This disclosure relates generally to a method and system for controlling a level of ventilatory support from a ventilator for the purpose of weaning a patient from the ventilator.
Weaning a patient from artificial ventilation is among the most difficult questions regarding intensive care ventilation. Patients encountering weaning problems have often been ventilated for more than 48 hours before the ventilator weaning can be considered. While on the ventilator, some patients develop ventilator dependency and they cannot maintain breathing on their own. This dependency may prolong the patient's stay on the ventilator. Prolonged ventilation increases the risk of developing lung inflammation known as ventilator induced lung injury (VILI). Even worse, inflammation may spread from the lungs to other organs resulting in multiple-organ failure. Mortality of patients experiencing multiple-organ failure is high. Therefore, minimizing the patient's stay on the ventilator is one of the primary goals for an intensive care unit.
It has been experimentally shown that daily spontaneous breathing trials by the patient significantly reduce the number of days that a patient spends in mechanical ventilation. Until recently, weaning from ventilation and a patient's sedation level have been considered separately. However, research has shown that it may be beneficial to consider the patient's sedation level in order to optimize the timing of the spontaneous breathing trials. Specifically, it would be preferable to perform the spontaneous breathing trials when the patient is at a relatively alert sedation level.
Using conventional technology, the combination of using the patient's sedation level to determine the best times for performing spontaneous breathing trials would require almost continuous attendance of a caregiver during each spontaneous breathing trial. Due to staff and budget constraints, it would be challenging for the intensive care unit to perform this protocol for all the patients on artificial ventilation.
Thus, there is a need for an automated technique utilizing the patient's sedation level to determine the best times for spontaneous breathing trials without requiring significant involvement of the intensive care unit staff.
The above-mentioned shortcomings, disadvantages and problems are addressed herein which will be understood by reading and understanding the following specification.
In an embodiment, a method for automatically controlling a ventilator includes monitoring a central nervous system parameter and automatically adjusting a level of ventilatory support based on a value of the central nervous system parameter.
In an embodiment, a method for weaning a patient from a ventilator includes monitoring a central nervous system parameter for the purpose of determining a sedation level and reducing an amount of a sedative drug administered to the patient in order to reach a target sedation level. The method includes automatically reducing a level of ventilatory support to a lower level of ventilatory support at the target sedation level and conducting a spontaneous breathing trial at the lower level of ventilatory support.
In an embodiment, an intensive care system includes a ventilator, a central nervous system monitoring device, and a controller connected to the ventilator and the central nervous system monitoring device. The controller is configured to monitor a central nervous system parameter acquired with the central nervous system monitoring device for the purpose of determining a sedation level. The controller is configured to detect when the sedation level reaches a target sedation level. The controller is configured to reduce a level of ventilatory support to a lower level of ventilatory support when the sedation level reaches the target sedation level. The controller is configured to allow the patient to perform a spontaneous breathing trial at the lower level of ventilatory support and to increase the level of ventilatory support after the spontaneous breathing trial.
Various other features, objects, and advantages of the invention will be made apparent to those skilled in the art from the accompanying drawings and detailed description thereof.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments that may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the scope of the embodiments. The following detailed description is, therefore, not to be taken as limiting the scope of the invention.
The central nervous system monitoring device 14 comprises a device configured to monitor a central nervous system parameter of the patient 20. According to an embodiment, the central nervous system monitoring device 14 may comprise an electroencephalograph, which will be referred to as an EEG hereinafter, or an electromyograph, which will be referred to as an EMG hereinafter. The EEG records electrical activity of the patient's brain as measured at the patient's scalp. It is possible to determine a sedation level of the patient 20 by analyzing one or more EEG parameters collected with an EEG. The EEG parameters are examples of central nervous system parameters in accordance with an embodiment. As a general rule, a high sedation level tends to be correlated with a low level of electrical activity and a low sedation level tends to be correlated with a high level electrical activity as measured with an EEG. In other words, the patient 20 would typically have a high level of electrical activity during an alert period. For purposes of this disclosure, the term “alert period” is defined to include a period of time where the patient is at a relatively low sedation level. In other words, an alert period corresponds to a period of time where the patient is relatively responsive. The standard for defining an alert period may vary on a patient-to-patient basis. One of the keys in identifying an alert period is to monitor a central nervous system parameter, such as an EEG parameter, over a period of time to determine periods of relative alertness. For example, according to an embodiment, the central nervous system parameter may be monitored for a period of 24 hours. After monitoring for 24 hours, the periods of relative alertness may be identified. The thresholds for determining an alert period may thus be based on the results of monitoring the patient over an extended period of time.
An EMG, meanwhile, is used to test the electrical activity of the patient's muscles. One or more EMG parameters collected with the EMG may also be analyzed to determine the sedation level of the patient 20. The EMG parameters are also examples of central nervous system parameters in accordance with an embodiment. It is possible to deteiinine a sedation level of the patient 20 by analyzing one or more EMG parameters collected with an EMG. According to another embodiment, the central nervous system monitoring device may acquire data from an EEG or an EMG and then calculate a central nervous system parameter called responsiveness. The responsiveness parameter may also be used to determine a sedation level. The responsiveness parameter will be discussed in more detail hereinafter.
Referring to
where PEEG/EMG(ti) refers to high-frequency EEG or EMG power in a short time window ti computed over the desired frequency range, such as a range of 50 Hz to 150 Hz and P0 is a fixed reference value for the power change. In the above example, the length of this time window corresponds to one epoch (5 seconds according to an embodiment), while T2 may be 30 minutes, and T1 may be 1 minute. However, the values of the desired frequency range, the length of the time window, the value of T1 and the value of T2 may all be different according to additional embodiments. It should be appreciated by those skilled in the art that additional techniques may also be used to determine the sedation level of the patient 20.
One advantage of monitoring a central nervous system parameter such as responsiveness is that the controller 18 can ensure that the spontaneous breathing trials do not occur during periods of time when the patient is sleeping. Statistically, the patient is likely to experience a faster recovery if they are allowed to get sufficient rest. An automated system that respects the patient's sleep cycles is likely to promote a faster recovery.
Referring to
According to another embodiment, the method 100 may skip step 104. Instead of controlling a sedative drug delivery device, the controller 18 would instead rely on data from the central nervous system monitoring device 14 in order to identify when the patient 20 is in an alert period. For example, by monitoring the sedation level of the patient 20 with the central nervous system monitoring device 14 for a period of time, such as a number of hours, the controller 18 may be able to identify an alert period. By monitoring the sedation level over a period of time, the controller 18 may be able to identify when the patient 20 is at a sedation level that is low relative to the previous number of hours and/or days. It should be understood that the threshold defining the target sedation level may change during the course of treatment for the patient 20.
After the target sedation level has been reached, the controller 18 instructs the ventilator 12 to reduce the level of ventilatory support to the patient at step 106. The level of ventilatory support may be reduced according to any known protocol. For example, according to an exemplary embodiment, reducing the level of ventilatory support may comprise decreasing a level of pressure support provided by the ventilator 12. The pressure support may be decreased in either a step-wise or a generally continuous manner. During step 106, the controller 18 monitors the patient 20 for the purpose of detecting if the patient 20 has an adverse reaction to the lower level of ventilatory support. One technique for monitoring the patient 20 for an adverse reaction will be discussed hereinafter. Decreasing the level of ventilatory support may include the control of other parameters such as reducing a duration of pressure support during the patient's inspiration. Reducing the level of ventilatory support may comprise other techniques in accordance with additional embodiments.
Still referring to
Still referring to step 108, the spontaneous breathing trial typically lasts from 1 minute to 10 minutes in length. However, embodiments of the invention may use spontaneous breathing trials that are either shorter than 1 minute or longer than 10 minutes. It should be appreciated by those skilled in the art that a relatively healthy patient may have a longer breathing trial than a patient who is less healthy. The duration of the spontaneous breathing trial may be determined automatically based on the patient's ability to maintain the proper VO2 to VCO2 ratio at a specific level of ventilatory support or the duration of the spontaneous breathing trial may be manually set by a caregiver.
During the spontaneous breathing trial at step 108, the central nervous system monitoring device 14 may continue to monitor the sedation level of the patient 20. The controller 18 may communicate with the sedative drug delivery device 16 to keep the patient 20 at a target sedation level during the spontaneous breathing trial. However, if the sedation level of the patient 20 falls outside of the desired range even with the control of the sedative drug delivery device 16, the spontaneous breathing trial may be aborted. Thus far, experimental data have shown that spontaneous breathing trials are most effective when the patient 20 is at a sedation level consistent with a period of relative alertness. If the controller 18 and the sedative drug delivery device 16 cannot maintain the patient 20 within the proper range of sedation levels, it is generally better to resume a higher level of ventilatory support.
Still referring to
At step 112, the controller 18 instructs the sedative drug delivery device 16 to increase an amount of the sedative drug administered to the patient 20. The central nervous system monitoring device 14 may monitor a central nervous system parameter such as responsiveness while the sedative drug delivery device 16 increases the amount of sedative drug administered to the patient 20. By monitoring the feedback from the central nervous system monitoring device 14, the controller 18 may determine the appropriate amount of sedative drug to administer to the patient 20.
In accordance with an embodiment where the controller 18 does not control a sedative drug delivery device, the method 100 may optionally skip step 112 and proceed from step 110 directly to step 114.
At step 114, the controller 18 determines if it is necessary to perform an additional spontaneous breathing trial. It may be desirable to perform one or more spontaneous breathing trials per day. In accordance with an embodiment, the controller 18 may wait approximately 24 hours before beginning the next spontaneous breathing trial. When it is time for the next spontaneous breathing trial, the method 100 returns to step 102 and steps 102-114 are repeated. If it is not necessary to perform another spontaneous breathing trial, the method 100 advances to step 116 and ends. After finishing one or more spontaneous breathing trials, the controller 18 may compile a summary regarding the patient's performance during the spontaneous breathing trial or trials. The summary may include trend information of parameters such as VO2, VCO2, respiration rate, and minute volumes. According to another embodiment, the clinician may decide if an additional spontaneous breathing trial is needed or if the patient is ready to be taken off the ventilator based on the summary.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.