The work leading to this invention has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [242699].
The present invention, in some embodiments thereof, relates to biosensing and, more particularly, but not exclusively, to a method and system for continuous biosensing.
Prescription drugs and cosmetics are used for extensive periods of time, and their development requires demonstration of long-term safety. Major causes of damage include hepatotoxicity, cardiotoxicity, and neurotoxicity, and nephrotoxicity.
Microfluidic liver-on-chip devices offer an alternative to animal experiments as they can mimic the native microenvironment and support long-term function under continuous perfusion. One advantage of microfluidics is the ability to expose cells to a stable stimulation over time, eliminating the rapid loss of signal due to non-specific adsorption and metabolism that characterizes both static in vitro assays and in vivo. Stable microfluidic stimulation permits the acquisition of reliable information about the effect of a specific dose, rather than the response of cells to a rapidly changing drug concentration.
U.S. Pat. No. 9,170,253, the contents of which are hereby incorporated by reference, discloses an apparatus for determining a cell constituent. The apparatus has moveable barriers that reduce a volume of media in contact with samples in a multiwell plate, and sensors disposed on respective surfaces of the barriers in sensing contact with the media in the wells. The barriers and sensors are inserted into respective wells of the multiwell plate. When the barriers and sensors are moved into the wells, the volume of the media about the cells in the wells is reduced, thus defining a reduced-volume sample chamber in contact with the sample. The constituents of the cells are analyzed using the sensors within the reduced volume. Thereafter, the barriers are moved to retain the original volume.
Additional background art includes U.S. Pat. Nos. 9,170,255 and 8,202,702, and U.S. Published Application No. 20140170671 and Prill et al., 2015 Arch Toxicol, 10.1007/s00204-015-1537-2.
According to an aspect of the present invention there is provided a method of analyzing cells, the method comprising:
(a) providing a plate containing non-proliferating cells;
(b) continuously perfusing said non-proliferating cells with a perfusion medium in a single pass, the perfusion medium comprising a level of lipids that ensures that fatty acid uptake is at least 50 fold lower than glucose uptake;
(c) analyzing the amount of oxygen uptake in the non-proliferating cells using an oxygen sensor over a period of time; and
(d) analyzing the amount of glucose uptake in the non-proliferating cells using a glucose sensor over the period of time and/or analyzing the amount of lactate produced in the non-proliferating cells using a lactate sensor over the period of time, thereby analyzing the cells.
According to an aspect of the present invention there is provided a method of determining the effect of an agent on cells, comprising:
(a) continuously perfusing non-proliferating cells with a perfusion medium in a single pass, wherein the perfusion medium is selected such that at least one metabolic pathway of the non-proliferating cells is eliminated, the metabolic pathway being selected from the group consisting of the lipid oxidation, glycolysis, glutaminolysis, urea cycle, lipogenesis, cholesterol synthesis, mevalonate pathway, and the anaplerotic reactions replenishing the TCA cycle, wherein the perfusion medium is supplemented with the agent;
(b) analyzing the amount of oxygen uptake in the cells using an oxygen sensor; and optionally
(c) analyzing the amount of glucose uptake in the cells using a glucose sensor; and/or
(d) analyzing the amount of lactate produced in the cells using a lactate sensor, thereby determining the effect of the agent on the cells.
According to an aspect of the present invention there is provided a microfluidics device for carrying out the method of any one of claims 1-60.
According to an aspect of the present invention there is provided a method of analyzing cells, comprising:
(a) continuously perfusing non-proliferating cells with a perfusion medium in a single pass;
(b) analyzing the amount of oxygen, glucose and glutamine uptake in the cells for a period of time; and
(c) analyzing the amount of lactate produced in the cells for the period of time, thereby analyzing the cells.
According to an aspect of the present invention there is provided a method of analyzing cells, comprising:
(a) continuously perfusing non-proliferating cells with a perfusion medium in a single pass, wherein the perfusion medium is selected such that at least one metabolic pathway of the non-proliferating cells is eliminated, the metabolic pathway being selected from the group consisting of the lipid oxidation, glycolysis, glutaminolysis, urea cycle, lipogenesis, cholesterol synthesis, mevalonate pathway and the anaplerotic reactions replenishing the TCA cycle;
(b) analyzing the amount of oxygen uptake in the cells using an oxygen sensor for a period of time; and
(c) analyzing the amount of glucose uptake in the cells using a glucose sensor for the period of time and/or analyzing the amount of lactate produced in the cells using a lactate sensor for the period of time, thereby analyzing the cells.
According to embodiments of the present invention, the analyzing of steps (c) and (d) are effected at a time when the non-proliferating cells have reached a steady-state.
According to embodiments of the present invention, each of the oxygen uptake, the glucose uptake and the lactate production is analyzed.
According to embodiments of the present invention, the method further comprises determining from:
(i) the amount of oxygen uptake, and
(ii) the glucose uptake and/or the lactate production,
a metabolic flux of the non-proliferating cells.
According to embodiments of the present invention, the oxygen sensor comprises oxygen sensing particles.
According to embodiments of the present invention, the oxygen sensing particles are embedded in the cells.
According to embodiments of the present invention, the non-proliferating cells comprise a cell selected from the group consisting of bacteria, fungus, yeast, a prokaryotic cell, a eukaryotic cell, an animal cell, a human cell and an immortal cell.
According to embodiments of the present invention, the period of time is at least six hours.
According to embodiments of the present invention, the analyzing of steps (c) and (d) is effected continuously.
According to embodiments of the present invention, the non-proliferating cells are comprised in aggregates.
According to embodiments of the present invention, the analyzing the amount of glucose uptake is effected amperometrically.
According to embodiments of the present invention, the analyzing the amount of lactate produced is effected amperometrically.
According to embodiments of the present invention, the cells comprise primary cells.
According to embodiments of the present invention, the analyzing cells is used to assess a parameter selected from the group consisting of cell viability, cell number, cell growth rate, response to at least one of a drug, a toxin, and a chemical.
According to embodiments of the present invention, the analyzing cells is used to determine an onset time of mitochondrial damage.
According to embodiments of the present invention, the perfusion medium comprises a cellular respiration inhibitor.
According to embodiments of the present invention, the cellular respiration inhibitor comprises Rotenone.
According to embodiments of the present invention, the perfusion medium comprises a proliferation inhibitor.
According to embodiments of the present invention, the perfusion medium comprises an agent which inhibits at least one component of a metabolic pathway of the cells.
According to embodiments of the present invention, the perfusion medium comprises a glycolysis inhibitor, a mitochondrial pyruvate carrier (MPC) inhibitor, a glutaminase GLS 1 inhibitor and/or a Carnitine Palmitoyltransferase 1A (CPT1A) inhibitor.
According to embodiments of the present invention, the perfusion medium comprises glucose.
According to embodiments of the present invention, the perfusion medium comprises at least one of a drug, a drug candidate, a toxin and a nutrient and wherein the method comprising assessing change of oxygen uptake, change of glucose uptake and change of lactate production in the presence of the at least one of a drug, a drug candidate, a toxin and a nutrient.
According to embodiments of the present invention, the analyzing cells is used to determine at least one mitochondrial function selected from the group consisting of basal respiration, ATP-linked respiration, H+ leak, maximal respiration and spare respiratory capacity.
According to embodiments of the present invention, the analyzing cells is used to determine non-mitochondrial respiration of the cells.
According to embodiments of the present invention, the analyzing cells is used to determine at least one parameter indicative of glycolytic flux of the cells.
According to embodiments of the present invention, the parameter indicative of glycolytic flux is selected from the group consisting of glycolytic capacity, glycolytic reserve, and non-glycolytic acidification.
According to embodiments of the present invention, the cells are attached to a solid surface.
According to embodiments of the present invention, the perfusion medium is deficient in at least one nutrient type.
According to embodiments of the present invention, the at least one nutrient type is selected from the group consisting of a fatty acid, triglyceride, cholesterol, monosaccharide, pyruvate, glycerol and an amino acid.
According to embodiments of the present invention, the non-proliferating cells are healthy cells.
According to embodiments of the present invention, the non-proliferating cells are diseased cells.
According to embodiments of the present invention, the diseased cells comprise cancer cells.
According to embodiments of the present invention, the non-proliferating cells comprise primary cells.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data.
Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
FIGS. 3C1 and 3C2 show HepG2/C3A organoid after overnight incubation with embedded oxygensensing micro-probes (orange).
FIGS. 3D1 and 3D2 show results of numerical simulation of the pressure drop and variations in oxygen concentration throughout the bioreactor.
FIGS. 3E1 and 3E2 show cross-section of oxygen gradient developing due to consumption within the well (from top to bottom), mimicking the in vivo microenvironment.
FIGS. 5B1 and 5B2 show amperometric calibration curves of glucose (FIG. 5B1) and lactate (FIG. 5B2) sensors in the PMMA housing.
The present invention, in some embodiments thereof, relates to biosensing and, more particularly, but not exclusively, to a method and system for continuous biosensing.
Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. The present inventors have now devised a microfluidic device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Some embodiments of the present invention provide a method and a system for biosensing. For example, the method system of the present embodiments can be used for long-term monitoring of one or more physiological parameters of a cell, including but not limited to mitochondrial respiration.
Some embodiments of the present invention employ continuous single-pass perfusion. This is unlike the bioanalyzer described above in connection with
The term “continuous single-pass perfusion,” as used herein, refers to a process in which fresh medium is fed into a measurement chamber at the same rate as spent medium is removed from the chamber, wherein the feeding and removing are generally simultaneous, and wherein perfusion begins before, continues while, and ends after, the sensing of signals from the cells in the chamber.
Preferably, the methods of the present invention are carried out in a microfluidics system.
The phrase “single-pass” as used herein, refers to the single direction of the flow (i.e. non-circulating).
The advantage of employing continuous single-pass perfusion according to some embodiments of the present invention is that it allows the cells to be stabilized under steady state conditions without ischemia. Another advantage is that it provides substantially constant (with deviation of less than 10%) drug concentration, since non-specific absorption sites are saturated and the cell metabolism reaches a steady state. This is unlike the bioanalyzer described above in connection with
In some embodiments, the system and method of the present invention employ microparticles or nanoparticles embedded between the cells. Preferably, the microprobes or nanoparticles are lifetime-based luminescence-quenching (LBLQ) microparticles or nanoparticles. The microparticles or nanoparticles are optionally and preferably used for measuring oxygen by determining their phase modulation. Thus, the microparticles or nanoparticles serve as an oxygen sensor. The advantage of using microparticles or nanoparticles as an oxygen sensor is that such oxygen measurement can be done without calibrating the number of cells and there is no need to operate in tiny volumes.
Microparticles and nanoparticles useful for use as an oxygen sensor suitable for the present embodiments are found in U.S. Published Application No. 20150268224, published on Sep. 24, 2015, the contents of which are hereby incorporated by reference.
As well as measuring the amount of oxygen in the system outflow (so as to determine oxygen consumption of the cells), the present inventors envisage measuring lactate in the system outflow (so as to determine lactate production of the cells) and/or measuring glucose in the system outflow (so as to determine glucose usage of the cells).
In another embodiment of the present invention the system further comprises a glutamine sensor.
In some embodiments of the present invention glucose and lactate are measured directly. This is contrary to the bioanalyzer described above in connection with
In some embodiments of the present invention the oxygen measurement is independent of optical focus, thereby permitting rapid high-throughput screening of hundreds of wells with little delay for focus acquisition and relatively simple robotic setups.
In some embodiments of the present invention the oxygen sensor is insensitive to amplitude. The advantage of these embodiments is that processes such as cell migration, aggregation, and necrosis have little or no effect on measurement stability.
According to some embodiments, a plate containing the cells to be analyzed and microparticles or nanoparticles embedded between the cells is placed in an apparatus suitable for biosensing. The apparatus can be of any type suitable for biosensing. For example, the apparatus can be similar to the apparatus described in U.S. Pat. No. 9,170,253 supra, the contents of which are hereby incorporated by reference. In these embodiments, the apparatus is preferably operated without bringing the barriers into contact with the plate or medium containing the cells, and without reducing the volume in which the measurement is performed.
A perfusion element is used for generating, in a controlled manner, a flow of a perfusion medium onto the plate, wherein the flow is controlled so as to ensure continuous single-pass perfusion, as defined hereinabove. During the flow, signals indicative of one or more physiological parameters are collected from the plate. The signals can be recorded on a computer readable medium, preferably a non-transitory computer readable medium. Alternatively or additionally, the signals can be analyzed to determine one or more physiological parameters that are characteristic to the cells on the plate.
Suitable media for use in the system of the present embodiments and suitable measuring protocols are found in U.S. Pat. No. 9,170,253 supra. When these protocols are employed, the barriers are preferably not brought into contact with the plate or medium containing the cells, and the volume in which the measurement is performed is preferably not reduced.
Typically, but not necessarily, the plate has a plurality of microwells, wherein the cells are within the microwells. Alternatively, but also not necessarily, the plate can have one or more microchannels wherein the cells are within the microchannels.
The cells are typically immobilized on a solid surface of the microfluidics device. Any method of immobilization is conceived by the present inventors as long as the cells remain viable.
According to a particular embodiment, the cells are attached (either directly, or non-directly, e.g. via a gel or other such element) to the outer surface of a solid surface of the microfluidics device (e.g. plate, channel or well).
Optionally and preferably the microchannels are aligned such that the direction of flow of the perfusion medium has a vector component that is orthogonal to the microchannels. In some embodiments, each microwell or microchannel has a diameter of 75 to 3000 micrometers. In another embodiment, each microwell or microchannel has a height of 25 to 1000 micrometers. In some embodiments, the plate is flat-faced. The cells may be introduced by perfusion into a closed plate, or they can be directly seeded on an open plate.
The system of the present embodiments can employ more than one type of sensors. In some embodiments of the present invention the system comprises an oxygen sensor, in some embodiments of the present invention the system comprises a glucose sensor, and in some embodiments of the present invention the system comprises a lactate sensor. Any combination of two of these three types of sensors is contemplated, and a system including all three types of sensors is also contemplated.
At least one the three sensors may be independently electrochemically operated. Alternatively each of the sensors may be composed of micro- or nanoparticles typically fluorescent or phosphorescent. In one embodiment the oxygen sensor is made of micro- or nanoparticles and the lactate and/or glucose sensors are electrochemical—e.g. allowing for amperometric measurement of lactate and/or glucose. In another embodiment all three types of sensors are micro—nanoparticles. In some embodiments, one or more of the oxygen, lactate and glucose sensors are integral to the system.
In one embodiment pH of the outflow is measured as a surrogate for lactate measurement.
Sensors which are of fluorescent or phosphorescent particles (whether oxygen, lactate or glucose) may be operated according to the principle of a detected change of frequency, phase and/or amplitude of signals (e.g., optical signals) received from the particles.
The system of the present embodiments may further comprise at least one of: an electronic control circuit for signal modulation and read-out, a light source (e.g., LED) for excitation (e.g., of the oxygen sensing particles), an optical filter set (e.g., 531/40, 555, 607/70 nm) and a detector unit containing a photomultiplier (PMT). One skilled in the art would appreciate that the sensing particles can be excited by various wave lengths depending on the specific sensing particles used. Accordingly, emission may be read at various wave lengths as well. In a particular embodiment wherein the oxygen sensing particle is a ruthenium-phenanthroline-based particle, the particles are excited by 532 nm and a 605 nm emission is read, so as to measure phosphorescence decay, substantially in real time.
The system of the present embodiments optionally and preferably comprises microfluidic switchboard which is controlled by the electronic control circuit. The microfluidic switchboard preferably comprises a plurality of flow channels, a plurality of micromechanical valves (for example, pressure-controlled valves), and a plurality of independently addressed control channels, for automating washing, calibration and/or collection of electrical signals from the electrochemical sensors (in embodiments in which such sensors are employed). The switchboard can also introduce samples, gas (e.g., air), washing buffer and/or calibration buffer into the electrochemical sensors, in response to control signals received from the electronic circuit according to a predetermined automated protocol.
Preferably, the electrical signals from the electrochemical sensors and the optical signals from the particles are collected over the same time period.
In a representative example, which is not to be considered as limiting, the system comprises particles as the oxygen sensor, and electrochemical cells as the glucose and lactate sensors, in which case the electronic control circuit preferably ensures that oxygen uptake rate is monitored optically, and glucose uptake and lactate production are monitored electrically over the same time period.
Glutamine, like glucose and lactate, can also be measured electrochemically. For example, glutaminase and glutamate oxidase enzymes may be immobilized in a membrane. Glutamine is transformed to glutamic acid by glutaminase, and the glutamic acid is transformed by glutamate oxidase to form a detectable reaction product using amperometric or potentiometric sensor. Sensors can be purchased from Innovative Sensor Technologies (Las Vegas, Nev.). Other methods of measuring glutamine production are described in WO1988010424 A1, U.S. Pat. No. 4,780,191.
Usually, glutaminase and glutamate oxidase enzymes are immobilized in a membrane. Glutamine is transformed to glutamic acid by glutaminase, and the glutamic acid is transformed by glutamate oxidase to form a detectable reaction product using amperometric or potentiometric sensor. Sensors can be purchased from Innovative Sensor Technologies (Las Vegas, Nev.).
The electronic control circuit optionally and preferably signals the microfluidic switchboard to repeatedly execute a predetermined sequence of operations over a sufficiently long time-period (e.g., at least a day, or at least a week, or at least two weeks, or at least four weeks). The operations can include at least one operation, more preferably at least two operations, more preferably at least three operations, more preferably each of the operations selected from the group consisting of sampling of outflow from the wells or channels of the plate, washing, recalibrating the electrochemical sensors and air purging. Preferably, air purging is executed before and after (e.g., a few seconds before and a few seconds after) any operation in which liquid (e.g., washing buffer, sample medium, calibration buffer) is delivered to the electrochemical sensors. In a representative example, which is not to be considered as limiting, the following sequence of operations is executed: washing, air purging, outflow sampling, air purging, washing, air purging, calibration, air purging, washing.
While liquid perfusion medium is delivered to the plate, the constituent in the medium may be analyzed to determine any changes, and the measurements can be repeated with or without changing the contents of the delivered medium. Any number of constituents may be analyzed, including, without limitation dissolved gasses, ions, proteins, metabolic substrates, salts, and minerals. These constituents may be consumed by the cells (such as O2), or may be produced by the cells either as a byproduct (such as CO2 and NH3) or as a secreted factor (such as insulin, cytokines, chemokines, hormones, or antibodies). Ions such as H+, Na+, K+, and Ca++ secreted or extracted by cells in various cellular metabolism processes may also be analyzed. Substrates either consumed or produced by cells such as glucose, fatty acid, amino acids, glutamine, glycogen, and pyruvate may be analyzed. Specialized media may be used to improve the sensitivity of the measurement. For example, a change in pH resulting from extracellular acidification can be increased by using a media with reduced buffer capacity, such as bicarbonate-free media.
The method of the present embodiments can be used to measure any number of attributes of cells and cellular function. For example, cell viability and metabolic rate may be determined from measurements of oxygen consumption rate, extracellular acidification rate, or other metabolic analyte fluxes. By comparison of one or more analyte flux rates to a known rate per cell, cell number may be determined and therefore growth rates can be monitored.
The present invention contemplates analyzing any cell type including for example bacteria, fungus, yeast, a prokaryotic cell, a eukaryotic cell, an animal cell, a human cell and an immortal cell.
The cells may comprise hepatic cells, neuronal cells, pancreatic cells, muscle cells, skin cells, retinal cells, bone cells, cardiac cells etc.In one embodiment, the cells are derived from an organ including but not limited to the liver, heart, pancreas, brain, skeletal muscle etc.
The cells may be healthy cells (i.e. derived from a healthy subject) or diseased cells (e.g. cancer cells, necrotic cells etc.).
The cells which are analyzed may be comprised in three dimensional aggregates, e.g. of more than about 100 cells—e.g. as spheroids.
The cells of the present invention are non-proliferating. In one embodiment, the cells are primary cells. In another embodiment the cells have been contacted with an agent that prevents proliferation—e.g. DMSO. In another embodiment, the perfusion medium is one that prevents proliferation (e.g. Bicarbonate (NaHCO3)-free Medium). Alternatively, the perfusion medium comprises a proliferation inhibitor such as dichloroacetate, 6-Aminonicotinamide, epiandrosterone, or dehydroepiandrosterone.
Other examples of proliferation inhibitors include but are not limited to pretreatment with mitomycin C, exposure to gamma radiation or serum starvation.
The term “non-proliferating” as used herein refers to the proliferation state of the cells, such that the amount of proliferation or replication thereof is substantially reduced during the time of the measurements. This is to ensure that the amount of glucose oxidation through the pentose phosphate pathway is at least 10, 20, 50 or even 100 times lower than the amount of glucose oxidation through glycolysis.
In a particular embodiment, the amount of glucose oxidation through the pentose phosphate pathway is at least 50 times lower than the amount of glucose oxidation through glycolysis.
In another embodiment, the cells do not replicate at all during the course of the measuring.
The present embodiments also contemplate perfusion of media which comprises an environment altering constituent such as a chemical, dissolved gas, nutrient, and a ligand (e.g., a ligand that activates a transmembrane receptor). One or more measurements are optionally and preferably made in the presence of the environment altering constituent. After this measurement cycle, the media may be exchanged one or more times to flush out the environment altering constituent before exposing cells to another medium.
According to a particular embodiment, the constituents of the perfusion are such that at least one metabolic pathway of the cells is eliminated. Thus for example the perfusion medium may be deficient in at least one nutrient type.
It will be appreciated that the term “deficient” does not necessarily mean that the medium is totally devoid of that constituent, but that it may be present in limited amounts such that the at least one metabolic pathway of the cells is eliminated. Thus, for example trace amounts of the constituent may be present in the proliferation medium.
Elimination of a pathway (i.e. bypassing of a pathway, or shunting away from the use of the pathway) also does not have to be total. In one embodiment, utilization of that pathway is at least 10 times, 20 times, 50 times or even 100 times lower than an alternate pathway which generates the same end-product and/or which uses the same starting material.
It will be appreciated that the term “elimination of a pathway” may refer to the bypassing of, or shunting away from, only one or both directions of a pathway.
Elimination of a pathway is important such that when metabolic flux is calculated this pathway (or pathway in one particular direction) can be neglected.
The eliminated pathway includes for example the lipid oxidation pathway, glycolysis, glutaminolysis, urea cycle, lipogenesis, cholesterol synthesis, mevalonate pathway (bile acid production), and the anaplerotic reactions replenishing the TCA cycle (e.g. valine, isoleucine).
Thus for example in the case where the medium is lipid deficient or limited in lipids, the amount of lipids in the medium is such that fatty acid uptake is at least 10 fold, 20 fold, 50 fold or even 100 fold lower than glucose uptake in the cell.
Examples of nutrient types which may be deficient include, but are not limited to a fatty acid, triglyceride, cholesterol, monosaccharide, pyruvate, glycerol and an amino acid.
For example, if pyruvate and glycerol are deficient in the perfusion medium, the metabolic pathways into glycolysis are eliminated (for example pathway 75, 7 and 8 of Table 1 herein below). This is useful for determining the amount of glycolysis of the cell, as further described herein below.
For example if lipids such as fatty acids and triglycerides are deficient in the perfusion medium, the lipid oxidation pathway is eliminated. This is useful for determining the amount of glycolysis, oxidative phosphorylation, and/or glutaminolysis of the cells.
For example, the constituents of the perfusion medium can be selected which induce or inhibit glycolytic flux. Then, measurements of oxygen, glucose and/or lactate can be made as further detailed hereinabove and used for determining glycolytic capacity, glycolytic reserve and/or non-glycolytic acidification. In a representative example, which is not to be considered as limiting, non-glycolytic acidification is determined before perfusion of the environment altering constituents, glycolytic capacity can be determined following perfusion with saturating concentration of glucose, which is used by the cells through the glycolytic pathway to produce ATP, NADH, water, and protons, and glycolytic reserve is determined following perfusion with glycolysis inhibitor, such as, but not limited to, 2-deoxyglucose, which inhibits glycolysis by binding to hexokinase.
Exemplary metabolic flux (e.g. the rate of turnover of molecules through a particular metabolic pathway), that may be calculated using the system described herein are set forth in Table 1 herein below.
The method of the present embodiments can be used to determine mitochondrial function, such as, but not limited to, basal respiration, ATP-linked respiration, H+ leak, maximal respiration and spare respiratory capacity. For example, modulators of cellular respiration that specifically target components of the electron transport chain can be perfused to the plate. Then, measurements of oxygen, glucose and/or lactate can be made as further detailed hereinabove and used for determining ATP-linked respiration, maximal respiration, and also non-mitochondrial respiration. Proton leak and spare respiratory capacity can also be calculated using the basal, ATP-linked, maximal, and non-mitochondrial respiration. In a representative example, which is not to be considered as limiting, basal respiration is determined before perfusion of the modulator, ATP-linked respiration is determined following perfusion of oligomycin, maximal respiration can be determined following perfusion of FCCP, and non-mitochondrial respiration can be determined following perfusion of rotenone and antimycin A.
The method of the present embodiments can be used to determine one or more parameters indicative of glycolytic flux, such as, but not limited to, is glycolytic capacity, glycolytic reserve, and non-glycolytic acidification.
In some embodiments, the delivery and analysis is repeated. For example, sequential measurements of a single group of cells may be made at predetermined time intervals to analyze the effect of a compound addition temporally, for example to examine the effect of exposure to a drug, chemical, or toxin.
The measurement of the oxygen and lactate/glucose is typically effected for at least one hour, two hours, 6 hours, 12 hours, 24 hours, 2 days, 1 week, 2 weeks, 3 weeks, 4 weeks or longer.
Preferably, the analysis of oxygen and glucose consumption and lactate production is effected once the cells have reached a steady-state.
In one embodiment, the steady state of the cells refers to a constant uptake of glucose and oxygen which does not change with culture time. In one embodiment, the measurement of oxygen is continuous (i.e. effected in real-time). Measurement of lactate and/or oxygen may be effected at regular intervals during the same time period, for example once every 10 minutes throughout the time period that the oxygen is measured, once every 30 minutes throughout the time period that the oxygen is measured, once an hour throughout the time period that the oxygen is measured etc. Of note, the analysis is such that the cells remain viable throughout the time period.
The system described herein can be used to measure metabolic flux of cells over an extended period of time.
The system may be used to study the effect of agents on the metabolic flux of the cells. Thus the present invention conceives of comparing the metabolic flux of cells using the system described herein in the presence and absence of those agents.
Exemplary agents that may be analyzed include pharmaceutical agents, agricultural agents, cosmetic agents and diagnostic agents. The agent may be a drug candidate. The agent may be a small molecule, a polypeptide or a polynucleotide.
As used herein the term “about” refers to ±10%.
The word “exemplary” is used herein to mean “serving as an example, instance or illustration.” Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments and/or to exclude the incorporation of features from other embodiments.
The word “optionally” is used herein to mean “is provided in some embodiments and not provided in other embodiments.” Any particular embodiment of the invention may include a plurality of “optional” features unless such features conflict.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of” means “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.
Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.
Microfluidic organ-on-a-chip technology is poised to replace animal toxicity testing, but thus far demonstrated few advantages over traditional methods. In the present Example the Inventors demonstrate a sensor-integrated platform permitting fast tracking of the dynamics of metabolic adaptation to mitochondrial dysfunction. The approach described herein permits detection of chemical toxicity before any effects on cell or tissue viability can be observed.
Using a lung-on-chip device, it was demonstrated that mechanical forces are critical for the development of nanoparticle toxicity in lung tissue [1], and that long-term maintenance of hepatocyte function can be obtained in a microfluidic bioreactor [2-5]. Regretfully, most organ-on-chip devices still rely on endpoint assays to assess drug toxicity, providing limited dynamic information that can be used to assess the compound mechanism of action [6, 7].
Mitochondrial function plays a role in the development of disease and chemical toxicity [7, 8], as well as the regulation of stem cell pluripotency [9]. Mitochondrial dysfunction can occur through direct damage to the respiratory chain, or through secondary mechanisms such as ER stress or lipid accumulation [10]. As cells can adapt to loss of mitochondrial respiration by utilizing anaerobic pathways such as glycolysis and glutaminolysis (
Recently, fast measurement of oxygen uptake in liver-on-chip devices was demonstrated using two-frequency phase modulation of tissue-embedded phosphorescent microprobes [11]. Oxygen decreases phosphorescence decay time resulting in a phase change that is independent of signal intensity. In contrast to other methods, phase modulation is unaffected by focus distance or changing microprobe concentration due to cell death or migration, thus providing unparalleled ability to monitor oxygen uptake in real-time.
The design presented in this disclosure offers an advantage over Clark-type electrodes that consume oxygen and require precise positioning and frequent recalibration [12]. It is appreciated by the inventors that oxygen measurements provide only circumstantial evidence to loss of mitochondrial function. This Example describes a device capable of maintaining three-dimensional aggregates of HepG2/C3A cells for over 28 days in vitro under physiological shear forces and stable oxygen gradient mimicking the native liver microenvironment. Oxygen uptake rate is monitored in real-time using two-frequency phase modulation, while a computer controlled microfluidic switchboard automates washing, calibration and amperometric measurements of glucose uptake and lactate production over the same time period (
Mitochondrial dysfunction is a major cause of drug-induced injury due to the limited ability of cells to generate ATP by alternatives means. Increasing glycolysis, fermentation of glucose to lactate, is the preferred route of energy production in the absence of oxygen (
Oxygen is measured using tissue-embedded microparticles loaded with a ruthenium-based dye, whose phosphorescence is quenched in the presence of oxygen leading to decreasing decay time (
In the present Example, off-the-shelf medical-grade sensors were integrated in the microfluidic design, and were addressed using a computer-controlled microfluidic switchboard that sequentially samples the bioreactor outflow, washes and recalibrates the sensors. The amperometric glucose and lactate sensors use platinum electrodes to measure current under a polarization of 450 mV (
FIGS. 3C1 and 3C2 demonstrate HepG2/C3A organoid after overnight incubation with embedded oxygensensing micro-probes (orange).
FIGS. 3D1 and 3D2 show results of numerical simulation of the pressure drop and variations in oxygen concentration throughout the bioreactor.
FIGS. 3E1 and 3E2 show cross-section of oxygen gradient developing due to consumption within the well (from top to bottom), mimicking the in vivo microenvironment. Gradients of glucose and lactate concentrations within the well are shown on the right.
The liver is highly vascularized, delivering oxygen at high rates while protecting hepatocytes from the negative effects of shear [14, 15]. The gradients that develop along the sinusoid induce a demarcation of function, termed metabolic zonation. To mimic this environment a PMMA bioreactor with a detachable multiwell unit that permits cell seeding in an open configuration was designed (
HepG2/C3A cells mixed with oxygen probes were seeded in the microwells protecting the cells from the negative effect of shear forces while providing a constant concentration of nutrients and removal of metabolic waste products. Cells aggregate to spheroids after overnight incubation (FIGS. 3C1-3C2), polarizing and reaching growth arrest in 4 to 7 days in the presence of 1% DMSO [16, 17]. Computational fluid dynamic modeling (FIGS. 3D1, 3D2, 3E1 and 3E2) showed physiological shear forces under 0.03 Pa inside the microwells for perfusion rates of 2 μl/min. The flow rate resulted in similar oxygen concentration delivered to each well in the array (FIGS. 3D1, 3D2, 3E1 and 3E2). Oxygen consumption caused a gradient to develop along the perfused spheroid, mimicking the in vivo microenvironment (FIGS. 3E1 and 3E2) [18, 19]. Glucose concentration showed a similar gradient, reaching 0.1 mM concentration at the bottom of the microwells. These results suggest that the reactor of the present embodiments mimics aspects of the physiological microenvironment.
Oxygen uptake was measured in real-time over 28 days under continuous perfusion (
Rotenone is a widely used, broad-spectrum organic insecticide and pesticide, known to directly damage mitochondrial complex I, inducing oxidative stress and apoptosis at low concentrations (20). Rotenone was perfused at concentrations of 1, 50, and 200 μM for 24 hours and oxygen uptake of the cells was monitored in real-time to assess cell viability and metabolic function (
Troglitazone is an anti-diabetic and anti-inflammatory drug which was removed from market due to severe drug-induced liver injury [21]. While troglitazone mechanism of action is still unclear, its metabolites were shown to block bile acid transporters BSEP and MRP2 leading to cholestasis, while the parent compound was shown to decrease mitochondrial membrane potential [22]. Troglitazone was perfused at concentrations ranging from 50 to 2000 μM for 24 hours and oxygen uptake of the cells was monitored in real-time to assess cell viability and metabolic function (
Overall, comparison of the results to primary human hepatocytes (IVIVC) across 4 drugs, including acetaminophen, amiodarone, troglitazone, and rotenone showed an R2 of 0.99 (
FIGS. 5B1 and 5B2 show amperometric calibration curves of glucose (FIG. 5B1) and lactate (FIG. 5B2) sensors in the PMMA housing. Measurements were carried out under static condition for 100 to 200 seconds. Air purging before sample introduction insured sharp change in chemical gradient.
An off-chip sensor unit (
At steady state, glucose and lactate concentration at the bioreactor outflow were 2.9 mM and 5 mM, respectively (
Glutamine uptake was 1.6×10−10 mol/min/106 cells; 10-fold lower than glucose uptake, suggesting glutaminolysis had a minor contribution to the mitochondrial Krebs cycle, which was predominantly utilizing glucose as a source of energy in steady state (
Drug-induced mitochondrial dysfunction is often overlooked due to the ability of cells to circumvent damaged metabolic pathways at low drug concentrations, and secondary effects, such as apoptosis becoming dominant at increasing concentrations. To characterize the dynamics of mitochondrial dysfunction the cells were exposed to low concentrations of rotenone or troglitazone. Rotenone is a direct inhibitor of mitochondrial respiration, reducing oxygen uptake by 80% (
At 50 μM concentration, troglitazone reduced oxygen uptake rate by 10% (
The results demonstrate differential metabolic response to mild or severe damage to the respiratory chain, exemplified by troglitazone and rotenone exposure, respectively (
Troglitazone-induced mitochondrial stress caused a 23% decrease in oxidative phosphorylation and 51% increase in glycolysis after 6 hours of exposure (Table 1). Glucose was no longer directed toward other metabolic pathways (
Direct measurement of ATP/ADP ratio confirms the predictions (
To confirm the findings static cultures of HepG2/C3A cells to 50 μM of rotenone and troglitazone and stained for mitochondrial membrane potential (MMP) at regular intervals (
Table 1, below, provides calculated metabolic fluxes in nmol/min/106 cells for untreated cells (normal), troglitazonetreated cells (mitochondrial stress) and rotenone-treated cells (mitochondrial dysfunction). Total glucose uptake rate was 2.4 nmol/min/106 for untreated cells, 2.5 nmol/min/106 for troglitazonetreated cells, and 1.0 nmol/min/106 for rotenone-treated cells.
Bioreactors were fabricated from polymethyl methacrylate (PMMA) using CNC machining. Each unit was composed of two 50.8 mm circular support structures that fit standard 2″ inserts, containing glass windows for microscopy. The bioreactor housed a removable polydimethylsiloxane (PDMS) microwell insert in which cells are protected from the negative effect of shear. Sealing around the microwells was realized with a rubber gasket creating an internal volume of 40 μl. Removable Microwell Insert PDMS microwell inserts were fabricated using laser cutting. Briefly, a thin sheet of PDMS (Dow Corning, USA) was cast to 0.7 mm height using a motorized film applicator (Erichsen, Germany) and cured at 70° C. for 1 hour. Microwells were cut to 1.5 mm diameter, and a center-to-center distance of 3 mm using 355 nm, pulsed Nd-YAG laser (3D-Micromac, Germany). PDMS inserts were washed with 70% EtOH, nitrogen dried, and covalently bound to clean 0.5 mm thick glass coverslips (Schott, Elmsford, N.Y.) using oxygen plasma activation.
HepG2/C3A cells were cultured under standard conditions in a humidified incubator at 37° C., under 5% CO2. Cells were obtained from the American Type Culture Collection (ATCC, USA). Cells were cultured in low glucose Modified Eagle Medium supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin and 100 μg/ml streptomycin (Sigma-Adlrich, USA). Medium was supplemented with 1% DMSO following bioreactor seeding to induce growth arrest and differentiation (16, 17).
PDMS microwell inserts were sterilized with 70% EtOH and 30 min exposure to UV light prior to cell seeding. Cells were trypsinized, counted and centrifuged at 300×g for 5 min at 4° C. The pellet was then mixed with 400m CPOx-50-RuP oxygen-sensing beads (Colibri Photonics, Germany) and resuspended in 100 μl of ice-cold solution of collagen type I (BD Biosciences, USA) for a final seeding density of 4×106 cells/ml. The PDMS microwell insert was placed on ice and coated with ice-cold collagen solution for 5 min to remove air bubbles. Then 100 μl of collagen type I suspension containing cells and oxygen-sensing beads was layered on top the wells and incubated for 10 min on ice. The low temperature prevented premature collagen polymerization and the induction of cellular stress response pathways. Afterwards, excess cell and microbead suspension was gently wiped off the microwell insert using a sterile glass coverslip leading to a concentration of 100,000 cells and 20 oxygen-sensing beads per well. Variance in cell density between individual wells and between bioreactors was less than 10% measured by DNA content. The inoculated microwell insert was then incubated for 5 min at 37° C. to polymerize the collagen. Following polymerization, the insert was immersed in 5 ml of cell culture medium and incubated for 20 min at 37° C. prior to being sealed in the bioreactor housing. Bioreactors were then placed in a climate control chamber (Evotec, Germany) on an IX81 fluorescence microscope (Olympus, Japan). Bioreactors were continuously perfused with cell culture medium noted above supplemented with 10 mM HEPES and 1% DMSO at a flow rate of 2 μl/min. The automated and motorized microscope stage was equipped with a holder for three microreactors, allowing three experiments to run simultaneously.
Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)
RNA was isolated and purified utilizing Macherey-Nagel NucleoSpin RNA II kit according to manufacturer instructions. RNA concentration and purity was determined using NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, USA). cDNA was synthesized from 1 μg RNA sample using qScript cDNA SuperMix (Quanta BioSciences, USA) according to the manufacturer's protocol. Gene expression analysis was carried out utilizing KAPA SYBR FAST Universal 2× qPCR Master Mix (Kapa Biosystems, Boston, USA) on BioRad CFX96 Real-Time System (New South Wales, Australia), according to manufacturer's directions. Gene transcription was evaluated using the ΔΔCt method normalized to 60S ribosomal protein L32 (RPL32) or ubiquitin C (UBC).
A computational fluid dynamic model was used to model pressure distribution, oxygen supply, and glucose consumption rates within the microwell bioreactor. A three-dimensional model of the bioreactor geometry was designed and meshed using an extremely fine mesh of 5 μm tetrahedral elements. Finite element simulations were carried out using COMSOL Multiphysics 4.3b, coupling the Navier-Stokes equations with the convection and diffusion model for transport of oxygen and glucose. Inlet oxygen concentration was atmospheric 0.2 mM with a diffusion coefficient of 1.8×10−9 m2/sec. Oxygen uptake rate was measured to be 1.8×10−9 mol/min/106 cells. Inlet glucose concentration was 5.5 mM with a diffusion coefficient of 6×10−10 m2/sec, and uptake rate was measured under steady state condition to be 2.4×10−9 mol/min/106 cells. Inlet lactate concentration was measured to be 1.5 mM, and production rate was measured to be 3×10−9 mol/min/106 cells under steady state conditions.
Troglitazone (T2573), and rotenone (R8875) were purchased from Sigma-Aldrich (Schnelldorf, Germany) and diluted from H2O or DMSO stock concentration 1:1000 into HepG2/C3A culture medium. Exposure onset was calculated to within ±1 min based on volumetric flow rate, considering the length of the tubing and bioreactor volume.
Real-time oxygen measurements were performed optically using lifetime-based luminescencequenching as previously described (11). Briefly, 50 μm diameter polystyrene microbeads were loaded with ruthenium-phenanthroline-based phosphorescence dye (CPOx-50-RuP) that shows a decrease in phosphorescence decay time as a function of oxygen concentration (
PMDS microwell inserts were removed from the bioreactor following 24 hours exposure to rotenone or troglitazone. Cholestasis was evaluated using 5(6)-carboxy-2′, 7′-dichlorofluorescein diacetate (CDFDA) cell permeable dye which is metabolized to fluorescent CDF and secreted to active bile canaliculi by active multidrug resistance-associated protein 2 (MRP2). Briefly, cells were incubated with 2 μg/mL of CDFDA and 1 μg/mL of Hoechst 33342 for 20 min, and washed with PBS. Number of bile canaliculi foci was normalized for number of Hoechst-labeled nuclei. Apoptosis was evaluated using DeadEnd™ fluorometric TUNEL system (Promega, USA) according to manufacturer directions. Briefly, cells were fixed in 4% paraformaldehyde, permeabilized and exposed to fluorescein-12-dUTP and terminal deoxynucleotidyl transferase (TdT), dyeing apoptotic nuclei green. The reaction was subsequently stopped and the cells counterstained for Hoechst. A percent apoptotic nucleus was calculated by dividing the number of TUNEL to Hoechst positive nuclei.
Mitochondria were isolated using a Mitochondria Isolation Kit (Abcam, UK) per manufacturer instructions. Briefly, 107 cells were collected and ruptured using 30 strokes in a pre-cooled dounce homogenizer. Homogenate was centrifuged twice at 1,000×g for 10 minutes at 4° C. to remove debris, and finally at 12,000×g for 15 minutes at 4° C. Pellet containing the isolated mitochondria was resuspended in a protease inhibitor cocktail. Protein concentration was determined using Bradford. 20 μg of mitochondrial protein per well was plated in gelatin-coated SeaHorse XFp cell culture miniplate and centrifuged at 3,000×g for 20 minutes at 4° C. in mitochondrial assay solution (MAS) as previously described (29). Oxygen consumption rate (OCR) was measured by the XFp Extracellular Flux Analyzer (Seahorse Biosciences, USA). Mitochondrial activity was profiled by successive injections of ADP (Sigma-Aldrich, Israel) and 50 μM of troglitazone, rotenone or DMSO control.
A computer-controlled microfluidic switchboard carried out automated sampling, calibration, and washing of the amperometric sensor unit, fabricated using two layer soft lithography. Briefly, an adherent layer of hexamethyldisilazane (Sigma-Aldrich) was spin coated at 4000 rpm for 30 seconds. Four layers of AZ-4652 (MicroChem) were sequentially spin coated at 800 rpm for 40 seconds, baked for 5 minutes at 100° C. and exposed to UV light for 90 seconds. Curved AZ-4652 flow channels were molded by reflow using a gradual temperature increase of 35° C. to 150° C. over 3 hours followed by hard-baked overnight at 150° C. AZ-4652 channels dimensions were measured to be 100×25 μm (W×H). Control layer was fabricated separately using SU-8 photoresist (MicroChem), spin coated to 100 μm height, pre-baked for 25 minutes at 100° C., exposed to UV light for 15 seconds and postbaked for 12 minutes. Top layer SU-8 control channels dimensions were 100×100 μm (W×H). Master molds were treated with trichlorosilane (Sigma-Aldrich) for easier removal of polydimethylsiloxane (PDMS) after curing. Each layer was cast separately by replica molding, aligned and bonded via curing agent diffusion as previously described (30). The microfluidic switchboard was finally bonded to glass using oxygen plasma activation. The final device consists of 11 inlets and a common outlet that are regulated by self-addressable micromechanical valves.
Dedicated microfluidic controller and flow circuit was previously described in detail [13]. Briefly, digitally controlled solenoid valves (Festo, Israel) were assembled into two pressure manifolds with a linear range of 0.15 to 6 bars. One manifold was connected to fluid reservoirs (Fluigent, Paris, France) perfusing the bioreactor, washing solution, atmospheric air, and calibration buffers. The second manifold was used to actuate the switchboard's control channels with a pressure of 1.05 bar. The switchboard flow outlet was connected to the PMMA housing of the amperometric sensors unit.
Amperometric glucose and lactate sensors were purchased from BioSensor Technology (Berlin, Germany) and embedded in a CNC-fabricated PMMA flow-chamber with an inner volume of 26 μl. The sensors are based on the enzymatic reactions of glucose oxidase, with a linear range of 0.5 mM to 30 mM, and lactate oxidase, with a linear range of 0.5 mM to 20 mM. Both sensors produce H2O2 in amounts proportional to the measured metabolite, which is detected with platinum electrodes under polarized condition. The microfluidic controller (13) was programmed to open a microfluidic valve every hour, allowing a 40 μl medium sample to flow through the switchboard and into the sensors unit. Amperometric measurement lasted 200 seconds and was followed by automated perfusion of PBS washing solution, CAL 4+M calibration buffer (Eschweiler, Germany), and 4 seconds of air bubble acting as a diffusion barrier between samples. Reading was carried out on EmStat3 OEM embedded potentiostat (PalmSens, Netherlands) connected to the central computer.
Unless otherwise noted, cell viability was determined utilizing LIVE/DEAD Cytotoxicity kit (Molecular Probes, Eugene, Oreg.) according to manufacturer's instructions. In brief, cultures were incubated with 2 μM Calcein AM and 3 μM ethidium homodimer-1 for 25 minutes. Hydrolysis by functional intracellular esterases causes live cells to fluoresce green, while the punctured membranes of dead cells permit ethidium homodimer-1 to bind DNA and fluoresce red. Cellular viability was calculated by live to dead ratio and normalized to negative control.
Intracellular ATP and ADP quantification was carried out using Abeam ADP/ATP Assay Kit (#ab65313), according to manufacturer's instructions. Briefly, reaction buffer was pre-incubated at room temperature for 2 hours prior to beginning of measurements, to burn off low-level ATP contamination, as suggested by the manufacturer. Cells were incubated in nucleotide releasing buffer for 5 min at room temperature, with gentle shaking. Background bioluminescence reading of the reaction mix was taken for calibration, followed by 2 min incubation of 50 μl sample solution in each reaction well, and a bioluminescence reading to measure cellular ATP content. ADP converting enzyme was then added, as instructed, following incubation of 2 min at room temperature to measure total ADP+ATP.
HepG2/C3A cells were plated in gelatin-coated SeaHorse XFp cell culture miniplates (Seahorse Bioscience, USA) and cultured for 24 hours. Subsequently, cultures were treated with medium containing 50 μM troglitazone for 6 hours, 50 μM rotenone for 3 hours, or vehicle control prior to initiation of assay. Mitochondrial Stress Test assay was conducted per manufacturer instructions (29). Briefly, cells were incubated in unbuffered XF Base Medium supplemented with 2 mM glutamine, 1 mM sodium pyruvate, and 10 mM glucose (pH 7.4) for 1 hour at 37° C. in a non-CO2 incubator. Basal oxygen consumption rate (OCR) was measured for 30 min, followed by injection of 1 μM oligomycin, a mitochondrial Complex IV inhibitor that completely blocks oxidative phosphorylation. The decrease in OCR due to oligomycin treatment is defined as oxidative phosphorylation rate. 1 μM carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP), an uncoupling agent, is added at 60 min to measure maximal mitochondrial activity followed by complete inhibition at 90 min using a mixture of 0.5 μM antimycin A and rotenone, mitochondrial Complex III and Complex I inhibitors. Basal extracellular acidification rates (ECAR) was measured for 30 min, in the presence of 10 mM glucose, followed by injection of 1 μM oligomycin. The increase in ECAR due to oligomycin treatment was defined as glycolytic capacity. Data are presented normalized to 106 cells as determined by Hoechst DNA content assay.
HepG2/C3A cells were plated in gelatin-coated XFp cell culture miniplates and cultured for 24 hours. Subsequently, cultures were treated with medium containing 50 μM troglitazone for 6 hours, 50 μM rotenone for 3 hours, or vehicle control prior to initiation of assay. Glutamine oxidation assay was conducted per manufacturer instructions. Briefly, cells were incubated in unbuffered XF Base Medium supplemented with 2 mM Glutamine, 1 mM sodium pyruvate, and 10 mM glucose (pH 7.4) for 1 hour at 37° C. in a non-CO2 incubator. Glutamine oxidation was profiled by successive injections of 3 μM BPTES, an allosteric inhibitor of glutaminase (GLS1), and a mixture of 4 μM etomoxir, a carnitine palmitoyl-transferase 1A (CPT1A) inhibitor and 2 μM UK5099 a mitochondrial pyruvate carrier inhibitor, blocking fatty acid oxidation and oxidative phosphorylation, respectively. The decrease in baseline OCR due to BPTES treatment was defined as the rate of glutaminolysis. Data are presented normalized to 106 cells as determined by Hoechst DNA content assay.
JC-1 cell permeable dye was purchased from Life Technologies (New York, N.Y.). HepG2/C3A cells were incubated with 50 μM of troglitazone or rotenone for varying durations. To evaluate mitochondrial membrane potential at each time point, cells were incubated with 5 μM JC-1 dye for 30 min, washed with PBS and imaged by confocal microscopy on a LSM700 (Zeiss, Germany). The JC-1 dye exhibits potential-dependent accumulation in mitochondria, indicated by a fluorescence emission shift from 529 to 590 nm due to the formation of J-aggregates. Consequently, mitochondrial depolarization is quantified by dividing red over green fluorescence intensity.
Glucose uptake, oxygen uptake and lactate production rates were measured by calculating the change in metabolite concentration between the bioreactor in- and outflow, as function of perfusion rate and cell number as described above. Metabolic rates were calculated assuming negligible contribution to oxygen uptake by fatty acid oxidation and enzymatic activity. Low level of lipids in the culture medium ensured that fatty acid uptake was 50-fold lower than glucose while glutamine contribution to the Krebs cycle was minor (results). Periodic acid-Schiff (PAS) staining showed no significant change in glycogen content following 12 hours exposure to the drugs (
Based on these assumptions, oxidative phosphorylation flux was calculated by dividing oxygen uptake rate by six. 32 ATP molecules generated by complete oxidation of 1 molecule of glucose were estimated. Glycolysis flux was calculated by dividing lactate production rate by two, with maximal rate defined by glucose uptake rate minus the oxidative phosphorylation flux. ATP production in glycolysis was estimated to be 2 molecules per molecule of glucose. It was assumed that any glucose left over was directed toward lipogenesis, as the contribution of pentose phosphate pathway in nonproliferating cells is minor (31). Finally, it was assumed that excess lactate was produced by glutaminolysis, and confirmed the assumption using offline measurement of glutamine uptake (
Experiments were repeated 2 to 3 times with triplicate samples for each experimental condition. Data from representative experiments are presented, whereas similar trends were seen in multiple trials. A parametric two-tailed Student's t-test was used for calculating significant differences between groups. All n values represent the number of biological samples analyzed per condition. All error bars indicate ± standard deviation.
Intracellular glycogen quantification was carried out using Periodic acid-Schiff (PAS) staining (Sigma-Aldrich). Briefly, HepG2/C3A cells were treated for 12 hours with 50 μM troglitazone, rotenone, or vehicle control and fixed for 15 min in 4% PFA. Cells were washed in distilled water, and incubated for 5 min, at room temperature with the periodic acid solution. Next the cells were incubated in Schiff's reagent for 15 min at room temperature, washed 3 times and counterstained in hematoxylin solution Gill No. 3 for 90 seconds at room temperature, and left to dry. Quantification was performed using Image J software and presented as the ratio between PAS and hematoxylin staining.
Glutamine concentration was determined using glutamine and glutamate determination kit (Sigma-Aldrich). Bioreactors containing HepG2/C3A spheroids were set up as described in the main text and perfused at 2 μl/min. Perfusate samples were collected for 60 minutes for a total of 120 μl per sample. Glutamine was quantified according to manufacturer directions.
In this Example a robust microfluidic platform combining liver-on-chip technology with automated microfluidic analysis of glucose metabolism and mitochondrial function (
One advantage of the platform is the integration of medical-grade commercial sensors in a modular off-chip unit. These off-the-shelf components reduce fabrication costs and can be replaced as needed without pausing the experiment. This is particularly useful in electrochemical sensors whose activity is dependent on membrane integrity and enzymatic function. Off-chip measurement also allowed automating sensor calibration, and create sharp chemical gradients, insuring measurement stability for several days in culture. This stands in contrast to prior reports of integrated on-chip glucose and lactate sensors that offer less than 1-3 hours of operation before signal drift requires re-calibration [23]. Stability of the sensors permitted over 24 hours of continuous sampling (
A second advantage of the platform is the optical measurement of oxygen using tissue-embedded micro-sensors (
The integration of both sensing modalities allowed identifying differences in the metabolic response to rotenone and troglitazone that appear to be related to the severity of mitochondrial damage. Exposure to the anti-diabetic drug troglitazone (Rezulin©) induced the expected response as cells diverted glucose from metabolic pathways such as lipogenesis toward lactate, maintaining 97% of cellular ATP production and normal ATP/ADP ratio (
In contrast to the troglitazone response, cellular adaptation to rotenone-induced mitochondrial dysfunction was surprising. Cells showed a 59% decrease in glucose uptake, suggesting an accumulation of intermediates led to a block in downstream glycolysis. The switch to compensatory mechanisms was gradual, as lactate over glucose ratio increased above 2, and glutamine uptake increased, demonstrating a shift toward glutaminolysis (
Example 2
Following are representative types of assays that can be employed using the method and system of the present embodiments.
C2C12 murine skeletal muscle cells can be seeded on membranes which can then be incubated at 37° C., for a period of, e.g., 12 hours.
Bicarbonate (NaHCO3)-free DMEM Medium can be added, and oxygen, glucose and lactate can be monitored. The average rate of change of each analyte can be calculated.
To determine the extracellular flux rates of O2 and CO2, the rates of change of partial pressures can be divided by volume of each analytes to result in a value. The rate of acidification can be expressed in, for example, protons per unit time by calculating the number of available electrons in the media buffer within the known sample volume.
The relationship between cell number and oxygen and CO2 flux rates can be investigated. Varying numbers of C2C12 myoblasts can be seeded and incubated as further detailed hereinabove. Bicarbonate (NaHCO3)-free DMEM Medium can be added, and oxygen, glucose and lactate can be monitored. The average rate of change of each analyte can be calculated.
Increased analyte flux rates in a near-linear fashion can indicate an increasing cell density.
The chemical compound 2,4 DNP can be used to uncouple mitochondrial respiration from ATP synthesis by disassociating the linkage between the respiratory chain and the phosphorylation system. In the presence of this compound, oxygen consumption will increase dramatically, while proton flux remains relatively constant.
C2C12 myoblasts can be seeded and incubated as further detailed hereinabove. Bicarbonate (NaHCO3)-free DMEM Medium can be added, and oxygen, glucose and lactate can be monitored to determine a control baseline for each analyte flux. Once the baseline is established, a sequence of experiments can be performed where varying doses of 2,4 DNP are added to the cell media and a measurement of analyte flux rates is performed. A control experiment using the highest dose of 2,4 DNP, but without cells can also be performed.
Rotenone inhibits cellular respiration by blocking NADH dehydrogenase in the respiratory chain. C2C12 Myoblasts can be used to show this effect.
C2C12 myoblasts can be seeded and incubated as further detailed hereinabove. Bicarbonate (NaHCO3)-free DMEM Medium can be added, and oxygen, glucose and lactate can be monitored to determine a control baseline for each analyte flux.
Once the baseline is established, a sequence of experiments can be performed where varying doses of Rotenone is added to the cell media and a measurement of analyte flux is performed. A control experiment using the highest dose of Rotenone, but without cells can also be performed.
Measurement of Respiration and Acidification Rate Changes Resulting from Cell Proliferation
C2C12 myoblasts can be seeded and incubated as further detailed hereinabove. Bicarbonate (NaHCO3)-free DMEM Medium can be added About 12 hours after being seeded, the cells can be placed in DMEM serum-free media. After about 24 hours, part half of the cells can be switched to DMEM serum-containing media to stimulate proliferation, while the other part can be maintained in serum-free media. Oxygen, glucose and lactate can be monitored in the presence of NaHCO3-free DMEM Medium.
Stimulation of transmembrane receptors often causes a rapid increase in extracellular acidification rate, resulting primarily from acute activation of ion exchange pumps. In this experiment, the technique of the present embodiments can be used to detect a change in extracellular acidification rate following treatment of cells with a receptor agonist.
Chinese hamster ovary (CHO) cells can be transfected to over-express the muscarinic receptor subtype m3. The cells can be placed on the plate of the present embodiments to monitor oxygen, glucose and lactate as further detailed hereinabove, following treatment with, for example, the general acetylcholine receptor agonist, Carbachol.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2017/050289 | 3/8/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62305073 | Mar 2016 | US | |
62305660 | Mar 2016 | US |