sep. 23, 2011.
Co-pending U.S. Appl. No. 13/311,365, filed Dec. 5, 2011.
Co-pending U.S. Appl. No. 13/334,998, filed Dec. 22, 2011.
Co-pending U.S. Appl. No. 13/335,279, filed Dec. 22, 2011.
Co-pending U.S. Appl. No. 13/400,477, filed Dec. 22, 2011.
Co-pending U.S. Appl. No. 13/406,264, filed Feb. 27, 2012.
Co-pending U.S. Appl. No. 13/486,276, filed Jun. 1, 2012.
Co-pending U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Co-pending U.S. Appl. No. 13/718,851, filed Dec. 18, 2012.
Co-pending U.S. Appl. No. 13/725,607, filed Dec. 21, 2012.
Co-pending U.S. Appl. No. 13/925,181, filed Jun. 24, 2013.
Co-pending U.S. Appl. No. 13/929,568, filed Jun. 27, 2013.
Co-pending U.S. Appl. No. 13/932,816, filed Jul. 1, 2013.
Co-pending U.S. Appl. No. 13/932,837, filed Jul. 1, 2013.
Co-pending U.S. Appl. No. 29/419,628, filed Apr. 30, 2012.
Co-pending U.S. Appl. No. 29/420,377, filed May 8, 2012.
European Patent App. No. 05725743.8.
European Patent App. No. 08797646.0.
European Patent App. No. 08828613.3.
European Patent App. No. 09807196.2.
European Patent App. No. 10819658.5.
European Patent App. No. 11781184.4.
European Patent App. No. 11827671.6.
Examination Report under Section 18(3) re for UK Patent Application No. GB0620362.4, dated Aug. 13, 2007.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jun. 4, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724248.0, dated Jan. 30, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0724760.4, dated Jan. 30, 2008.
Examination Report under Section 18(3) re for UK Patent Application No. GB0800040.8, dated Jan. 30, 2008.
Faultline, “AT&T Targets Video Home Security as Next Broadband Market,” The Register, Nov. 2, 2006, 2 pages.
Final Office Action dated Jun. 1, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Final Office Action dated May 9, 2013 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Final Office Action dated Jan. 10, 2011 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Final Office Action dated Jun. 10, 2011 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Final Office Action dated Jan. 13, 2011 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Final Office Action dated Oct. 17, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Final Office Action dated Mar. 21, 2013 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Final Office Action dated Jul. 23, 2013 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Final Office Action dated Feb. 26, 2013 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Final Office Action dated Jun. 29, 2012 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Final Office Action dated Dec. 31, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Final Office Action dated Oct. 31, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US05/08766,” dated May 23, 2006, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 2 pages.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US11/53136,” dated Jan. 5, 2012, 2 pages.
Form PCT/ISA/210, “PCT International Search Report of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 2 pages.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” 1 pg.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US05/08766,” dated May 23, 2006, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 1 page.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority for the Application No. PCT/US05/08766,” dated May 23, 2006, 5 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority,” 6 pgs.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74246,” dated Nov. 14, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 7 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/34858,” dated Oct. 3, 2011, 8 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 11 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US11/53136,” dated Jan. 5, 2012.
Indian Patent App. No. 10698/DELNP/2012.
Indian Patent App. No. 3687/DELNP/2012.
International Patent Application No. PCT/US2013/048324.
International Search Report for Application No. PCT/US13/48324, dated Jan. 14, 2014, 2 pages.
International Search Report for Application No. PCT/US2014/050548, dated Mar. 18, 2015, 4 pages.
Non-Final Office Action dated Apr. 4, 2013 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Non-Final Office Action dated Mar. 4, 2013 for U.S. Appl. No. 13/400,477, filed Feb. 20, 2012.
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Non-Final Office Action dated Feb. 7, 2012 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Non-Final Office Action dated Feb. 7, 2013 for U.S. Appl. No. 12/970,313, filed Dec. 16, 2010.
Non-Final Office Action dated Feb. 8, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Apr. 9, 2012 for U.S. Appl. No. 12/771,624, filed Apr. 30, 2010.
Non-Final Office Action dated Dec. 9, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated Aug. 10, 2012 for U.S. Appl. No. 12/771,471, filed Apr. 30, 2010.
Non-Final Office Action dated Apr. 12, 2012 for U.S. Appl. No. 12/770,365, filed Apr. 29, 2010.
Non-Final Office Action dated Jul. 12, 2012 for U.S. Appl. No. 12/691,992, filed Jan. 22, 2010.
Non-Final Office Action dated Oct. 12, 2012 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Sep. 12, 2012 for U.S. Appl. No. 12/952,080, filed Nov. 22, 2010.
Non-Final Office Action dated Apr. 13, 2010 for U.S. Appl. No. 11/761,745, filed Jun. 12, 2007.
Non-Final Office Action dated Jul. 13, 2010 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Nov. 14, 2012 for U.S. Appl. No. 13/531,757, filed Jun. 25, 2012.
Non-Final Office Action dated Sep. 14, 2010 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated Sep. 16, 2011 for U.S. Appl. No. 12/539,537, filed Aug. 11, 2009.
Non-Final Office Action dated Sep. 17, 2012 for U.S. Appl. No. 12/189,780, filed Aug. 11, 2008.
Non-Final Office Action dated Aug. 18, 2011 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Non-Final Office Action dated Feb. 18, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Jan. 18, 2012 for U.S. Appl. No. 12/771,071, filed Apr. 30, 2010.
Non-Final Office Action dated Jul. 21, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Dec. 22, 2010 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Non-Final Office Action dated Jul. 22, 2013 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Non-Final Office Action dated Jan. 26, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Nov. 26, 2010 for U.S. Appl. No. 12/197,958, filed Aug. 25, 2008.
Non-Final Office Action dated Jun. 27, 2013 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated Dec. 30, 2009 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Non-Final Office Action dated May 30, 2008 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Notice of Allowance dated May 14, 2013 for U.S. Appl. No. 12/637,671, filed Dec. 14, 2009.
Notice of Allowance dated Oct. 25, 2012 for U.S. Appl. No. 11/084,232, filed Mar. 16, 2005.
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011.
Requirement for Restriction/Election dated Oct. 24, 2012 for U.S. Appl. No. 12/750,470, filed Mar. 30, 2010.
Security for the Future, Introducing 5804BD—Advanced two-way wireless remote technology, Advertisement, ADEMCO Group, Syosset, NY, circa 1997.
South African Patent App. No. 2013/02668.
Supplemental European Search Report for Application No. EP05725743.8 dated Sep. 14, 2010, 2 pages.
Supplementary European Search Report for Application No. EP10819658, dated Mar. 10, 2015, 2 pages.
Supplementary European Search Report for Application No. EP11827671, dated Mar. 10, 2015, 2 pages.
Supplementary European Search Report for Application No. EP2191351, dated Jun. 23, 2014, 2 pages.
Supplementary Partial European Search Report for Application No. EP09807196, dated Nov. 17, 2014, 5 pages.
Taiwanese Patent App. No. 99113848.
Taiwanese Patent App. No. 99113853.
Taiwanese Patent App. No. 99113855.
Taiwanese Patent App. No. 99113856.
United Kingdom Patent No. 2428821.
United Kingdom Patent No. 2442628.
United Kingdom Patent No. 2442633.
United Kingdom Patent No. 2442640.
WLS906 Photoelectric Smoke Alarm, Data Sheet, DSC Security Products, Ontario, Canada, Jan. 1998.
X10—ActiveHome, Home Automation Made Easy [retrieved on Nov. 4, 2003], 3 pages.
US Patent Application filed on May 23, 2018, entitled “Networked Touchscreen With Integrated Interfaces”, U.S. Appl. No. 15/987,638.
US patent application filed on May 2, 2018, entitled “Automation System With Mobile Interface”, U.S. Appl. No. 15/969,514.
Valtchev, D., and I. Frankov. “Service gateway architecture for a smart home.” Communications Magazine, IEEE 40.4 (2002): 126-132.
Network Working Group, Request for Comments H.Schulzrinne Apr. 1998.
Gong, Li, A Software architecture for open service gateways, Internet Computing, IEEE 5.1, Jan.-Feb. 2001, 64-70.
EP examination report issued in EP08797646.0, dated May 17, 2017, 11 pages.
Diaz, et al., “Enhancing Residential Gateways: OSGi Service Composition,” IEEE Transactions on Consumer Electronics, IEEE Service Center, New York, NY US, vol. 53, No. 1, Feb. 1, 2007, pp. 87-95.
CorAccess Systems, Companion 6 User Guide, Jun. 17, 2002.
Condry, et al., “Open Service Gateway architecture overview”, Industrial Electronids Society, 1999, IECON 99 Proceedings. The 25th Annual Conference of the IEEE San Jose, CA, USA, Nov. 29-Dec. 3, 1999, Piscataway, NJ, USA, IEEE, US, vol. 2, Nov. 29, 1999, pp. 735-742.
6270 Touch Screen Keypad Notes, Honeywell, Sep. 2006.
“Modular programming”, The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000.
“Application” The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000.
J. David Eisenberg, SVG Essentials: Producing Scalable Vector Graphics with XML. O'Reilly & Associates, Inc., Sebastopol, CA 2002.
Gutierrez J.A., “On the Use of IEEE 802.15.4 to Enable Wireless Sensor Networks in Building Automation,” Personal, Indoor and Mobile Radio Communications (PIMRC), 15th IEEE International Symposium, 2004, vol. 3, pp. 1865-1869.
GTI Genex Technologies, Inc. OmniEye.(Trademark). Product Brochure, Sep. 14, 1999 (5 pages).
GrayElectronics, http://www.grayelectronics.com; webpage accessed on Jan. 10, 2018.
GrayElectronics, http://www.grayelectronics.com/default.htm.
GrayElectronics, “Digitizing TV cameras on TCP/IP Computer Networks,” http://www.grayelectronics.com/default.htm, printed on Oct. 12, 1999 (2 pages).
Genex Technologies, Genex OmniEye, www.av-iq.com/avcat/images/documents/pdfs/omnieye%20nightwatch_brochure.pdf; webpage accessed Jan. 10, 2018.
Genex OmniEye, http://www.genextech.com/prod01.htm.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority of the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 7 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 8 pages.
Form PCT/ISA/237, “PCT Written Opinion of the International Searching Authority for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 6 pages.
Form PCT/ISA/237, “PCT Written Opinion ofthe International Searching Authority for the Application No. PCT/US0S/08766,” dated May 23, 2006, 5 pages.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US11/35994,” dated Sep. 28, 2011, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/57674,” dated Mar. 2, 2011, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US10/50585,” dated Dec. 30, 2010, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/55559,” dated Nov. 12, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US09/53485,” dated Oct. 22, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/83254,” dated Jan. 14, 2009, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/74246” dated Nov. 14, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 1 page.
Form PCT/ISA/220, “PCT Notification of Transmittal of the International Search Report and the Written Opinion fo the International Searching Authority, or the Declaration for the Application No. PCT/US08/74260,” dated Nov. 13, 2008, 1 page.
Form PCT/ISA/210, “PCT International Search Report for the Application No. PCT/US08/72831,” dated Nov. 4, 2008, 2 pages.
Foreign communication from a related counterpart application—International Search Report, App No. PCT/US02/14450, dated Dec. 17, 2002, 6 pgs.
Foreign communication from a related counterpart application—International Preliminary Examination Report, App No. PCT/US02/14450, dated Mar. 2, 2004, 4 pgs.
Final Office Action dated Sep. 14, 2011 for U.S. Appl. No. 12/197,931, filed Aug. 25, 2008.
Final Office Action dated Jul. 12, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008.
Final Office Action dated Feb. 16, 2011 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Final Office Action dated Aug. 1, 2011 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Faultline, “AT&T Targets video home security as next broadband market”; Nov. 2, 2006; The Register; 2 Pages.
EP application filed on Aug. 16, 2017, entitled, “Automation System User Interface”, 17186497.8.
EP application filed on Jun. 9, 2016, entitled, “Data Model for Home Automation”, 16808247.7.
Elwahab et al.; Device, System and . . . Customer Premises Gateways; Sep. 27, 2001; WO 01/71489.
CA application filed on Aug. 16, 2017, entitled “Automation System User Interface”, 2976802.
CA application filed on Aug. 15, 2017, entitled “Automation System User Interface”, 2976682.
AU application filed on Mar. 8, 2017, entitled “Integrated Security Network with Security Alarm Signaling System”, 2017201585.
AU application filed on Feb. 28, 2017, entitled “Control System User Interface”, 2017201365.
Yanni Zhai et al., Design of Smart Home Remote Monitoring System Based on Embedded System, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, vol. 2, pp. 41-44.
Wireless, Battery-Powered Smoke Detectors, Brochure, SafeNight Technology, Inc. Roanoke, VA, 1995.
Wilkinson, S: “Logitech Harmony One Universal Remote” Ultimate AV magazine May 2008 (May 2008), XP002597782 Retrieved from the Internet : Original URL: http://www.ultimateavmag.com/remotecontrols/508logi) [retrieved on Aug. 23, 2010] the whole document; Updated URL: https://www.soundandvision.com/content/logitech-harmony-one-universal-remote, Retrieved from Internet on Jan. 11, 2018.
visitalk.com—communication with vision, http://www.visitalk.com.
Visitalk, Communication with Vision, http://www.visitalk.jimbo.com; website accessed Jan. 10, 2018.
US Patent Application filed Nov. 30, 2017, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/828,030.
US Patent Application filed Nov. 28, 2017, entitled “Forming a Security Network Including Integrated Security System Components”, U.S. Appl. No. 15/824,503.
US Patent Application filed Oct. 27, 2017, entitled “Security System With Networked Touchscreen”, U.S. Appl. No. 15/796,421.
US Patent Application filed Oct. 13, 2017, entitled “Notification of Event Subsequent to Communication Failure With Security System”, U.S. Appl. No. 15/783,858.
US Patent Application filed Aug. 9, 2016, entitled “Controller and Interface for Home Security, Monitoring and Automation Having Customizable Audio Alerts for SMA Events”, U.S. Appl. No. 15/232,135.
US Patent Application filed Aug. 8, 2016, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 15/231,273.
US Patent Application filed Jul. 28, 2016, entitled “Method and System for Automatically Providing Alternate Network Access for Telecommunications”, U.S. Appl. No. 15/222,416.
US Patent Application filed Jun. 1, 2012, entitled “Gateway Registry Methods and Systems”, U.S. Appl. No. 13/486,276.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,579.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 14/202,505.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,219.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,141.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,128.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,084.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/203,077.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,685.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,627.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,592.
US Patent Application filed Mar. 10, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/202,573.
US Patent Application filed Mar. 7, 2014, entitled “Security System Integrated With Social Media Platform”, U.S. Appl. No. 14/201,133.
US Patent Application filed Mar. 7, 2014, entitled “Integrated Security and Control System With Geofencing”, U.S. Appl. No. 14/201,189.
US Patent Application filed Mar. 7, 2014, entitled “Device Integration Framework”, U.S. Appl. No. 14/201,227.
US Patent Application filed Mar. 7, 2014, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 14/200,921.
US Patent Application filed Mar. 7, 2014, entitled “Activation of Gateway Device”, U.S. Appl. No. 14/201,162.
US Patent Application filed Mar. 2, 2017, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 15/447,982.
Topalis E., et al., “A Generic Network Management Architecture Targeted to Support Home Automation Networks and Home Internet Connectivity, Consumer Electronics, IEEE Transactions,” 2000, vol. 46 (1), pp. 44-51.
Supplementary Non-Final Office Action dated Oct. 28, 2010 for U.S. Appl. No. 12/630,092, filed Dec. 3, 2009.
Shang, Wei-lai, Study on Application of Embedded Intelligent Area System, Journal of Anyang Institute of Technology, vol. 9, No. 6, pp. 56-57 and 65.
Security for the Future, Introducing 5804B0—Advanced two-way wireless remote technology, Advertisement, ADEMCO Group, Syosset, NY, circa 1997.
Requirement for Restriction/Election dated Jan. 22, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011.
PCT Application filed on Nov. 17, 2016, entitled “Mobile Premises Automation Platform”, PCT/US2016/062519.
PCT Application filed on Oct. 13, 2016, entitled “Coordinated Control of Connected Devices in a Premise”, PCT/US2016/056842.
PCT Application filed on Aug. 17, 2016, entitled “Automation System User Interface”, PCT/US2016/047262.
PCT Application filed on Aug. 16, 2016, entitled “Automation System User Interface”, PCT/US2016/047172.
PCT Application filed on Jul. 7, 2016, entitled “Automation System User Interface with Three-Dimensional Display”, PCT/US2016/041353.
PCT Application filed on Jun. 30, 2016, entitled “Integrated Cloud System with Lightweight Gateway for Premises Automation”, PCT/US2016/040451.
PCT Application filed on Jun. 29, 2016, entitled “Integrated Cloud System for Premises Automation”, PCT/US2016/040046.
PCT Application filed on Jun. 9, 2016, entitled “Virtual Device Systems and Methods”, PCT/US2016/036674.
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,936, filed May 10, 2011.
Non-Final Office Action dated May 23, 2013 for U.S. Appl. No. 13/104,932, filed May 10, 2011.
Non-Final Office Action dated Jan. 5, 2010 for U.S. Appl. No. 12/019,554, filed Jan. 24, 2008.
Non-Final Office Action dated Feb. 21, 2013 for U.S. Appl. No. 12/771,372, filed Apr. 30, 2010.
Non-Final Office Action dated Oct. 11, 2012 for U.S. Appl. No. 12/019,568, filed Jan. 24, 2008.
Non-Final Office Action dated May 5, 2010 for U.S. Appl. No. 12/189,785, filed Aug. 11, 2008.
Lagotek Wireless Home Automation System, May 2006 [retrieved on Aug. 22, 2012].
Windows, Newton's Telecom Dictionary, 21st Edition, Mar. 2005, 937-938.
US Patent Application filed Dec. 27, 2018, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/233,913.
US Patent Application filed Dec. 14, 2018, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 16/221,299.
US Patent Application filed Nov. 29, 2018, entitled “Premise Management Systems and Methods”, U.S. Appl. No. 16/204,442.
US Patent Application filed Oct. 18, 2018, entitled “Generating Risk Profile Using Data of Home Monitoring and Security System”, U.S. Appl. No. 16/164,114.
US Patent Application filed Oct. 10, 2018, entitled “Method and System for Providing Alternate Network Access”, U.S. Appl. No. 16/156,448.
US Patent Application filed Oct. 3, 2018, entitled “Activation of a Home Automation Controller”, U.S. Appl. No. 16/150,973.
US Patent Application filed Oct. 1, 2018, entitled “User Interface in a Premises Network”, U.S. Appl. No. 16/148,572.
US Patent Application filed Oct. 1, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/148,411.
US Patent Application filed Oct. 1, 2018, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 16/148,387.
US Patent Application filed Sep. 11, 2018, entitled “Premises Management Networking”, U.S. Appl. No. 16/128,089.
US Patent Application filed Sep. 28, 2018, entitled “Forming a Security Network Including Integrated Security System Components and Network Devices”, U.S. Appl. No. 16/147,044.
US Patent Application filed Sep. 28, 2018, entitled “Control System User Interface”, U.S. Appl. No. 16/146,715.
US Patent Application filed Sep. 17, 2018, entitled “Integrated Security System With Parallel Processing Architecture”, U.S. Appl. No. 16/133,135.
US Patent Application filed Sep. 6, 2018, entitled “Takeover of Security Network”, U.S. Appl. No. 16/123,695.
US Patent Application filed Aug. 21, 2018, entitled “Premises System Management Using Status Signal”, U.S. Appl. No. 16/107,568.
US Patent Application filed Aug. 9, 2018, entitled “Method and System for Processing Security Event Data”, U.S. Appl. No. 16/059,833.
US Patent Application filed Jul. 20, 2018, entitled “Cross-Client Sensor User Interface in an Integrated Security Network”, U.S. Appl. No. 16/041,291.
US Patent Application filed Jul. 12, 2018, entitled “Integrated Security System with Parallel Processing Architecture”, U.S. Appl. No. 16/034,132.
US Patent Application filed Jul. 3, 2018, entitled “Wifi-To-Serial Encapsulation in Systems”, U.S. Appl. No. 16/026,703.
US Patent Application filed Jun. 27, 2018, entitled “Activation of Gateway Device”, U.S. Appl. No. 16/020,499.
US Patent Application filed Jan. 28, 2019, entitled “Automation System User Interface With Three-Dimensional Display”, U.S. Appl. No. 16/258,858.
US Patent Application filed Jan. 25, 2019, entitled Communication Protocols in Integrated Systems, U.S. Appl. No. 16/257,706.
US Patent Application filed Jan. 22, 2019, entitled “Premises System Automation”, U.S. Appl. No. 16/254,480.
US Patent Application filed Jan. 22, 2019, entitled “Data Model for Home Automation”, U.S. Appl. No. 16/254,535.
US Patent Application filed Jan. 3, 2019, entitled “Methods and Systems for Data Communication”, U.S. Appl. No. 16/239,114.
“Dragging” The Authoritative Dictionary of IEEE Standard Terms. 7th ed. 2000, p. 337.
US Patent Application filed Mar. 18, 2019, entitled “Server-Based Notification of Alarm Event Subsequent to Communication Failure With Armed Security System”, U.S. Appl. No. 16/356,742.
US Patent Application filed Apr. 23, 2019, entitled “Control System User Interface”, U.S. Appl. No. 16/391,625.
US Patent Application filed Apr. 26, 2019, entitled “Custom Content for Premises Management”, U.S. Appl. No. 16/396,368.
US Patent Application filed Jul. 2, 2019, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/460,712.
US Patent Application filed Jul. 26, 2019, entitled “Device Integration Framework”, U.S. Appl. No. 16/522,949.
US Patent Application filed Aug. 23, 2019, entitled “Premises System Management Using Status Signal” U.S. Appl. No. 16/549,837.
US Patent Application filed Jan. 23, 2020, entitled “Forming a Security Network Including Integrated Security System Components and Network Dev”, U.S. Appl. No. 16/750,976.
US Patent Application filed Feb. 6, 2020, entitled “Activation of Gateway Device”, U.S. Appl. No. 16/784,159.
US Patent Application filed Mar. 2, 2020, entitled “Communication Protocols in Integrated Systems”, U.S. Appl. No. 16/807,100.
US Patent Application filed Mar. 2, 2020, entitled “Coordinated Control of Connected Devices in a Premise”, U.S. Appl. No. 16/807,028.
US Patent Application filed Mar. 11, 2020, entitled “Management of a Security System at a Premises”, U.S. Appl. No. 16/816,134.
US Patent Application filed Mar. 20, 2020, entitled “Security, Monitoring and Automation Controller Access and Use of Legacy Security Control Panel Information”, U.S. Appl. No. 16/825,099.
US Patent Application filed Sep. 27, 2019, entitled “Control System User Interface”, U.S. Appl. No. 16/585,481.
US Patent Application filed Oct. 18, 2019, entitled “WiFi-To-Serial Encapsulation in Systems”, U.S. Appl. No. 16/656,874.
US Patent Application filed Nov. 19, 2019, entitled “Integrated Cloud System With Lightweight Gateway for Premises Automation”, U.S. Appl. No. 16/688,717.
US Patent Application filed Nov. 26, 2019, entitled “Communication Protocols Over Internet Protocol (IP) Networks”, U.S. Appl. No. 16/696,657.
US Patent Application filed Dec. 27, 2019, entitled “Premises Management Systems”, U.S. Appl. No. 16/728,608.
Related Publications (1)
Number Date Country
20110234392 A1 Sep 2011 US
Continuations (2)
Number Date Country
Parent 12620047 Nov 2009 US
Child 13153807 US
Parent 11711972 Feb 2007 US
Child 12620047 US