The present disclosure relates to thermoelectric (TE) systems and the control of one or more TE devices, and certain embodiments are particularly directed to, for example, using the Seebeck effect to determine a temperature of, or a temperature differential across, a portion of a TE device.
According to some embodiments, a thermoelectric system comprises a thermoelectric device having a first surface and a second surface and a power source configured to deliver a voltage across the thermoelectric device to selectively activate or deactivate the thermoelectric device. In some embodiments, the first surface is configured to heat and the second surface is configured to cool when the thermoelectric device is electrically activated. The system further comprises a processor configured to determine a potential between the first surface and the second surface when the thermoelectric device is deactivated (e.g., where no or substantially no electrical voltage is delivered to it), correlate the potential to a temperature of the first surface and adjust the correlated temperature of the first surface based on an ambient temperature.
According to some embodiments, the processor is further configured to compare the temperature of the first surface with a desired temperature and adjust the amount of power supplied to the thermoelectric device by the power supply, thereby reducing an amount of error between the temperature of the first surface and the desired temperature. In some embodiments, the system further comprises a second thermoelectric device. In some embodiments, the processor is further configured to determine a potential between the first and second surfaces of the second thermoelectric device when the second thermoelectric device is deactivated, correlate the potential between the first and second surfaces of the second thermoelectric device to a temperature of the first surface of the second thermoelectric device, compare the temperature of the first surface of the second thermoelectric device with the temperature of the first surface of the first thermoelectric device and adjust an output to at least one of the first and second thermoelectric devices based on the comparison.
According to some embodiments, the thermoelectric device is located in a seat (e.g., car or other vehicle seat, task or desk chair, etc.). In some embodiments, the thermoelectric device is located in a cup holder, cool bin or other cooling storage container or slot (e.g., phone or other electronic device cooling system). In some embodiments, the thermoelectric device is located in a bed system (e.g., consumer bed, medical or hospital bed, medical topper, etc.). In other embodiments, the thermoelectric device is located in a medical application (e.g., medical bed, patient cooling, wheelchair, etc.). In some embodiments, the thermoelectric device is located in a battery thermal management application or system. In some embodiments, the system is configured to provide temperature controlled fluid to a vehicle battery.
According to some embodiments, a method of controlling a duty cycle or a power level of a thermoelectric device comprises determining a potential between a first surface of a thermoelectric device and a second surface of the thermoelectric device when the thermoelectric device is electrically deactivated or depowered, wherein the first surface is configured to heat and the second surface is configured to cool when the thermoelectric device is electrically activated or powered. The method further comprises correlating the potential with a temperature of the first surface of the thermoelectric device and adjusting the duty cycle or the power level of the thermoelectric device based on a comparison of the temperature of the first surface of the thermoelectric device with a desired temperature.
According to some embodiments, a method of measuring a temperature of a side of a thermoelectric device having a first side and a second side comprises providing the thermoelectric device, the thermoelectric device configured to be selectively electrically activated or deactivated and measuring a voltage potential between the first side and the second side when the thermoelectric device is deactivated. The method further includes correlating the voltage potential to a temperature of at least one side of the thermoelectric device. In some embodiments, correlating the voltage potential to the temperature of the at least one side is accomplished using a lookup table or calculation (e.g., via a database, computer, network, mainframe, etc.).
According to some embodiments, a method of providing temperature control to a system, the method comprises providing a thermoelectric device, the thermoelectric device comprising a first surface and a second surface, said thermoelectric device being configured to be selectively activated or deactivated, wherein the thermoelectric device is configured to receive power from a power source when it is activated. The method further includes determining a potential between the first surface and the second surface when the thermoelectric device is deactivated, correlating the potential with a temperature of the first side, comparing the temperature of the first side with a desired temperature value and adjusting the power received by the thermoelectric device based on the comparison, thereby changing an amount of heat exchanged between a fluid and at least one of the first surface and the second surface, wherein the fluid is provided to the system.
According to some embodiments, the system comprises a vehicle seat (e.g., automobile seat) or another type of seating assembly (e.g., sofa, task, desk or office chair, etc.). According to some embodiments, the system comprises a cup holder, cool bin or other storage compartment or device. In some embodiments, the system comprises a medical application (e.g., wheelchair, medical bed or topper, medical cooling apparatus, etc.). In some embodiments, the system comprises a bed system. In one embodiment, the system comprises a cooling tower or other cooling device or system. In some embodiments, the system comprises thermal management. In some embodiments, the system comprises a thermoelectric generator.
In some embodiments, a TE system includes a TE device having a first surface and a second surface, a power source configured to power and depower the TE device, and a processor. The processor can be configured to determine a potential between the first surface and the second surface when the TE device is depowered. The processor can also be configured to correlate the potential to a temperature of the first surface. In certain instances, the processor is further configured to adjust the correlated temperature of the first surface based on an ambient temperature. The processor can be configured to compare the temperature of the first surface with a desired temperature and to adjust an output to the TE device.
In certain embodiments, the system includes a second TE device. In some embodiments, the processor is configured to determine a potential between the first and second surfaces of the second TE device when the second TE device is depowered. The processor can also be configured to correlate the potential between the first and second surfaces of the second TE device to a temperature of the first surface of the second TE device. The processor can be configured to compare the temperature of the first surface of the second TE device with the temperature of the first surface of the first TE device. In some such instances, the processor is configured to adjust an output to at least one of the first and second thermoelectric devices based on the comparison.
Various applications for the TE device are contemplated. For example, the TE device can be used in a bed (e.g., a medical bed), seat (e.g., an automobile seat), cup holder, cooling tower, spacecraft, or airplane. In some embodiments, the system is configured to provide temperature controlled fluid to a vehicle battery. For example, the TE device can be at least partly located in a fluid duct of a temperature control and/or ventilation system for a vehicle battery.
In certain embodiments, a method of controlling a TE device that is cycled between powered and depowered modes includes determining a potential between a first surface of the TE device and a second surface of the TE device when the TE device is depowered. The method can also include correlating the potential with a temperature of the first surface. Further, the method can include adjusting an output to the TE device based on a comparison of the temperature of the first surface of the TE device with a desired temperature.
In some embodiments, a method of measuring a temperature of at least one side of a thermoelectric device (having a first side and a second side) includes providing the thermoelectric device. The thermoelectric device can be configured to receive power from a power source during certain time periods and to not receive power from the power source during other time periods. In some embodiments, the method also includes measuring a voltage potential between the first side and the second side when the thermoelectric device is not receiving power from the power source. The method can include correlating the voltage potential to a temperature of at least one side of the thermoelectric device. In certain embodiments, correlating the voltage potential to the temperature of the at least one side is accomplished using a lookup table.
In some embodiments, a method of providing temperature control to a system includes providing a thermoelectric device. In some embodiments, the thermoelectric device includes a first surface and a second surface and has an activated mode and a deactivated mode. The thermoelectric device can be configured to receive power from a power source. In certain embodiments, the method also includes determining a potential between the first surface and the second surface when the thermoelectric device is in the deactivated mode (e.g., off or other state where no or substantially no electrical voltage is supplied to the device, at an electrical activation level or voltage that is lower than the activation or first level, etc.). Some embodiments of the method include correlating the potential with a temperature of the first side and comparing the temperature of the first side with a desired temperature value. In certain embodiments, the method includes adjusting the power received by the thermoelectric device based on the comparison, thereby changing an amount of heat exchanged between a fluid and at least one of the first surface and the second surface, wherein the fluid is provided to the system. For example, the fluid can be air in a ventilation duct. In some embodiments, the system is a vehicle seat, a cup holder, or a wheelchair. In some embodiments, the system is hospital bed or a bed topper member. In certain arrangements, the system is a battery. In other arrangements, the system is a cooling tower.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. In addition, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.
A variety of examples of TE systems and control methods therefore are described below to illustrate various examples that may be employed to achieve the desired improvements. These example embodiments are only illustrative and not intended in any way to restrict the general inventions presented and the various aspects and features of these inventions. For example, although certain embodiments and examples are provided herein in the automotive, medical, food service, aerospace, evaporative cooling, and other fields, the inventions are not confined or in any way limited or restricted to such fields and certain embodiments can be used in other fields. As discussed in greater detail herein, the various temperature detection and/or control schemes or methods discussed herein provide one or more benefits, such as, for example, enabling a system to respond more reliably and quickly, improving the reliability of a system (e.g., less failure modes or incidents) and/or the like. Furthermore, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. No features, structure, or step disclosed herein is essential or indispensible.
As illustrated in
To facilitate such temperature control, it can be helpful to determine the ambient temperature, the temperature of at least one of the sides 106, 108 and/or a temperature within the TE device 102. Thus, some embodiments of the system 100 include: an ambient temperature sensor 120 and/or a TE device temperature sensor 112 (such as a thermistor). The TE device temperature sensor 112 can be located inside, adjacent to, near, or otherwise in close proximity to the TE device 102. Wires 112a, 112b and/or other electrically conductive connectors (e.g., electrical traces, busses, etc.) can electrically connect the temperature sensor 112 to other electrical components, such as a processor 118.
However, embodiments including one or more TE device temperature sensors 112 can be less desirable due to, for example, the cost of the sensor 112, the additional manufacturing steps and complexity associated with positioning the sensor 112 in the system 100, the possibility of sensor failure, and/or one or more other reasons or considerations. Furthermore, wires 112a, 112b or other electrical connectors can add manufacturing steps, such as connecting the wires to the sensor 112, routing the wires 112a, 112b through the TE device 102, routing the wires 112a, 112b to the processor 118, and connecting the wires 112a, 112b to the processor 118. Moreover, the temperature sensor 112 and the wires 112a, 112b are points of potential failure and thus can reduce the overall reliability of the system 100.
With regard to
Like the system 100, the system 200 can include a power source 204 operably coupled with a TE device 202 having first and second sides 206, 208. However, unlike the system 100, the system 200 does not employ a temperature sensor (see 112 in
As shown in
V=α(Th−Tc)=αΔT
Where V is the potential 214 between the first and second sides 206, 208, α is the Seebeck coefficient, and (Th−Tc) or ΔT is the temperature difference 210 between the first and second sides 206, 208. As such, the Seebeck coefficient for a given TE device 202 can be described as the ratio of the potential 214 to the temperature difference 210 between the first and second sides 206, 208.
In some embodiments, the Seebeck coefficient α can be determined experimentally. For example, various voltages can be supplied to the TE device 202 (e.g., by the power source 204), and the resultant temperature difference 210 and corresponding potential 214 can be observed. For example, a 9-volt power source 204 can be applied to the TE device 202. Then the power source 204 can be disconnected, and the temperature difference 210 and potential 214 can be measured. A similar procedure can be applied for various other voltages, such as 12-volt, 15-volt, 24-volt, and otherwise. From these empirical readings of temperature difference 210 and potential 214, the Seebeck coefficient α can be determined for a given TE system 200.
In certain configurations, for a TE system 200 with a known Seebeck coefficient α, the temperature difference 210 between the first and second sides 206, 208 can be determined based on the voltage potential 214. For example, in some cases, the temperature difference 210 (ΔT) is approximately equal to the potential 214 divided by the Seebeck coefficient α. Such a configuration can, for example, provide for monitoring of the temperature difference 210 of the TE device 202 without the need for a separate temperature sensor. As noted above, the elimination of such a temperature sensor can facilitate manufacturing (e.g., reduce process steps), decrease manufacturing time, reduce costs, increase device longevity, and/or provide one or more other advantages or benefits. Further, not including of such a sensor can simplify the design of the TE device 202, for example, by eliminating channels through the TE device 202 for the passage of wires for the sensor. Furthermore, not including such a sensor can improve reliability of the system 200 by reducing the total number of components that could fail.
Various embodiments of the system 200 are configured to determine an absolute temperature of at least one of the sides 206, 208 of the TE device 202, as will be discussed further below. In some embodiments, the temperature difference 210 and/or the absolute temperature of at least one of the sides 206, 208 is used in a feedback control scheme, which can, for example, provide for a faster response time and/or reduced thermal lag for temperature feedback compared to systems employing a separate temperature sensor (e.g., the sensor 112 in the system 100). Additional details regarding illustrative embodiments of such a feedback control scheme are provided below. In some embodiments, the temperature difference 210 and/or the absolute temperature of at least one of the sides 206, 208 is used for fault monitoring. For example, the temperature difference 210 and/or the absolute temperature of at least one of the sides 206, 208 can be used to detect overheating of the TE device 202, which could reduce the efficiency of the TE device 202 or otherwise damage the device and/or other components of the TE system 200.
The TE system 200 can be used in most any application in which thermoelectric closed loop control would be advantageous. For example, the TE system 200 can be used in any type of support assembly 205 such as heated and/or cooled beds, hospital beds, bed topper members, vehicle seats, wheelchairs and/or any other seating assemblies as shown schematically in
As noted above, in some embodiments, the TE system 200 is used in a seat for an automobile or other vehicle. For example, the TE system 200 or portions thereof, can be located in a heated and/or cooled automobile seat system. In certain embodiments, such as in the embodiment shown in
In some embodiments of the TE system 200 in an automobile or other vehicle, the automobile or other vehicle includes an ambient temperature sensor, the data from which is broadcast on a communication bus. In some cases, the processor 218 is in communication with the communication bus and thus able to receive the ambient temperature sensor signal. Thus, in such embodiments, an additional ambient temperature sensor specific to the TE system 200 is not needed.
As shown in
In certain embodiments, the ratio of the amount of time that the TE device 202 is in the powered mode to the total amount of time under consideration is known as the “duty cycle.” Duty cycle is generally expressed as a percentage. For example, if the TE device 202 was powered for three seconds within a ten second time period, then the duty cycle would be expressed as 30%. In certain embodiments, such as is shown in
In some embodiments, the TE device 202 is activated and deactivated several times each second. According to some embodiments, for example, the TE system 200 may operate at approximately 200 Hz. In some embodiments, the TE system 200 operates in the range of approximately 60 Hz to approximately 300 Hz. In some embodiments, the TE system 200 operates at approximately 10, 20, 30, 60, 100, 120, and/or 150 Hz. Other embodiments operate at various other frequencies.
In some embodiments, the TE device 202 is powered via pulse-width modulation (PWM). In some implementations, the processor 218 controls the amount of power applied to the TE device 202 by adjusting (e.g., by software) the length of time that the power source 204 supplies power to the TE device 202. For example, as shown in
Further, given that the TE device 202 is depowered or deactivated for certain time periods during PWM, the potential 214 of the TE device 202 can be measured during such periods without interrupting the normal operation of the TE device 202. However, in other embodiments, operation of the TE device 202 is temporarily interrupted (e.g., depowered) for a short period of time, such as for a period of a few microseconds. In such embodiments, the interruption is generally so brief as to not inhibit controlling the TE device 202 to maintain a desired output, such as a desired temperature.
In some embodiments, the processor 218 can be in communication with an ambient temperature sensor 220 and can be configured to determine the potential 214. For example, an analog input of the processor 218 can be in communication with a negative temperature coefficient device or other device, from which a signal can be used to determine (e.g., by a calculation) an ambient temperature. Such a configuration can, for example, allow for the determination of an absolute temperature of at least one of the first and second sides 206, 208 of the TE device 202. For example, the absolute temperature can be determined with a calculation or by correlating the potential 214 with a known (e.g., by empirical measurements) absolute temperature for at least one of the first and second sides 206, 208. For instance, the correlation may be performed with a lookup table, as discussed in further detail below. The calculated or correlated absolute temperature can then be adjusted based on the ambient temperature. In some instances, the absolute temperature of one of the first and second sides 206, 208 is determined by adding the temperature difference 210 and the ambient temperature. In certain scenarios, the absolute temperature of one of the first and second sides 206, 208 is used in a closed loop feedback control scheme, which can, in some embodiments, enhance the response time of the control scheme.
In certain embodiments, the determination of the absolute temperature of at least one of the first and second sides 206, 208 includes other factors as well. For example, the voltage of the voltage source 204 (e.g., a battery) and/or the duty cycle that was applied to the TE device 202 that resulted in the temperature difference 210 can be used in determining the absolute temperature of at least one of the first and second sides 206, 208. Generally, such factors are dependent on the characteristics of a particular TE device design and are determined empirically. In some embodiments, the status of other components (e.g., fan speed) is also used in determining the absolute temperature.
In some instances, the relationship between the absolute temperature of at least one of the sides 206, 208 and the potential 214 is determined by a computation, which can be programmed in the processor 218. In other instances, the relationship between the absolute temperature of at least one of the sides 206, 208 and the potential 214 is set forth in a lookup table, which can be programmed in the processor 218 or reside in a data storage element, such as a magnetic disk or other memory element. In certain arrangements, employing a lookup table can, for example, provide a faster response than embodiments employing a computation.
An embodiment of a method 400 of producing such a lookup table or computation is illustrated in
In block 404, the TE device can be depowered or deactivated. For example, the power source can be disconnected from the TE device. Additionally, in block 404 the potential across the first and second sides can be measured. For example, in some embodiments, at the above-described ambient temperature of 0° C. and/or absolute temperature of about 4° C. on one side of the TE device, a potential of about 0.4 volts may be measured.
In block 406, a decision can be made whether there are additional temperatures (e.g., gradient or absolute) to be analyzed at the present ambient temperature. For example, if the TE device is intended to operate with a temperature of about 0° C. to about 50° C., block 406 asks whether additional data points between about 0° C. and about 50° C., as well as the corresponding potentials, are desired to be measured. If the answer is affirmative, the method 400 moves to block 408, where the TE device temperature is incremented (e.g., by 4° C.). The method then loops back to block 402, in which power is applied to the TE device to produce the incremented temperature in the TE device. In some embodiments, the loop from blocks 402, 404, 406, 408 and back to block 402 occurs at generally the same ambient temperature.
However, if the answer in block 406 is negative, then the method 400 moves to block 410, which queries whether there are additional ambient temperatures to be analyzed. For example, if the TE device is intended to be used in a range of ambient temperatures (e.g., −10° C. to 30° C.), block 410 asks whether the loop of blocks 402-408 should be completed for additional ambient temperatures within that range. If the answer in block 410 is affirmative, then the method 400 moves to block 412, in which the ambient temperature is incremented (e.g., by 5° C.). The method 400 then loops back to block 402, in which power is applied to the TE device to produce the temperature in the TE device at the incremented ambient temperature.
If, on the other hand, the answer to block 410 is negative, the method 400 moves to block 414, in which a computation is generated or a look-up table is created for each of the temperatures in the TE device 102 and at each of the ambient temperatures for which blocks 402-408 were completed. An example of a look-up table for three ambient temperatures (e.g., about 0° C., about 5° C., and about 10° C.) is shown in Table 1 below. The method 400 can then end.
With reference to Table 1, at a given ambient temperature, a potential was provided to an embodiment of the TE device 102 to produce a measured temperature difference (e.g., when the TE device 102 was depowered). For example, at an ambient temperature of about 0° C., to produce a measured temperature difference of about 4.2° C., it was found that a supply of about 0.15 V was needed to the TE device 102. As another example, at an ambient temperature of about 0° C., it was determined that about 0.34 V was needed to be supplied to the TE device 102 to produce a measured temperature difference of about 7.9° C. This process continued for various other target temperatures (as shown above) until a target temperature of about 40.8° C. and the corresponding potential of about 2.33V were found.
The ambient temperature was then incremented to a new ambient temperature, such as about 5° C. As shown above, several target temperatures and corresponding potentials (when the TE device 102 was depowered) were then determined. For example, at an incremented ambient temperature of about 5° C. and for a target temperature was then set to about 9.2° C., the potential needed to be supplied to the TE device 102 was found to be about 0.16 V. The process continued through several other target temperatures and corresponding potentials for the 5° C. ambient temperature. The ambient temperature was then incremented to about 10 C. and several target temperatures and corresponding potentials (e.g., when the TE device 102 was depowered) were then determined.
With regard to
The method 500 then moves to block 504, in which the Seebeck potential of the TE device is measured. For example, in some embodiments, the processor is configured to measure the potential of the TE device. In other embodiments, the processor is configured to communicate with another component that measures the potential of the TE device. Generally, the potential of the TE device is measured when the TE device is depowered.
In some embodiments, the method 500 further includes block 506, in which the absolute temperature of a surface of the TE device is calculated. This can include, for example, determining (e.g., with a computation or lookup table) the absolute temperature based on the Seebeck potential measured in block 504. In certain embodiments, block 506 also includes adjusting the absolute temperature determination with the ambient temperature from block 502. Further, in some arrangements, the absolute temperature determination includes other factors (e.g., duty cycle and battery voltage) as well. In some implementations, the Seebeck potential is measured during a duty cycle period in which the TE device 102 is de-energized.
In some embodiments, the method 500 includes block 508, in which the absolute temperature of a surface of the TE device is compared with a desired value for the TE device, such as a temperature setpoint to determine the amount of error. For example, the desired value can be provided to the processor (e.g., by a person adjusting a dial or other input device) and the processor can conduct the comparison.
In some embodiments, the method includes block 510, in which the signal to the TE device is modified to reduce the error between the absolute temperature of a surface of the TE device and the desired value for the TE device. For example, if the absolute temperature of a surface of the TE device is higher than the desired value for the TE device, future duty cycles for the TE device can be decreased (e.g., from 40% to 20%), thereby decreasing the absolute temperature of a surface of the TE device and reducing the error between the absolute temperature of a surface of the TE device and the desired value for the TE device. In some cases, the error is supplied to, for example, a PID controller.
As shown, block 512 can ask whether the TE device continues to be in operation. For example, for a TE device in an automobile seat cushion, the block 512 can ask whether the automobile key remains in the ignition and/or whether a seat occupancy sensor indicates that the seat is occupied. If the answer to block 512 is in the affirmative, then the method 500 can loop back to block 502 to begin again. If, however, the answer to block 512 is negative, then the method 500 ends.
The method 500 can, for example, increase responsiveness of a system compared to systems having an embedded temperature sensor 112 (see
As illustrated in
As discussed in greater detail above, when power is applied to the TE devices 602a, 602b, temperature differences in the TE devices 602a, 602b can result. For example, the TE device 602a can have a temperature difference 610a and the TE device 602b can have a temperature difference 610b. Furthermore, when the TE devices 602a, 602b, are depowered, in some instances, the Seebeck effect can induce potentials in the TE devices 602a, 602b. For example, the TE device 602a can have a potential 614a and the TE device 602b can have a potential 614b.
The TE devices 602a, 602b can be located at least partly in a fluid conduit 622. For example, in the embodiment illustrated, the TE devices 602a, 602b are located partly in a duct, such as an air duct in a temperature control system. Fluid, such as ambient air, can enter the conduit 622 at a first end 624 and can exit the conduit 622 at a second end 626. Between the first and second ends 624, 626, the fluid can pass through, over, and/or near one or more of the TE devices 602a, 602b. Thus, in certain embodiments, due at least partly to the temperature differences 610a, 610b of the TE devices 602a, 602b, heat transfer between the fluid and the TE devices 602a, 602b can occur, thereby changing the temperature of the fluid as it passes through the conduit 622. For example, the duty cycle and/or potentials 614a, 614b and or temperature differences 610a, 610b can be controlled so as to transfer. Sufficient heat to the fluid to maintain a desired fluid temperature downstream of the TE devices 602a, 602b. As shown, in some embodiments, the TE devices 602a, 602b are arranged in parallel with respect to the fluid flowing through the conduit 622.
In certain embodiments, the system 600 is configured to determine an ambient temperature. For example, in some instances, the system 600 includes an ambient temperature sensor 620. In other instances, the system 600 is configured to receive the ambient temperature from another system, such as from a communication bus in an automobile.
As previously discussed, the TE devices 602a, 602b can be controlled based on, for example, the potential 614a, 614b and the ambient temperature. In some embodiments, the same ambient temperature is used to control each of the TE devices 602a, 602b. Such configurations can, for example, reduce the total number of components of the system 600, thus reducing cost, complexity, and potential for failure. For example, a single ambient temperature sensor 620 can be used rather than a dedicated ambient temperature sensor for each of the TE devices.
With regard to
In accordance with certain other embodiments discussed herein, when power is applied to the TE devices 702a, 702b from a power source (not shown), a temperature differential can results across the TE devices 702a, 702b. For example, the TE device 702a can have a temperature difference 710a between a first side 706a and a second side 708a, and the TE device 702b can have a temperature difference 710b between a first side 706b and a second side 708b. Moreover, when power is discontinued to the TE devices 702a, 702b, in some embodiments, the Seebeck effect induces potentials in the TE devices 702a, 702b. For example, the TE device 702a can have a potential 714a and the TE device 702b can have a potential 714b.
In certain embodiments, such as in the embodiment depicted in
In certain embodiments, due to, for example, the temperature difference 710a of the TE device 702a, the temperature of the fluid is changed as it passes through, over, and/or near the TE device 702a. In some such instances, the temperature of the fluid downstream of the TE device 702a and upstream of the TE device 702b is approximately the sum of the ambient temperature and the absolute temperature of the first side 706a of the TE device 702a. Thus, in such cases, the temperature of the fluid that encounters the TE device 702b has been changed by the TE device 702a.
In some embodiments, due to, for example, the temperature difference 710b of the TE device 702b, the temperature of the fluid is changed as it passes through, over, and/or near the TE device 702b. In some such instances, the temperature of the fluid downstream of the TE device 702b is the approximately the sum of the temperature of the fluid that is downstream of the TE device 702a and upstream of the TE device 702b plus the absolute temperature of the first side 706b of the TE device 702b. In certain instances, the temperature of the fluid downstream of the TE device 702b is the approximately the sum of the ambient temperature, the absolute temperature of the first side 706a of the TE device 702a, and the absolute temperature of the first side 706b of the TE device 702b.
In certain embodiments, the TE devices 702a, 702b can operate in conjunction to provide a desired temperature of fluid. For example, the TE devices 702a can raise the temperature of the fluid a first amount and the second TE device 702b can raise the temperature of the fluid a second amount. Likewise, the TE devices 702a can lower the temperature of the fluid a first amount and the second TE device 702b can lower the temperature of the fluid a second amount. In further embodiments, for example in instances in which dehumidified and temperature controlled fluid is desired, the TE device 702a can lower the temperature of the fluid an amount (e.g., so as to promote water vapor in the fluid to condense), then TE device 702b can raise the temperature of the fluid to approximately a desired temperature level (e.g., a user-selectable temperature setpoint).
With reference to
Although TE systems and control methods therefore have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the TE systems and control methods therefore extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the embodiments and certain modifications and equivalents thereof. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the vial adaptor. For example, the temperature of a surface of the TE device can be determined by both a temperature sensor 112 associated with the TE device (see
This application claims the priority benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/545,017, filed Oct. 7, 2011, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1839156 | Lumpkin | Dec 1931 | A |
2362259 | Findley | Nov 1944 | A |
2363168 | Findley | Nov 1944 | A |
2461432 | Mitchell | Feb 1949 | A |
2462984 | Maddison | Mar 1949 | A |
2493067 | Goldsmith | Jan 1950 | A |
2512559 | Williams | Jun 1950 | A |
2519241 | Findley | Aug 1950 | A |
2782834 | Vigo | Feb 1957 | A |
2791956 | Guest | May 1957 | A |
2813708 | Frey | Nov 1957 | A |
2884956 | Perlin | May 1959 | A |
2931286 | Fry, Sr. et al. | Apr 1960 | A |
2959017 | Gilman et al. | Nov 1960 | A |
2976700 | Jackson | Mar 1961 | A |
2984077 | Gaskill | May 1961 | A |
3019609 | Pietsch | Feb 1962 | A |
3030145 | Kottemann | Apr 1962 | A |
3039817 | Taylor | Jun 1962 | A |
3077079 | Pietsch | Feb 1963 | A |
3085405 | Frantti | Apr 1963 | A |
3090206 | Anders | May 1963 | A |
3136577 | Richard | Jun 1964 | A |
3137142 | Venema | Jun 1964 | A |
3137523 | Karner | Jun 1964 | A |
3138934 | Roane | Jun 1964 | A |
3178894 | Mole et al. | Apr 1965 | A |
3186240 | Daubert | Jun 1965 | A |
3197342 | Neild | Jul 1965 | A |
3212275 | Tillman | Oct 1965 | A |
3240628 | Sonntag, Jr. | Mar 1966 | A |
3253649 | Laing | May 1966 | A |
3266064 | Figman | Aug 1966 | A |
3282267 | Eidus | Nov 1966 | A |
3298195 | Raskhodoff | Jan 1967 | A |
3325312 | Sonntag, Jr. | Jun 1967 | A |
3326727 | Fritts | Jun 1967 | A |
3351498 | Shinn et al. | Nov 1967 | A |
3392535 | De Castelet | Jul 1968 | A |
3486177 | Marshack | Dec 1969 | A |
3529310 | Olmo | Sep 1970 | A |
3550523 | Segal | Dec 1970 | A |
3599437 | Panas | Aug 1971 | A |
3615870 | Crouthamel | Oct 1971 | A |
3627299 | Schwartze et al. | Dec 1971 | A |
3632451 | Abbott | Jan 1972 | A |
3640456 | Sturgis | Feb 1972 | A |
3648469 | Chapman | Mar 1972 | A |
3703141 | Pernoud | Nov 1972 | A |
3767470 | Hines | Oct 1973 | A |
3786230 | Brandenburg, Jr. | Jan 1974 | A |
3819418 | Winkler et al. | Jun 1974 | A |
3839876 | Privas | Oct 1974 | A |
3870568 | Oesterhelt et al. | Mar 1975 | A |
3876860 | Nomura et al. | Apr 1975 | A |
3899054 | Huntress et al. | Aug 1975 | A |
3902923 | Evans et al. | Sep 1975 | A |
3916151 | Reix | Oct 1975 | A |
3926052 | Bechtel | Dec 1975 | A |
3927299 | Sturgis | Dec 1975 | A |
3928876 | Starr | Dec 1975 | A |
4002108 | Drori | Jan 1977 | A |
4044824 | Eskeli | Aug 1977 | A |
4124794 | Eder | Nov 1978 | A |
4195687 | Taziker | Apr 1980 | A |
4223205 | Sturgis | Sep 1980 | A |
4224565 | Sosniak et al. | Sep 1980 | A |
4281516 | Berthet et al. | Aug 1981 | A |
4315599 | Biancardi | Feb 1982 | A |
4336444 | Bice et al. | Jun 1982 | A |
4338944 | Arkans | Jul 1982 | A |
4391009 | Schild et al. | Jul 1983 | A |
4413857 | Hayashi | Nov 1983 | A |
4423308 | Callaway et al. | Dec 1983 | A |
4437702 | Agosta | Mar 1984 | A |
4438070 | Stephens et al. | Mar 1984 | A |
4459428 | Chou | Jul 1984 | A |
4491173 | Demand | Jan 1985 | A |
4493939 | Blaske et al. | Jan 1985 | A |
4497973 | Heath et al. | Feb 1985 | A |
4506510 | Tircot | Mar 1985 | A |
4518700 | Stephens | May 1985 | A |
4518847 | Horst, Sr. et al. | May 1985 | A |
4549134 | Weiss | Oct 1985 | A |
4554968 | Haas | Nov 1985 | A |
4567351 | Kitagawa et al. | Jan 1986 | A |
4572430 | Takagi et al. | Feb 1986 | A |
4639883 | Michaelis | Jan 1987 | A |
4665707 | Hamilton | May 1987 | A |
4671567 | Frobose | Jun 1987 | A |
4677416 | Nishimoto et al. | Jun 1987 | A |
4685727 | Cremer et al. | Aug 1987 | A |
4704320 | Mizunoya et al. | Nov 1987 | A |
4711294 | Jacobs et al. | Dec 1987 | A |
4712832 | Antolini et al. | Dec 1987 | A |
4777802 | Feher | Oct 1988 | A |
4782664 | Sterna et al. | Nov 1988 | A |
4791274 | Horst | Dec 1988 | A |
4793651 | Inagaki et al. | Dec 1988 | A |
4802929 | Schock | Feb 1989 | A |
4812733 | Tobey | Mar 1989 | A |
4823554 | Trachtenberg et al. | Apr 1989 | A |
4825488 | Bedford | May 1989 | A |
4828627 | Connery | May 1989 | A |
4853992 | Yu | Aug 1989 | A |
4923248 | Feher | May 1990 | A |
4947648 | Harwell et al. | Aug 1990 | A |
4969684 | Zarotti | Nov 1990 | A |
4981324 | Law | Jan 1991 | A |
4988847 | Argos et al. | Jan 1991 | A |
4997230 | Spitalnick | Mar 1991 | A |
5002336 | Feher | Mar 1991 | A |
5012325 | Mansuria et al. | Apr 1991 | A |
5014909 | Yasuo | May 1991 | A |
5016304 | Ryhiner | May 1991 | A |
5022462 | Flint et al. | Jun 1991 | A |
5057490 | Skertic | Oct 1991 | A |
5070937 | Mougin et al. | Dec 1991 | A |
5077709 | Feher | Dec 1991 | A |
5088790 | Wainwright et al. | Feb 1992 | A |
5102189 | Saito et al. | Apr 1992 | A |
5106161 | Meiller | Apr 1992 | A |
5111025 | Barma et al. | May 1992 | A |
5111664 | Yang | May 1992 | A |
5117638 | Feher | Jun 1992 | A |
5119640 | Conrad | Jun 1992 | A |
5125238 | Ragan et al. | Jun 1992 | A |
5148977 | Hibino et al. | Sep 1992 | A |
5166777 | Kataoka | Nov 1992 | A |
5187349 | Curhan et al. | Feb 1993 | A |
5188286 | Pence, IV | Feb 1993 | A |
5255735 | Raghava et al. | Oct 1993 | A |
5256857 | Curhan et al. | Oct 1993 | A |
5265599 | Stephenson et al. | Nov 1993 | A |
5278936 | Shao | Jan 1994 | A |
5279128 | Tomatsu et al. | Jan 1994 | A |
5335381 | Chang | Aug 1994 | A |
5367728 | Chang | Nov 1994 | A |
5372402 | Kuo | Dec 1994 | A |
5375421 | Hsieh | Dec 1994 | A |
5382075 | Shih | Jan 1995 | A |
5385382 | Single, II et al. | Jan 1995 | A |
5409547 | Watanabe et al. | Apr 1995 | A |
5413166 | Kerner et al. | May 1995 | A |
5416935 | Nieh | May 1995 | A |
5419489 | Burd | May 1995 | A |
5419780 | Suski | May 1995 | A |
5430322 | Koyanagi et al. | Jul 1995 | A |
5448788 | Wu | Sep 1995 | A |
5448891 | Nakagiri et al. | Sep 1995 | A |
5456081 | Chrysler et al. | Oct 1995 | A |
5473783 | Allen | Dec 1995 | A |
5493742 | Klearman | Feb 1996 | A |
5493864 | Pomerence et al. | Feb 1996 | A |
5505520 | Frusti et al. | Apr 1996 | A |
5515238 | Fritz et al. | May 1996 | A |
5524439 | Gallup et al. | Jun 1996 | A |
5542503 | Dunn et al. | Aug 1996 | A |
5544487 | Attey et al. | Aug 1996 | A |
5544488 | Reid | Aug 1996 | A |
5555732 | Whiticar | Sep 1996 | A |
5561981 | Quisenberry et al. | Oct 1996 | A |
5576512 | Doke | Nov 1996 | A |
5584084 | Klearman et al. | Dec 1996 | A |
5584183 | Wright et al. | Dec 1996 | A |
5597200 | Gregory et al. | Jan 1997 | A |
5601399 | Okpara et al. | Feb 1997 | A |
5606639 | Lehoe et al. | Feb 1997 | A |
5613729 | Summer, Jr. | Mar 1997 | A |
5613730 | Buie et al. | Mar 1997 | A |
5623828 | Harrington | Apr 1997 | A |
5626021 | Karunasiri et al. | May 1997 | A |
5626386 | Lush | May 1997 | A |
5634342 | Peeters et al. | Jun 1997 | A |
5637921 | Burward-Hoy | Jun 1997 | A |
5640728 | Graebe | Jun 1997 | A |
5642539 | Kuo | Jul 1997 | A |
5645314 | Liou | Jul 1997 | A |
5650904 | Gilley et al. | Jul 1997 | A |
5653741 | Grant | Aug 1997 | A |
5667622 | Hasegawa et al. | Sep 1997 | A |
5675852 | Watkins | Oct 1997 | A |
5690849 | DeVilbiss et al. | Nov 1997 | A |
5692952 | Chih-Hung | Dec 1997 | A |
5704213 | Smith et al. | Jan 1998 | A |
5715695 | Lord | Feb 1998 | A |
5721804 | Greene, III | Feb 1998 | A |
5724818 | Iwata et al. | Mar 1998 | A |
5729981 | Markus et al. | Mar 1998 | A |
5761908 | Oas et al. | Jun 1998 | A |
5761909 | Hughes et al. | Jun 1998 | A |
5798583 | Morita | Aug 1998 | A |
5802855 | Yamaguchi et al. | Sep 1998 | A |
5802856 | Schaper et al. | Sep 1998 | A |
5822993 | Attey | Oct 1998 | A |
5827424 | Gillis et al. | Oct 1998 | A |
5833321 | Kim et al. | Nov 1998 | A |
5850741 | Feher | Dec 1998 | A |
5865031 | Itakura | Feb 1999 | A |
5871151 | Fiedrich | Feb 1999 | A |
5884485 | Yamaguchi et al. | Mar 1999 | A |
5884486 | Hughes et al. | Mar 1999 | A |
5887304 | Von Der Heyde | Mar 1999 | A |
5888261 | Fortune | Mar 1999 | A |
5895964 | Nakayama | Apr 1999 | A |
5902014 | Dinkel et al. | May 1999 | A |
5921100 | Yoshinori et al. | Jul 1999 | A |
5921314 | Schuller et al. | Jul 1999 | A |
5921858 | Kawai et al. | Jul 1999 | A |
5924289 | Bishop, II | Jul 1999 | A |
5924766 | Esaki et al. | Jul 1999 | A |
5924767 | Pietryga | Jul 1999 | A |
5927817 | Ekman et al. | Jul 1999 | A |
5934748 | Faust et al. | Aug 1999 | A |
5936192 | Tauchi | Aug 1999 | A |
5937908 | Inoshiri et al. | Aug 1999 | A |
5948303 | Larson | Sep 1999 | A |
5950067 | Maegawa et al. | Sep 1999 | A |
5952728 | Imanishi et al. | Sep 1999 | A |
5987893 | Schultz-Harder et al. | Nov 1999 | A |
5988568 | Drews | Nov 1999 | A |
5992154 | Kawada et al. | Nov 1999 | A |
5994637 | Imanushi et al. | Nov 1999 | A |
5995711 | Fukuoka et al. | Nov 1999 | A |
6000225 | Ghoshal | Dec 1999 | A |
6003950 | Larsson | Dec 1999 | A |
6006524 | Park | Dec 1999 | A |
6019420 | Faust et al. | Feb 2000 | A |
6038865 | Watanabe et al. | Mar 2000 | A |
6048024 | Wallman | Apr 2000 | A |
6049655 | Vazirani | Apr 2000 | A |
6052853 | Schmid | Apr 2000 | A |
6053163 | Bass | Apr 2000 | A |
6059018 | Yoshinori et al. | May 2000 | A |
6062641 | Suzuki et al. | May 2000 | A |
6072924 | Sato et al. | Jun 2000 | A |
6072938 | Peterson et al. | Jun 2000 | A |
6073998 | Siarkowski et al. | Jun 2000 | A |
6079485 | Esaki et al. | Jun 2000 | A |
6084172 | Kishi et al. | Jul 2000 | A |
6085369 | Feher | Jul 2000 | A |
6086831 | Harness et al. | Jul 2000 | A |
6087638 | Silverbrook | Jul 2000 | A |
6094919 | Bhatia | Aug 2000 | A |
6097088 | Sakuragi | Aug 2000 | A |
6100463 | Ladd et al. | Aug 2000 | A |
6101815 | Van Oort et al. | Aug 2000 | A |
6105373 | Watanabe et al. | Aug 2000 | A |
6109688 | Wurz et al. | Aug 2000 | A |
6112525 | Yoshida et al. | Sep 2000 | A |
6112531 | Yamaguchi | Sep 2000 | A |
6116029 | Krawec | Sep 2000 | A |
6119463 | Bell | Sep 2000 | A |
6120370 | Asou et al. | Sep 2000 | A |
6127619 | Xi et al. | Oct 2000 | A |
6141969 | Launchbury et al. | Nov 2000 | A |
6145925 | Eksin et al. | Nov 2000 | A |
6158224 | Hu et al. | Dec 2000 | A |
6161241 | Zysman | Dec 2000 | A |
6161388 | Ghoshal | Dec 2000 | A |
6164076 | Chu et al. | Dec 2000 | A |
6164719 | Rauh | Dec 2000 | A |
6171333 | Nelson et al. | Jan 2001 | B1 |
6178292 | Fukuoka et al. | Jan 2001 | B1 |
6179706 | Yoshinori et al. | Jan 2001 | B1 |
6186592 | Orizaris et al. | Feb 2001 | B1 |
6189966 | Faust et al. | Feb 2001 | B1 |
6189967 | Short | Feb 2001 | B1 |
6196627 | Faust et al. | Mar 2001 | B1 |
6196839 | Ross | Mar 2001 | B1 |
6206465 | Faust et al. | Mar 2001 | B1 |
6213198 | Shikata et al. | Apr 2001 | B1 |
6222243 | Kishi et al. | Apr 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6233959 | Kang et al. | May 2001 | B1 |
6250083 | Chou | Jun 2001 | B1 |
6256996 | Ghoshal | Jul 2001 | B1 |
6262357 | Johnson et al. | Jul 2001 | B1 |
6263530 | Feher | Jul 2001 | B1 |
6266962 | Ghoshal | Jul 2001 | B1 |
6282907 | Ghoshal | Sep 2001 | B1 |
6289982 | Naji | Sep 2001 | B1 |
6291803 | Fourrey | Sep 2001 | B1 |
6306673 | Imanishi et al. | Oct 2001 | B1 |
6326610 | Muramatsu et al. | Dec 2001 | B1 |
6336237 | Schmid | Jan 2002 | B1 |
6338251 | Ghoshal | Jan 2002 | B1 |
6341395 | Chao | Jan 2002 | B1 |
6347521 | Kadotani et al. | Feb 2002 | B1 |
6378311 | McCordic | Apr 2002 | B1 |
6385976 | Yamamura et al. | May 2002 | B1 |
6391676 | Tsuzaki et al. | May 2002 | B1 |
6393842 | Kim et al. | May 2002 | B2 |
6400013 | Tsuzaki et al. | Jun 2002 | B1 |
6402470 | Kvasnak et al. | Jun 2002 | B1 |
6410971 | Otey | Jun 2002 | B1 |
6425527 | Smole | Jul 2002 | B1 |
6427449 | Logan et al. | Aug 2002 | B1 |
6434328 | Rutherford | Aug 2002 | B2 |
6452740 | Ghoshal | Sep 2002 | B1 |
6470696 | Palfy et al. | Oct 2002 | B1 |
6474073 | Uetsuji et al. | Nov 2002 | B1 |
6481801 | Schmale | Nov 2002 | B1 |
6487739 | Harker | Dec 2002 | B1 |
6489551 | Chu et al. | Dec 2002 | B2 |
6490879 | Lloyd et al. | Dec 2002 | B1 |
6492585 | Zamboni et al. | Dec 2002 | B1 |
6493888 | Salvatini et al. | Dec 2002 | B1 |
6493889 | Kocurek | Dec 2002 | B2 |
6509704 | Brown | Jan 2003 | B1 |
6511125 | Gendron | Jan 2003 | B1 |
6519949 | Wernlund | Feb 2003 | B1 |
6539725 | Bell | Apr 2003 | B2 |
6541737 | Eksin et al. | Apr 2003 | B1 |
6541743 | Chen | Apr 2003 | B2 |
6546576 | Lin | Apr 2003 | B1 |
6548894 | Chu et al. | Apr 2003 | B2 |
6552256 | Shakouri et al. | Apr 2003 | B2 |
RE38128 | Gallup et al. | Jun 2003 | E |
6571564 | Upadhye et al. | Jun 2003 | B2 |
6573596 | Saika | Jun 2003 | B2 |
6574967 | Park et al. | Jun 2003 | B1 |
6580025 | Guy | Jun 2003 | B2 |
6581225 | Imai | Jun 2003 | B1 |
6583638 | Costello et al. | Jun 2003 | B2 |
6598251 | Habboub et al. | Jul 2003 | B2 |
6598405 | Bell | Jul 2003 | B2 |
6604576 | Noda et al. | Aug 2003 | B2 |
6604785 | Bargheer et al. | Aug 2003 | B2 |
6605955 | Costello et al. | Aug 2003 | B1 |
6606754 | Flick | Aug 2003 | B1 |
6606866 | Bell | Aug 2003 | B2 |
6619044 | Batchelor et al. | Sep 2003 | B2 |
6619736 | Stowe et al. | Sep 2003 | B2 |
6625990 | Bell | Sep 2003 | B2 |
6626488 | Pfahler | Sep 2003 | B2 |
6629724 | Ekern et al. | Oct 2003 | B2 |
6637210 | Bell | Oct 2003 | B2 |
6644735 | Bargheer et al. | Nov 2003 | B2 |
6672076 | Bell | Jan 2004 | B2 |
6676207 | Rauh et al. | Jan 2004 | B2 |
6684437 | Koenig | Feb 2004 | B2 |
6686532 | Macris | Feb 2004 | B1 |
6687937 | Harker | Feb 2004 | B2 |
6695402 | Sloan, Jr. | Feb 2004 | B2 |
6700052 | Bell | Mar 2004 | B2 |
6705089 | Chu et al. | Mar 2004 | B2 |
6708352 | Salvatini et al. | Mar 2004 | B2 |
6711767 | Klamm | Mar 2004 | B2 |
6711904 | Law et al. | Mar 2004 | B1 |
6719039 | Calaman et al. | Apr 2004 | B2 |
6725669 | Melaragni | Apr 2004 | B2 |
6727422 | Macris | Apr 2004 | B2 |
6730115 | Heaton | May 2004 | B1 |
6739138 | Saunders et al. | May 2004 | B2 |
6739655 | Schwochert et al. | May 2004 | B1 |
6743972 | Macris | Jun 2004 | B2 |
6761399 | Bargheer et al. | Jul 2004 | B2 |
6764502 | Bieberich | Jul 2004 | B2 |
6767766 | Chu et al. | Jul 2004 | B2 |
6772829 | Lebrun | Aug 2004 | B2 |
6774346 | Clothier | Aug 2004 | B2 |
6786541 | Haupt et al. | Sep 2004 | B2 |
6786545 | Bargheer et al. | Sep 2004 | B2 |
6790481 | Bishop et al. | Sep 2004 | B2 |
6804966 | Chu et al. | Oct 2004 | B1 |
6808230 | Buss et al. | Oct 2004 | B2 |
6812395 | Bell | Nov 2004 | B2 |
6815814 | Chu et al. | Nov 2004 | B2 |
6817191 | Watanabe | Nov 2004 | B2 |
6817197 | Padfield | Nov 2004 | B1 |
6817675 | Buss et al. | Nov 2004 | B2 |
6818817 | Macris | Nov 2004 | B2 |
6823678 | Li | Nov 2004 | B1 |
6828528 | Stowe et al. | Dec 2004 | B2 |
6834509 | Palfy et al. | Dec 2004 | B2 |
6840305 | Zheng et al. | Jan 2005 | B2 |
6840576 | Ekern et al. | Jan 2005 | B2 |
6841957 | Brown | Jan 2005 | B2 |
6845622 | Sauciuc et al. | Jan 2005 | B2 |
6855158 | Stolpmann | Feb 2005 | B2 |
6855880 | Feher | Feb 2005 | B2 |
6857697 | Brennan et al. | Feb 2005 | B2 |
6857954 | Luedtke | Feb 2005 | B2 |
6868690 | Faqih | Mar 2005 | B2 |
6871365 | Flick et al. | Mar 2005 | B2 |
6886351 | Palfy et al. | May 2005 | B2 |
6892807 | Fristedt et al. | May 2005 | B2 |
6893086 | Bajic et al. | May 2005 | B2 |
6904629 | Wu | Jun 2005 | B2 |
6907739 | Bell | Jun 2005 | B2 |
6923216 | Extrand et al. | Aug 2005 | B2 |
6935122 | Huang | Aug 2005 | B2 |
6954944 | Feher | Oct 2005 | B2 |
6959555 | Bell | Nov 2005 | B2 |
6962195 | Smith et al. | Nov 2005 | B2 |
6963053 | Lutz | Nov 2005 | B2 |
6967309 | Wyatt et al. | Nov 2005 | B2 |
6976734 | Stoewe | Dec 2005 | B2 |
6977360 | Weiss | Dec 2005 | B2 |
6981380 | Chrysler et al. | Jan 2006 | B2 |
6990701 | Litvak | Jan 2006 | B1 |
7000490 | Micheels | Feb 2006 | B1 |
7036163 | Schmid | May 2006 | B2 |
7040710 | White et al. | May 2006 | B2 |
7052091 | Bajic et al. | May 2006 | B2 |
7063163 | Steele et al. | Jun 2006 | B2 |
7066306 | Gavin | Jun 2006 | B2 |
7070231 | Wong | Jul 2006 | B1 |
7070232 | Minegishi et al. | Jul 2006 | B2 |
7075034 | Bargheer et al. | Jul 2006 | B2 |
7082772 | Welch | Aug 2006 | B2 |
7084502 | Bottner et al. | Aug 2006 | B2 |
7100978 | Ekern et al. | Sep 2006 | B2 |
7108319 | Hartwich et al. | Sep 2006 | B2 |
7111465 | Bell | Sep 2006 | B2 |
7114771 | Lofy et al. | Oct 2006 | B2 |
7124593 | Feher | Oct 2006 | B2 |
7131689 | Brennan et al. | Nov 2006 | B2 |
7134715 | Fristedt et al. | Nov 2006 | B1 |
7141763 | Moroz | Nov 2006 | B2 |
7147279 | Bevan et al. | Dec 2006 | B2 |
7165281 | Larssson et al. | Jan 2007 | B2 |
7168758 | Bevan et al. | Jan 2007 | B2 |
7178344 | Bell | Feb 2007 | B2 |
7201441 | Stoewe et al. | Apr 2007 | B2 |
7213876 | Stoewe | May 2007 | B2 |
7220048 | Kohlgrüber et al. | May 2007 | B2 |
7224059 | Shimada et al. | May 2007 | B2 |
7231772 | Bell | Jun 2007 | B2 |
7244887 | Miley | Jul 2007 | B2 |
7246496 | Goenka et al. | Jul 2007 | B2 |
7272936 | Feher | Sep 2007 | B2 |
7273981 | Bell | Sep 2007 | B2 |
7299639 | Leija et al. | Nov 2007 | B2 |
7337615 | Reidy | Mar 2008 | B2 |
7338117 | Iqbal et al. | Mar 2008 | B2 |
7340907 | Vogh et al. | Mar 2008 | B2 |
7355146 | Angelis et al. | Apr 2008 | B2 |
7356912 | Iqbal et al. | Apr 2008 | B2 |
7360365 | Codecasa et al. | Apr 2008 | B2 |
7360416 | Manaka et al. | Apr 2008 | B2 |
7370479 | Pfannenberg | May 2008 | B2 |
7370911 | Bajic et al. | May 2008 | B2 |
7380586 | Gawthrop | Jun 2008 | B2 |
7425034 | Bajic et al. | Sep 2008 | B2 |
7426835 | Bell et al. | Sep 2008 | B2 |
7462028 | Cherala et al. | Dec 2008 | B2 |
7469432 | Chambers | Dec 2008 | B2 |
7475464 | Lofy et al. | Jan 2009 | B2 |
7475938 | Stoewe et al. | Jan 2009 | B2 |
7478869 | Lazanja et al. | Jan 2009 | B2 |
7480950 | Feher | Jan 2009 | B2 |
7506924 | Bargheer et al. | Mar 2009 | B2 |
7506938 | Brennan et al. | Mar 2009 | B2 |
7513273 | Bivin | Apr 2009 | B2 |
7581785 | Heckmann et al. | Sep 2009 | B2 |
7587901 | Petrovski | Sep 2009 | B2 |
7587902 | Bell | Sep 2009 | B2 |
7591507 | Giffin et al. | Sep 2009 | B2 |
7608777 | Bell et al. | Oct 2009 | B2 |
7621594 | Hartmann et al. | Nov 2009 | B2 |
7640754 | Wolas | Jan 2010 | B2 |
7665803 | Wolas | Feb 2010 | B2 |
7708338 | Wolas | May 2010 | B2 |
RE41765 | Gregory et al. | Sep 2010 | E |
7827620 | Feher | Nov 2010 | B2 |
7827805 | Comiskey et al. | Nov 2010 | B2 |
7862113 | Knoll | Jan 2011 | B2 |
7866017 | Knoll | Jan 2011 | B2 |
7877827 | Marquette et al. | Feb 2011 | B2 |
7937789 | Feher | May 2011 | B2 |
7963594 | Wolas | Jun 2011 | B2 |
7966835 | Petrovski | Jun 2011 | B2 |
7969738 | Koo | Jun 2011 | B2 |
7996936 | Marquette et al. | Aug 2011 | B2 |
8062797 | Fisher et al. | Nov 2011 | B2 |
8065763 | Brykalski et al. | Nov 2011 | B2 |
8104295 | Lofy | Jan 2012 | B2 |
8143554 | Lofy | Mar 2012 | B2 |
8181290 | Brykalski et al. | May 2012 | B2 |
8191187 | Brykalski et al. | Jun 2012 | B2 |
8222511 | Lofy | Jul 2012 | B2 |
8256236 | Lofy | Sep 2012 | B2 |
8332975 | Brykalski et al. | Dec 2012 | B2 |
8402579 | Marquette et al. | Mar 2013 | B2 |
8418286 | Brykalski et al. | Apr 2013 | B2 |
8434314 | Comiskey et al. | May 2013 | B2 |
8438863 | Lofy | May 2013 | B2 |
RE44272 | Bell | Jun 2013 | E |
8505320 | Lofy | Aug 2013 | B2 |
8516842 | Petrovski | Aug 2013 | B2 |
8539624 | Terech et al. | Sep 2013 | B2 |
8575518 | Walsh | Nov 2013 | B2 |
8621687 | Brykalski et al. | Jan 2014 | B2 |
8732874 | Brykalski et al. | May 2014 | B2 |
8782830 | Brykalski et al. | Jul 2014 | B2 |
8893329 | Petrovski | Nov 2014 | B2 |
9105808 | Petrovski | Aug 2015 | B2 |
9105809 | Lofy | Aug 2015 | B2 |
9121414 | Lofy et al. | Sep 2015 | B2 |
9125497 | Brykalski et al. | Sep 2015 | B2 |
9335073 | Lofy | May 2016 | B2 |
20010005990 | Kim et al. | Jul 2001 | A1 |
20010014212 | Rutherford | Aug 2001 | A1 |
20010028185 | Stowe et al. | Oct 2001 | A1 |
20020017102 | Bell | Feb 2002 | A1 |
20020062854 | Sharp | May 2002 | A1 |
20020073716 | Melaragni | Jun 2002 | A1 |
20020092308 | Bell | Jul 2002 | A1 |
20020100121 | Kocurek | Aug 2002 | A1 |
20020108380 | Nielsen et al. | Aug 2002 | A1 |
20020121094 | VanHoudt | Sep 2002 | A1 |
20020195844 | Hipwell | Dec 2002 | A1 |
20030019044 | Larsson et al. | Jan 2003 | A1 |
20030039298 | Eriksson et al. | Feb 2003 | A1 |
20030041892 | Fleurial et al. | Mar 2003 | A1 |
20030070235 | Suzuki et al. | Apr 2003 | A1 |
20030084511 | Salvatini et al. | May 2003 | A1 |
20030110779 | Otey et al. | Jun 2003 | A1 |
20030133492 | Watanabe | Jul 2003 | A1 |
20030145380 | Schmid | Aug 2003 | A1 |
20030150060 | Huang | Aug 2003 | A1 |
20030160479 | Minuth et al. | Aug 2003 | A1 |
20030188382 | Klamm et al. | Oct 2003 | A1 |
20030234247 | Stern | Dec 2003 | A1 |
20040090093 | Kamiya et al. | May 2004 | A1 |
20040098991 | Heyes | May 2004 | A1 |
20040113549 | Roberts et al. | Jun 2004 | A1 |
20040164594 | Stoewe et al. | Aug 2004 | A1 |
20040177622 | Harvie | Sep 2004 | A1 |
20040177876 | Hightower | Sep 2004 | A1 |
20040177877 | Hightower | Sep 2004 | A1 |
20040195870 | Bohlender | Oct 2004 | A1 |
20040238022 | Hiller et al. | Dec 2004 | A1 |
20040255364 | Feher | Dec 2004 | A1 |
20050011009 | Wu | Jan 2005 | A1 |
20050012204 | Strnad | Jan 2005 | A1 |
20050056310 | Shikata et al. | Mar 2005 | A1 |
20050067862 | Iqbal et al. | Mar 2005 | A1 |
20050072165 | Bell | Apr 2005 | A1 |
20050076944 | Kanatzidis et al. | Apr 2005 | A1 |
20050078451 | Sauciuc et al. | Apr 2005 | A1 |
20050086739 | Wu | Apr 2005 | A1 |
20050121065 | Otey | Jun 2005 | A1 |
20050126184 | Cauchy | Jun 2005 | A1 |
20050145285 | Extrand | Jul 2005 | A1 |
20050161072 | Esser et al. | Jul 2005 | A1 |
20050173950 | Bajic et al. | Aug 2005 | A1 |
20050200166 | Noh | Sep 2005 | A1 |
20050220167 | Kanai et al. | Oct 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050257532 | Ikeda et al. | Nov 2005 | A1 |
20050268956 | Take | Dec 2005 | A1 |
20050278863 | Bahash et al. | Dec 2005 | A1 |
20050285438 | Ishima et al. | Dec 2005 | A1 |
20050288749 | Lachenbruch | Dec 2005 | A1 |
20060005548 | Ruckstuhl | Jan 2006 | A1 |
20060005944 | Wang et al. | Jan 2006 | A1 |
20060053529 | Feher | Mar 2006 | A1 |
20060078319 | Maran | Apr 2006 | A1 |
20060080778 | Chambers | Apr 2006 | A1 |
20060087160 | Dong et al. | Apr 2006 | A1 |
20060102224 | Chen et al. | May 2006 | A1 |
20060118158 | Zhang et al. | Jun 2006 | A1 |
20060123799 | Tateyama et al. | Jun 2006 | A1 |
20060130490 | Petrovski | Jun 2006 | A1 |
20060137099 | Feher | Jun 2006 | A1 |
20060137358 | Feher | Jun 2006 | A1 |
20060157102 | Nakajima et al. | Jul 2006 | A1 |
20060158011 | Marlovits et al. | Jul 2006 | A1 |
20060162074 | Bader | Jul 2006 | A1 |
20060175877 | Alionte et al. | Aug 2006 | A1 |
20060197363 | Lofy et al. | Sep 2006 | A1 |
20060200398 | Botton et al. | Sep 2006 | A1 |
20060201161 | Hirai et al. | Sep 2006 | A1 |
20060201162 | Hsieh | Sep 2006 | A1 |
20060214480 | Terech | Sep 2006 | A1 |
20060219699 | Geisel et al. | Oct 2006 | A1 |
20060225441 | Goenka et al. | Oct 2006 | A1 |
20060225773 | Venkatasubramanian et al. | Oct 2006 | A1 |
20060237166 | Otey et al. | Oct 2006 | A1 |
20060243317 | Venkatasubramanian | Nov 2006 | A1 |
20060244289 | Bedro | Nov 2006 | A1 |
20060273646 | Comiskey et al. | Dec 2006 | A1 |
20070017666 | Goenka et al. | Jan 2007 | A1 |
20070035162 | Bier et al. | Feb 2007 | A1 |
20070040421 | Zuzga et al. | Feb 2007 | A1 |
20070069554 | Comiskey et al. | Mar 2007 | A1 |
20070086757 | Feher | Apr 2007 | A1 |
20070095378 | Ito et al. | May 2007 | A1 |
20070095383 | Tajima | May 2007 | A1 |
20070101602 | Bae et al. | May 2007 | A1 |
20070107450 | Sasao et al. | May 2007 | A1 |
20070138844 | Kim | Jun 2007 | A1 |
20070145808 | Minuth et al. | Jun 2007 | A1 |
20070157630 | Kadle et al. | Jul 2007 | A1 |
20070158981 | Almasi et al. | Jul 2007 | A1 |
20070163269 | Chung et al. | Jul 2007 | A1 |
20070190712 | Lin et al. | Aug 2007 | A1 |
20070193279 | Yoneno et al. | Aug 2007 | A1 |
20070200398 | Wolas et al. | Aug 2007 | A1 |
20070204629 | Lofy | Sep 2007 | A1 |
20070214956 | Carlson et al. | Sep 2007 | A1 |
20070227158 | Kuchimachi | Oct 2007 | A1 |
20070234742 | Aoki et al. | Oct 2007 | A1 |
20070241592 | Giffin et al. | Oct 2007 | A1 |
20070251016 | Feher | Nov 2007 | A1 |
20070256722 | Kondoh | Nov 2007 | A1 |
20070261412 | Heine et al. | Nov 2007 | A1 |
20070261413 | Hatamian et al. | Nov 2007 | A1 |
20070261548 | Vrzalik et al. | Nov 2007 | A1 |
20070262621 | Dong et al. | Nov 2007 | A1 |
20070277313 | Terech | Dec 2007 | A1 |
20070296251 | Krobok et al. | Dec 2007 | A1 |
20080000025 | Feher | Jan 2008 | A1 |
20080022694 | Anderson et al. | Jan 2008 | A1 |
20080023056 | Kambe et al. | Jan 2008 | A1 |
20080028536 | Hadden-Cook | Feb 2008 | A1 |
20080028768 | Goenka | Feb 2008 | A1 |
20080028769 | Goenka | Feb 2008 | A1 |
20080047598 | Lofy | Feb 2008 | A1 |
20080053108 | Wen | Mar 2008 | A1 |
20080053509 | Flitsch et al. | Mar 2008 | A1 |
20080077211 | Levinson et al. | Mar 2008 | A1 |
20080078186 | Cao | Apr 2008 | A1 |
20080084095 | Wolas | Apr 2008 | A1 |
20080087316 | Inaba et al. | Apr 2008 | A1 |
20080148481 | Brykalski et al. | Jun 2008 | A1 |
20080154518 | Manaka et al. | Jun 2008 | A1 |
20080155990 | Gupta et al. | Jul 2008 | A1 |
20080163916 | Tsuneoka et al. | Jul 2008 | A1 |
20080164733 | Giffin et al. | Jul 2008 | A1 |
20080166224 | Giffin et al. | Jul 2008 | A1 |
20080173022 | Petrovski | Jul 2008 | A1 |
20080223841 | Lofy | Sep 2008 | A1 |
20080245092 | Forsberg et al. | Oct 2008 | A1 |
20080263776 | O'Reagan | Oct 2008 | A1 |
20080289677 | Bell et al. | Nov 2008 | A1 |
20080307796 | Bell et al. | Dec 2008 | A1 |
20090000031 | Feher | Jan 2009 | A1 |
20090000310 | Bell et al. | Jan 2009 | A1 |
20090015042 | Bargheer et al. | Jan 2009 | A1 |
20090025770 | Lofy | Jan 2009 | A1 |
20090026813 | Lofy | Jan 2009 | A1 |
20090033130 | Marquette et al. | Feb 2009 | A1 |
20090064411 | Marquette et al. | Mar 2009 | A1 |
20090106907 | Chambers | Apr 2009 | A1 |
20090126110 | Feher | May 2009 | A1 |
20090178700 | Heremans et al. | Jul 2009 | A1 |
20090193814 | Lofy | Aug 2009 | A1 |
20090211619 | Sharp et al. | Aug 2009 | A1 |
20090218855 | Wolas | Sep 2009 | A1 |
20090235969 | Heremans et al. | Sep 2009 | A1 |
20090269584 | Bell et al. | Oct 2009 | A1 |
20090293488 | Coughlan, III et al. | Dec 2009 | A1 |
20100001558 | Petrovski | Jan 2010 | A1 |
20100011502 | Brykalski et al. | Jan 2010 | A1 |
20100132379 | Wu et al. | Jun 2010 | A1 |
20100132380 | Robinson, II | Jun 2010 | A1 |
20100133883 | Walker | Jun 2010 | A1 |
20100154437 | Nepsha | Jun 2010 | A1 |
20100154911 | Yoskowitz | Jun 2010 | A1 |
20100193498 | Walsh | Aug 2010 | A1 |
20100198322 | Joseph | Aug 2010 | A1 |
20100307168 | Kohl et al. | Dec 2010 | A1 |
20110048033 | Comiskey et al. | Mar 2011 | A1 |
20110066217 | Diller et al. | Mar 2011 | A1 |
20110101741 | Kolich | May 2011 | A1 |
20110115635 | Petrovski et al. | May 2011 | A1 |
20110253340 | Petrovski | Oct 2011 | A1 |
20110271994 | Gilley | Nov 2011 | A1 |
20110289684 | Parish et al. | Dec 2011 | A1 |
20110296611 | Marquette et al. | Dec 2011 | A1 |
20120003510 | Eisenhour | Jan 2012 | A1 |
20120017371 | Pollard | Jan 2012 | A1 |
20120080911 | Brykalski et al. | Apr 2012 | A1 |
20120104000 | Lofy | May 2012 | A1 |
20120114512 | Lofy et al. | May 2012 | A1 |
20120131748 | Brykalski et al. | May 2012 | A1 |
20120239123 | Weber et al. | Sep 2012 | A1 |
20120261399 | Lofy | Oct 2012 | A1 |
20120289761 | Boyden et al. | Nov 2012 | A1 |
20130097776 | Brykalski et al. | Apr 2013 | A1 |
20130097777 | Marquette et al. | Apr 2013 | A1 |
20130125563 | Jun | May 2013 | A1 |
20130198954 | Brykalski et al. | Aug 2013 | A1 |
20130206852 | Brykalski et al. | Aug 2013 | A1 |
20130227783 | Brykalski et al. | Sep 2013 | A1 |
20130239592 | Lofy | Sep 2013 | A1 |
20130269106 | Brykalski et al. | Oct 2013 | A1 |
20140007594 | Lofy | Jan 2014 | A1 |
20140026320 | Marquette et al. | Jan 2014 | A1 |
20140030082 | Helmenstein | Jan 2014 | A1 |
20140062392 | Lofy et al. | Mar 2014 | A1 |
20140090513 | Zhang et al. | Apr 2014 | A1 |
20140090829 | Petrovski | Apr 2014 | A1 |
20140130516 | Lofy | May 2014 | A1 |
20140131343 | Walsh | May 2014 | A1 |
20140137569 | Parish et al. | May 2014 | A1 |
20140159442 | Helmenstein | Jun 2014 | A1 |
20140180493 | Csonti et al. | Jun 2014 | A1 |
20140187140 | Lazanja et al. | Jul 2014 | A1 |
20140194959 | Fries et al. | Jul 2014 | A1 |
20140237719 | Brykalski et al. | Aug 2014 | A1 |
20140250918 | Lofy | Sep 2014 | A1 |
20140260331 | Lofy et al. | Sep 2014 | A1 |
20140305625 | Petrovski | Oct 2014 | A1 |
20140310874 | Brykalski et al. | Oct 2014 | A1 |
20140338366 | Adldinger et al. | Nov 2014 | A1 |
20150013346 | Lofy | Jan 2015 | A1 |
20150121902 | Steinman | May 2015 | A1 |
20150176870 | Inaba et al. | Jun 2015 | A1 |
20150238020 | Petrovski et al. | Aug 2015 | A1 |
20160030234 | Lofy et al. | Feb 2016 | A1 |
20160053772 | Lofy et al. | Feb 2016 | A1 |
20160137110 | Lofy et al. | May 2016 | A1 |
20160320140 | Meshenky et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
0979490 | Dec 1975 | CA |
101 219 025 | Jul 2008 | CN |
19503291 | Aug 1996 | DE |
19912764 | Sep 2000 | DE |
29911519 | Nov 2000 | DE |
10238552 | Aug 2001 | DE |
10115242 | Oct 2002 | DE |
20120516 | Apr 2003 | DE |
10 2009 036 332 | Feb 2011 | DE |
0 411 375 | May 1994 | EP |
0 621 026 | Oct 1994 | EP |
0 834 421 | Apr 1998 | EP |
0 862 901 | Sep 1998 | EP |
1 972 312 | Sep 2008 | EP |
1 845 914 | Sep 2009 | EP |
2 073 669 | Nov 2012 | EP |
2 921 083 | Sep 2015 | EP |
2 893 826 | Jun 2007 | FR |
874660 | Aug 1961 | GB |
978057 | Dec 1964 | GB |
56-097416 | Aug 1981 | JP |
60-080044 | May 1985 | JP |
60-85297 | May 1985 | JP |
01-281344 | Nov 1989 | JP |
04-052470 | Jun 1990 | JP |
04-165234 | Jun 1992 | JP |
05-026762 | Feb 1993 | JP |
05-277020 | Oct 1993 | JP |
09-505497 | Jun 1997 | JP |
10-504977 | May 1998 | JP |
10-227508 | Aug 1998 | JP |
10-297243 | Nov 1998 | JP |
10-332883 | Dec 1998 | JP |
2000-060681 | Feb 2000 | JP |
2000-164945 | Jun 2000 | JP |
2001-174028 | Jun 2001 | JP |
2001-208405 | Aug 2001 | JP |
2002-514735 | May 2002 | JP |
2002-227798 | Aug 2002 | JP |
2003-204087 | Jul 2003 | JP |
2003-254636 | Sep 2003 | JP |
2004-055621 | Feb 2004 | JP |
2004-174138 | Jun 2004 | JP |
2005-079210 | Feb 2005 | JP |
2005-333083 | Dec 2005 | JP |
2006-001392 | Jan 2006 | JP |
2006-021572 | Jan 2006 | JP |
2006-076398 | Mar 2006 | JP |
10-2001006050 | Jul 2001 | KR |
66619 | Feb 1973 | LU |
WO 9420801 | Sep 1994 | WO |
WO 9514899 | Jun 1995 | WO |
WO 9531688 | Nov 1995 | WO |
WO 9605475 | Feb 1996 | WO |
WO 9807898 | Feb 1998 | WO |
WO 9831311 | Jul 1998 | WO |
WO 9923980 | May 1999 | WO |
WO 9944552 | Sep 1999 | WO |
WO 9958907 | Nov 1999 | WO |
WO 0211968 | Feb 2002 | WO |
WO 02053400 | Jul 2002 | WO |
WO 02058165 | Jul 2002 | WO |
WO 03014634 | Feb 2003 | WO |
WO 03051666 | Jun 2003 | WO |
WO 03063257 | Jul 2003 | WO |
WO 2004011861 | Feb 2004 | WO |
WO 2005115794 | Dec 2005 | WO |
WO 2006078394 | Jul 2006 | WO |
WO 2007060371 | May 2007 | WO |
WO 2007089789 | Aug 2007 | WO |
WO 2008045964 | Apr 2008 | WO |
WO 2008046110 | Apr 2008 | WO |
WO 2008057962 | May 2008 | WO |
WO 2008076588 | Jun 2008 | WO |
WO 2008086499 | Jul 2008 | WO |
WO 2008115831 | Sep 2008 | WO |
WO 2009015235 | Jan 2009 | WO |
WO 2009036077 | Mar 2009 | WO |
WO 2009097572 | Aug 2009 | WO |
WO 2010009422 | Jan 2010 | WO |
WO 2010088405 | Aug 2010 | WO |
WO 2010129803 | Nov 2010 | WO |
WO 2011026040 | Mar 2011 | WO |
WO 2011156643 | Dec 2011 | WO |
WO 2012061777 | May 2012 | WO |
WO 2013052823 | Apr 2013 | WO |
WO 2014164887 | Oct 2014 | WO |
Entry |
---|
International Search Report and Written Opinion in related International Application No. PCT/US2012/058993, mailed Mar. 8, 2013, in 13 pages. |
International Preliminary Report on Patentability in related International Application No. PCT/US2012/058993, dated Apr. 8, 2014, in 8 pages. |
Photographs and accompanying description of climate control seat assembly system components publicly disclosed as early as Jan. 1998. |
Feher, Steve, Thermoelectric Air Conditioned Variable Temperature Seat (VTS) & Effect Upon Vehicle Occupant Comfort, Vehicle Energy Efficiency, and Vehicle Environment Compatibility, SAE Technical Paper, Apr. 1993, pp. 341-349. |
Lofy, J. et al., Thermoelectrics for Environmental Control in Automobiles, Proceeding of Twenty-First International Conference on Thermoelectrics (ICT 2002), published 2002, pp. 471-476. |
Photographs and a description of two different components of a climate control seat assembly system sold prior to Dec. 20, 2003. |
Photographs and a description of a component of a climate control seat assembly system sold prior to Dec. 20, 2003. |
W.E.T.'s Answer, Affirmative Defenses, and Counterclaims to Amerigon's Complaint for Patent Infringement, May 24, 2010. |
Amerigon's Inc.'s Answer to W.E.T. Automotive Systems Limited's counterclaims, Jun. 17, 2010. |
Defendant Amerigon's Motion to Dismiss Count VII of Plaintiff W.E.T. Automotive Systems, Ltd.'s Counterclaims, Jun. 17, 2010. |
W.E.T.'s Answer, Affirmative Defenses, and Counterclaims to Amerigon's (Corrected) Amended Answer and Counterclaims for Patent Infringement, Jul. 8, 2010. |
W.E.T.'s Answer, Affirmative Defenses, and First Amended Counterclaims (Count VII) to Amerigon's (Corrected) Amended Answer and Counterclaims for Patent Infringement at D/E 19, Jul. 16, 2010. |
W.E.T.'s Opposition to Amerigon's Motion to Dismiss W.E.T.'s Inequitable Conduct Counterclaim, Jul. 16, 2010. |
Amerigon's Inc.'s Answer to W.E.T. Automotive Systems Limited's Amended Counterclaims, Aug. 2, 2010. |
Defendant Amerigon Inc.'s Motion to Dismiss Amended Count VII of Plaintiff W.E.T. Automotive Systems Ltd.'s Amended Counterclaims, Aug. 2, 2010. |
Plaintiff W.E.T.'s Responses to Defendant Amerigon Inc.'s First Set of Interrogatories (Nos. 1-5), Aug. 16, 2010. |
W.E.T.'s Opposition to Amerigon's Motion to Dismiss Amended Count VII of Plaintiff W.E.T. Automotive Systems Ltd.'s Amended Counterclaims, Aug. 24, 2010. |
Counterclaimant Amerigon Inc.'s Supplemental Answers to Counterclaim Defendant W.E.T.'s First Set of Interrogatories (Nos. 14-15), Aug. 27, 2010. |
Defendant Amerigon Inc.'s Reply Brief in Support of Motion to Dismiss Amended Count VII of Plaintiff W.E.T. Automotive Systems' Amended Counterclaims (Docket No. 32), Aug. 31, 2010. |
Amerigon Inc. and Feher Design, Inc.'s Preliminary Proposed Claim Constructions, Sep. 24, 2010. |
W.E.T.'s Proposed Definitions, Sep. 24, 2010. |
Plaintiff W.E.T.'s Supplemental Responses to Defendant Amerigon Inc.'s Interrogatories Nos. 1-5., Oct. 8, 2010. |
Amerigon Inc.'s Supplemental Answers to Interrogatory Nos. 1-5, 9-13, 15 of W.E.T.'s First Set of Interrogatories (Nos. 1-17), Oct. 8, 2010. |
W.E.T.'s Motion to Bifurcate and Stay, Nov. 11, 2010. |
W.E.T.'s Motion for Summary Judgment of Inequitable Conduct, Nov. 12, 2010. |
Amerigon Inc.'s Notice of Conditional Withdrawal of Motion to Dismiss Amended Count VII of W.E.T. Automotive Systems Ltd.'s Amended Counterclaims, Dec. 16, 2010. |
U.S. Appl. No. 15/145,445, filed May 3, 2016, Lofy. |
Japanese Office Action re JP Patent Application No. 2011-518941, dated Oct. 18, 2013 in 5 pages. |
U.S. Appl. No. 15/213,281, filed Jul. 18, 2016, Petrovski. |
Photographs and accompanying description of a component of a climate control seat assembly system sold prior to Dec. 20, 2003. |
Number | Date | Country | |
---|---|---|---|
20130086923 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61545017 | Oct 2011 | US |