The present invention relates generally to the field of gas turbine engine and, more particularly, to a fuel control system for supplying fuel to a dual stage nozzle.
Gas turbines are well known and used in various applications. As illustrated in
The fuel flow supplied to the combustor 18 from the fuel supply 20 will vary with variations in the operating condition of the engine 10, such as in the range of operation from ignition to full load. For example, in gas turbines fueled by a fuel oil, the fuel flow to the combustor 18 may be controlled with reference to a differential pressure at a fuel nozzle located with in the combustor 18 to ensure that proper fuel atomization occurs throughout the operating range of the engine.
In a known fuel delivery configuration, the pilot nozzles in a dry low NOx combustion system comprise a duel nozzle structure including a primary nozzle, defining a primary stage, and a secondary nozzle, defining a secondary stage. At lower loads and low fuel flow rates, all fuel is injected into the combustor through the primary stage, providing good atomization of the fuel. At higher loads, the fuel is injected through both the primary and the secondary stages to provide the required flow volume at moderate pressures. Specifically, in a known construction of a dual nozzle structure, a spring-loaded valve is provided in a fuel line between the primary and the secondary nozzles. As long as the differential pressure between the fuel supply pressure and the pressure in the combustion zone of the combustor is below a threshold value, the valve remains closed and all fuel flow goes through the primary stage. As the supply pressure increases, the fuel flow through the primary stage increases until the crack pressure of the valve is reached, and the valve opens to allow fuel flow to the secondary stage. The pressure differential for driving atomization of the fuel in the secondary stage is equal to the differential between the supply pressure and the combustion zone pressure, minus the crack pressure of the valve. Since this pressure differential at the secondary stage is very low just above crack pressure, i.e., just after the valve opens, the atomization of fuel injected through the secondary stage is typically less than optimum at this operating point.
In addition to the above-mentioned problems, pressure actuated valves may become stuck in either an open or closed position, and may experience a condition called “chatter” where the valve opens and closes rapidly in the operating region of the crack points, which may produce undesirable dynamics in the combustor.
In accordance with one aspect of the invention, a method is provided for controlling delivery of fuel to a dual stage nozzle in the combustor of a gas turbine. The method comprises conveying a liquid fuel from a single stage fuel supply through a plurality of primary fuel supply lines at a predetermined rate; supplying the fuel from the primary fuel supply lines to a first nozzle stage comprising a plurality of primary nozzles associated with the primary fuel supply lines; identifying a predetermined operating condition of the gas turbine; and producing a signal in response to identifying the predetermined operating condition, the signal effecting actuation of a plurality of valves, each valve located on a secondary fuel supply line extending between one of the primary fuel supply lines and a respective secondary nozzle, the secondary nozzles forming a second nozzle stage.
In accordance with another aspect of the invention, a method is provided for controlling delivery of fuel to a dual stage nozzle in the combustor of a gas turbine. The method comprises providing a first nozzle stage comprising a plurality of primary nozzles; providing a second nozzle stage comprising a plurality of secondary nozzles, each secondary nozzle being associated with a respective primary nozzle to form nozzle pairs; conveying a liquid fuel from a single stage fuel supply through a plurality of primary fuel supply lines at a predetermined rate to each of the primary nozzles in the first nozzle stage; the second nozzle stage including a secondary fuel supply line from each of the primary fuel supply lines to one of the secondary nozzles, and each secondary fuel supply line including a valve; identifying a predetermined operating condition of the gas turbine; and producing a signal in response to identifying the predetermined operating condition, the signal effecting actuation of the valves whereby fuel from each primary fuel supply line is conveyed through the primary and secondary nozzles of a respective nozzle pair.
In accordance with a further aspect of the invention, a dual stage nozzle fuel control system is provided for providing fuel to the combustor section of a gas turbine. The system includes a first nozzle stage comprising a plurality of primary nozzles, and a second nozzle stage comprising a plurality of secondary nozzles, each secondary nozzle being associated with a respective primary nozzle to form a nozzle pair. A plurality of primary fuel supply lines are provided, where one of the primary fuel supply lines is connected to each of the primary nozzles. A single stage fuel supply is connected to the primary fuel supply lines for supplying fuel to each of the primary fuel lines. The second nozzle stage includes a secondary fuel supply line extending from each of the primary fuel supply lines to one of the secondary nozzles, and a valve is located in each of the secondary fuel supply lines between a respective secondary nozzle and a primary fuel supply line. A sensor is provided for identifying a predetermined operating condition of the gas turbine, and a controller is provided for producing a signal in response to identifying the predetermined operating condition. The signal effects actuation of the valves whereby fuel from each of the primary fuel supply lines is conveyed through the primary and secondary nozzles of a respective nozzle pair.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific preferred embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
The present invention provides a method and system for controlling fuel to a dual stage nozzle. Referring to
The primary legs 40 each supply fuel to a separate duplex fuel nozzle 44 where, for the purpose of the exemplary embodiment described herein, the duplex fuel nozzles 44 comprise pilot nozzles in a dry low NOx combustion system. Referring further to
A secondary fuel supply line or secondary leg 50 is connected to a respective one of each of the primary legs 40 at an inlet end 52, and connected to a respective one of the secondary nozzles 48 at an outlet end 54. The secondary nozzles 48 and secondary legs 50 define a secondary nozzle stage for delivering fuel to the combustor 42 during a second operating condition of the engine. Each of the secondary legs 50 includes a secondary valve 56 between the inlet end 52 and the outlet end 54 for providing control of fuel flow to the second nozzle 48. In a preferred embodiment, the secondary valve 56 comprises a solenoid actuated valve that may be operated in response to a predetermined sensed operating condition of the engine. Each primary nozzle 46 and associated secondary nozzle 48 form a nozzle pair that defines one of the duplex fuel nozzles 44.
The system 32 is further illustrated as including a water supply 58 providing water to each the of primary legs 40 via a water control valve 60 and water supply lines 62. The water control valve 60 may be used to provide a controlled amount of water to the fuel conveyed to the dual stage nozzles 44 to control combustion in a known manner, such as to control production of NOx during combustion.
It should be understood that although only three duplex fuel nozzles 44 and associated fuel legs 40, 50 are illustrated herein, a greater number of fuel nozzles 44 and fuel legs 40, 50 are typically provided, located around the circumference of the combustor 42. Further, regardless of the number of fuel nozzles 44 and fuel legs 40, 50, all of the primary fuel legs 40 are preferably provided with fuel from a single stage fuel supply comprising the single flow divider 36.
The operation of the fuel control valve 38, each of the secondary valves 56 and the water control valve 60 is controlled by a controller 64. The controller 64 may be of any known type, such as one comprising microprocessor control logic to produce a valve actuation signal for actuating the valves 38, 56, 60 to move to predetermined positions with reference to the operating conditions of the engine. In addition, one or more engine condition inputs 66 may be provided to the controller 64 via one or more sensors or by other input means, as is generally represented at 68. Such inputs 66 may include, for example, inputs for determining a differential pressure between the fuel legs 40, 50 and a combustion zone 70 of the combustor 42, inputs for determining a load on the engine, as well as any other inputs related to an operating condition of the engine.
The following description of the operation of the system is made with particular reference to one of the duplex fuel nozzles 44, as shown in
The system 32 described herein facilitates start-up and maintains a desired efficiency of the engine by controlling fuel flow to the duplex fuel nozzle 44 to improve atomization of fuel during various loads. In particular, the system 32 is operated with only the primary nozzle 46 supplying fuel to the combustor 42 during start-up, i.e., with the secondary valve 56 closed, and upon reaching a predetermined condition, such as a predetermined load or a predetermined differential pressure at the duplex fuel nozzle 44, the secondary valve 56 is actuated to additionally provide fuel to the combustor through the secondary nozzle 48. The flow numbers of primary nozzle 46 and the secondary nozzle 48 are selected such that the primary nozzle 46 provides adequate atomization of the fuel at low differential pressures, and the secondary nozzle 48 also provides adequate atomization at the differential pressure available in the fuel legs 40, 56 just after the secondary valve 56 opens. The flow number for each of the nozzles 46, 48 is defined as the ratio of the flow rate through the nozzle to the square root of the differential pressure across the nozzle.
Referring to
In a second example of the duplex nozzle 44, depicted by line 74, the flow number of the secondary nozzle 48 is equal to the flow number of the primary nozzle 46, such that the flow number ratio is 1:1. As in the first example, the differential pressure increases relatively quickly to a predetermined differential pressure, i.e., approximately 1000 psi (point 75), at which time the secondary valve 56 is opened. When the secondary valve 56 opens, fuel flow is provided through both the primary nozzle 46 and the secondary nozzle 48 and the differential pressure drops, as illustrated by the differential pressure dropping to about 250 psi (point 77), with a subsequent increase in the flow and differential pressure up to the base load operating point.
In both of the above examples, as depicted by the lines 72 and 74 in
Other flow number ratios may be selected within the scope of the present invention. The point at which the secondary valve 56 is opened should be selected to ensure that the differential pressure is sufficiently high to provide adequate atomization through both the primary nozzle 46 and the secondary nozzle 48 just after the secondary valve 56 opens. Further, it should be understood that although the above examples describe actuation of the secondary valve 56 with reference to a predetermined differential pressure, the condition for actuating the secondary valves may comprise a sensed engine condition. For example, in the first described example above (line 74), the secondary valve 56 may be actuated at or near sensing that a full speed no-load condition exists, as depicted by the line 76. Alternatively, the secondary valve 56 may be actuated when a predetermined load on the engine, such as 10% load, is identified by the controller 64.
The controller 64 additionally identifies a condition for closing the secondary valve 56, where the value of the measured parameter for closing secondary valve 56 is preferably lower than the value for opening the secondary valve 56. For example, if the secondary valve 56 is actuated to open at 10% load on the engine, the controller 64 may control the secondary valve 56 to close at a lower load value, such as 5% load on the engine. Similarly, if the differential pressure is the measured parameter for actuating the secondary valve 56, the differential pressure for actuating the closed position of the secondary valve 56 may be selected to be a predetermined value below the differential pressure for actuating the secondary valve 56 to the open position. By maintaining a dead-band between the opening and closing values, flow through the secondary nozzle 48 may be maintained during minor fluctuations, such as a drop in the differential pressure or engine load, thus avoiding repeated opening and closing, or “chatter,” of the secondary valve 56 as the engine is brought up to full load.
Variations in the operation of the system 32 may be provided within the scope of the present invention. In particular, it may be necessary to actuate the secondary valves 56 in groups to avoid a potentially unstable fuel control problem that may result as the fuel control valve 38 is repositioned to compensate for the increase in fuel flow when the secondary valves 56 are opened. For example, instead of opening all of the secondary valves 56 at the same time upon sensing the predetermined condition, the secondary valves 56 may be opened in groups of two at predetermined time intervals, such as one group every second.
In addition, in the event that it is necessary to ensure that the secondary legs 50 are filled with fuel just after opening of the secondary valves 56, such as to ensure that a flameout does not occur immediately after the secondary valves 56 are opened, provision may be made for filling the portion of each of the secondary legs 50 between the secondary valve 56 and the secondary nozzle 48. This may be accomplished by providing the secondary leg 50 with an orifice, such as a designed “leak” in the secondary valves 56, to fill the secondary leg 50. Alternatively, the secondary valves 56 may be actuated to open slowly to ensure that the differential pressure at the primary nozzle 46 is maintained as the secondary leg 50 fills.
The method and system for controlling the fuel flow to the duplex nozzles 44 ensures that good atomization occurs at any operating point of the engine. In particular, the operation of the duplex nozzles 44 ensures good atomization just after flow to the secondary nozzles 48 is initiated, thus avoiding problems experienced in known fuel delivery systems such as those incorporating pressure actuated valves to provide fuel flow to secondary nozzles.
Further, the present invention provides a system 32 in which a single stage fuel supply, comprising a single flow divider 36, provides a controlled fuel flow to both stages, i.e., primary and secondary stages, of the dual fuel nozzle system. Hence, the present system 32 avoids the complexity and expense of providing multiple flow dividers, valves and controls, i.e., one for each nozzle stage, to ensure adequate control of fuel flow to each of the nozzle stages.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4157012 | DuBell | Jun 1979 | A |
4337616 | Downing | Jul 1982 | A |
4499735 | Moore et al. | Feb 1985 | A |
4531535 | Kiernan et al. | Jul 1985 | A |
4903478 | Seto et al. | Feb 1990 | A |
5036657 | Seto et al. | Aug 1991 | A |
5329759 | Chan | Jul 1994 | A |
5339636 | Donnelly et al. | Aug 1994 | A |
5365732 | Correa | Nov 1994 | A |
5402634 | Marshall | Apr 1995 | A |
5423175 | Beebe et al. | Jun 1995 | A |
5442922 | Dyer et al. | Aug 1995 | A |
5448882 | Dyer et al. | Sep 1995 | A |
5881550 | Toelle | Mar 1999 | A |
5901555 | Mandai et al. | May 1999 | A |
6666029 | Ryan | Dec 2003 | B2 |
6786049 | Parsons et al. | Sep 2004 | B2 |
6857272 | Summerfield et al. | Feb 2005 | B2 |
6892544 | Futa, Jr. et al. | May 2005 | B2 |
6962055 | Chen et al. | Nov 2005 | B2 |
7024862 | Miyake et al. | Apr 2006 | B2 |
7036302 | Myers, Jr. et al. | May 2006 | B2 |
7188476 | Inoue et al. | Mar 2007 | B2 |
20040079086 | Smith et al. | Apr 2004 | A1 |
20060101814 | Saitoh et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100058770 A1 | Mar 2010 | US |