The present invention relates generally to a mail processing machine and, more particularly, to a mail processing machine having a staging transport and a non-staging transport.
Inserter systems, such as those applicable for use with the present invention, are mail processing machines typically used by organizations such as banks, insurance companies and utility companies for producing a large volume of specific mailings where the contents of each mail item are directed to a particular addressee. Examples of such inserter systems are the 8 series, 9 series, and APS™ inserter systems available from Pitney Bowes Inc. of Stamford, Conn.
In many respects, the typical inserter system resembles a manufacturing assembly line. Sheets and other raw materials (other sheets, enclosures, and envelopes) enter the inserter system as inputs. Then, a variety of modules or workstations in the inserter system work cooperatively to process the sheets until a finished mail piece is produced. The exact configuration of each inserter system depends upon the needs of each particular customer or installation.
Typically, inserter systems prepare mail pieces by gathering collations of documents on a conveyor. The collations are then transported on the conveyor to an insertion station where they are automatically stuffed into envelopes. After being stuffed with the collations, the envelopes are removed from the insertion station for further processing. Such further processing may include automated closing and sealing the envelope flap, weighing the envelope, applying postage to the envelope, and finally sorting and stacking the envelopes.
One problem that arises with high speed mail processing machines is jamming. When a jam occurs, not only is there potential for the jammed piece to be damaged, but also collateral damage from moving pieces that may crash into the jammed mail pieces, or that may otherwise be forced to come to a sudden halt. In order to minimize damage, it is known to shut down the mail processing machine upon the occurrence of a jam to minimize collateral damage, and so that the jam can be cleared.
One complication is that some transports, by their nature, cannot be shut down while documents are still under their control. One example, is a Pitney Bowes R150 postage meter mailing machine that prints postage indicia. For the integrity of the postage printing process, an R150 mailing machine is not shut down while envelopes are within its control. Accordingly, if a jam occurs anywhere downstream of the R150 mailing machine, then envelopes within the mailing machine at the time may become collaterally damaged when they are suddenly halted downstream of the R150 mailing machine transport system.
For purposes of this description, the term “non-staging transport” refers to a transport, such as in the R150 mailing machine, that continues to run, even after a jam has been detected. It will be understood by one skilled in the art that there are also other examples of non-staging transports used elsewhere, whereby transport rollers and belts run continuously regardless of whether there is a jam, or whether documents are currently being processed.
Thus, stated more generically, in a mail processing machine where one or more of the upstream modules are non-staging, a problem arises when there is a jam downstream. Because the upstream mailpieces are conveyed by a transport that cannot stage mailpieces, the downstream transport mechanism must continue to accept the mailpieces before the non-staging transport is caused to stop in order to avoid a second jam. In the past, when a jam occurs, the transport mechanism downstream of the non-staging area is stopped as soon as the last mailpiece leaves the non-staging area. This results in the pile up of some mailpieces in the jam area, or in a portion of the transport that has halted as a result of the jam. However, before the downstream transport is stopped, not all of the received mailpieces can be staged in a normal manner, some of them end up at the jam location. Such a pile up may cause collateral damage.
For purposes of this description, a staging transport in a mail processing machine is used to receive and store mailpieces from a non-staging transport in a controlled fashion when the mail processing machine is shut down because of a jam, or some other shut down situation. In a staging transport module, the mailpieces can be sped up or slowed down if necessary, or desired, in order to receive and store mailpieces so that they do not come to a halt in a pile-up. Thus, the speed of a mailpiece within the staging module may not always be constant. In contrast, a non-staging transport is used in a module where the speed of a mailpiece is constant unless the transport is completely shut down. An exemplary arrangement of a staging transport and a non-staging transport are depicted in
According to the present invention, a mail processing machine has a non-staging transport and a downstream staging transport. The speed of the non-staging transport is constant whereas the speed of the staging transport is controllable. In normal operation, both the staging transport and the non-staging transport move the mailpieces downstream at the same constant speed. When a jam occurs downstream from the staging transport, the staging transport is effectively slowed down so that the staging transport can hold additional mailpieces before they arrive at the jam site. After the jam has been cleared, the staging transport is controlled in order to re-gap the mailpieces already released from the non-staging transport. After re-gapping is completed, the staging transport is sped up so that the mail processing machine can be returned to its normal operation. In particular, the speed of the staging transport during the machine stoppage condition has a speed profile that includes deceleration and acceleration sessions so as to control the gap between the mailpieces in the staging transport.
According to the present invention, a mail processing machine has a non-staging transport and a staging transport downstream from the staging transport. The speed of the non-staging transport is constant whereas the speed of the staging transport is controllable. In normal operation, both the staging transport and the non-staging transport move the mailpieces downstream at the same constant speed. When a jam occurs downstream from the staging transport, the staging transport is effectively slowed down so that the staging transport can hold additional mailpieces before they arrive at the jam site. After the jam has been cleared, the staging transport is controlled in order to re-gap the mailpieces already released from the non-staging transport. After re-gapping is completed, the staging transport is sped up so that the mail processing machine can be returned to its normal operation. In particular, the speed of the staging transport during the machine stoppage condition has a speed profile that includes deceleration and acceleration sessions so as to control the gap between the mailpieces in the staging transport.
a is a schematic representation showing the spatial relationship between the mailpieces in the staging and non-staging areas when a jam occurs.
b is a schematic representation showing the spatial relationship between those mailpieces when the staging transport is stopped.
c is a schematic representation showing the arrival of a non-staged mailpiece at the staging area.
d is a schematic representation showing a jogging process being used to move the staged mailpieces downstream while the non-staged stack becomes staged.
e is a schematic representation showing the staging transport is paused or slowed down for jam clearance.
f is a schematic representation showing the staging transport is restarted in order to release one of the staged mailpieces.
g is a schematic representation showing one of the staged mailpieces is released downstream in a re-gapping process.
h is a schematic representation showing the completion of the re-gapping process.
i is a schematic representation showing the last staged mailpiece being released downstream.
As shown in
As shown in
As soon as the jam occurs, it is preferable to halt the supply of the mailpieces from the supply module upstream from the non-staging area (see
After the jam is cleared, the re-gapping process begins with the staging transport moving M2 and M3 downstream together, as shown in
During jam clearance and the re-gapping process, the staging transport is decelerated and accelerated a number of times. As illustrated in the velocity profile of
It should be noted that, as shown in
Thus, the mail process machine 1, according to the present invention, is operable at least in a first mode and a second mode. In the first mode, the staging transport is driven by a moving mechanism in a constant speed V1. In the second mode, the staging transport is decelerated and accelerated to receive and store closely spaced mailpieces. The motion profile of
The motion profile for receiving mailpieces within the staging transport is triggered by known sensors (not shown) for detecting the arrival of the mailpieces at the staging transport. Such sensors may include optical sensors which are well known in the mail processing art, and to not need to be described further here.
Although the invention has been described with respect to one or more embodiments thereof, it will be understood by those skilled in the art that the foregoing and various other changes, omissions and deviations in the form and detail thereof may be made without departing from the scope of this invention. In particular, the invention has been described as pertaining to stoppage of the mail processing machine upon the occurrence of a jam. It will be understood that the invention is equally applicable for staging mailpieces when other stoppage conditions occur.
Number | Name | Date | Kind |
---|---|---|---|
3827545 | Buhayar | Aug 1974 | A |
4331328 | Fasig | May 1982 | A |
5449166 | Lohmann et al. | Sep 1995 | A |
7080834 | Asari | Jul 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20070145677 A1 | Jun 2007 | US |