The present invention relates to laser light sources utilized in optical transmitters, transceivers and transponders of optical communications systems. More particularly, the present invention relates to methods and systems for accurately controlling laser power and extinction ratio under the effects of external temperature disturbances, aging, and large variations in back-facet diode responsivity.
Transmitter laser diodes are used in applications such as fiber-optical transponder or transceiver modules to transmit data at high rates. The extinction ratio, modulation, and average power of such a laser (e.g., directly modulated lasers) is too sensitive to aging and is also sensitive to external effects such as changes in environmental temperature. Even with closed-loop control systems to servo the average laser power, it is still difficult to minimize the variation of extinction ratio and eye crossing (i.e., on a bit-error diagram) due to changes in environmental temperature. Further complicating the technical issues is the large variation in back-facet diode responsivity, measured in mA of back facet diode monitor current per mW of optical output power.
Prior art solutions to these problems involve measuring or calibrating the laser diode optical output power as a function of the laser bias current. Output power is typically measured using a back facet diode monitor whose current is piece-wise proportional to the laser output power. Once this transfer curve is known, the settings for average power, modulation, and extinction ratio can be determined. The drawback of this approach is that over time, due to aging, this transfer function needs to be regenerated. It is typically carried out whenever the unit is powered up or whenever the system is idle. There are two drawbacks to these prior-art approaches. Firstly, if the transfer curve needs to be measured every time the unit is powered up or upon power on reset, the time required to start the unit is increased. Secondly, if the transfer curve needs to be measured periodically to handle aging effects then it will cause disruption of normal operation, since the calibration of the laser power vs. bias current curve precludes the normal operation of the laser diode.
The prior-art approaches typically require the calibration of the laser power vs. the bias current transfer curve. Thus, these prior-art approaches cause an increase in the time required for the unit to be ready and can cause disruption of normal transmitter operation to calibrate the laser power vs. bias current transfer curve. Both of these effects are undesirable.
To overcome the above-described drawbacks with conventional apparatuses and methods, there is herein disclosed an improved system and apparatus for controlling laser diodes in optical communications systems, wherein the targeted or desired laser power can be varied, if needed, as a function of the laser temperature, and/or any other pertinent parameters. The adjustment of the targeted laser power or of the laser modulation current, via analog signals provided by digital-to-analog converters (DAC's), may be implemented either as a table lookup or as an explicit equation of one or more variables. If implemented as an explicit equation, the curve fit used to generate the equation may be any order.
An important novel and useful feature of a system in accordance with the present invention is implementation, entirely within the firmware a microprocessor (or micro controller) control system for closed-loop control for maintaining constant average laser power. Firmware may also be used to implement a look up table or a curve fit for setting up an initial laser bias current as a function of the laser temperature. This utilization of firmware improves the laser output power response and settling time.
Further, a system in accordance with the present invention may use a digital potentiometer or a gain switch circuit to calibrate the large variation in back facet diode responsivity (mA/mW), the calibration preferably being performed either by firmware in the microprocessor or by test software. There is no need to calibrate the laser transmitter system (which may be part of a Transmitter Optical Sub-Assembly) while in operation, thus it is not necessary to delay the time for the system to be ready nor to interrupt the system operation to carry out any calibration.
A first preferred embodiment of a system in accordance with the present invention comprises a microprocessor to implement the average laser power servo and the control algorithms, at least one analog-to-digital converter (ADC) electrically coupled to and delivering a digital signal to a signal input of the microprocessor, at least two digital-to-analog converters (DAC's) electrically coupled to and receiving respective digital signals from signal outputs of the microprocessor, an optical transmitter module electrically coupled to the DAC's, the optical transmitter module including a laser diode having a back-facet photo-detector, sensor-signal conditioning circuitry electrically coupled to the back-facet photo-detector, and a multiplexer electrically coupled to between the sensor-signal conditioning circuitry and the at least on ADC.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The present invention provides an improved system and method for control of laser diodes in optical communications systems. The following description is presented to enable one ordinary skilled in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments will be readily apparent to those skilled in the art and the generic principles described herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein. In order to gain a detailed understanding of the invention, the reader is referred to the appended
The DAC's 108.1-108.2 within the controller system 100 (
In normal operation of the optical transmitter module 110 within an optical communications system (not shown), a laser diode of the module 110 outputs through its front facet an information-bearing optical signal 116 that is transmitted over optical fiber to another location of the optical communications system. Simultaneously, the laser diode outputs a small sample proportion 118 of the optical signal through its back facet. As is conventional in laser diodes, the sample proportion 118 is detected by a back facet diode 112 that is optically coupled to the laser diode of the optical transmitter module 110. Within the controller system 100 of the present invention, the electrical current output (i.e., the sensor signal) 120 from the back facet diode 112 is received by sensor-signal conditioning circuitry 114 that is electrically coupled to the back facet diode 112. The sensor-signal conditioning circuitry 114 produces an analog electrical signal yk whose voltage level is proportional to the power of the sample proportion 118 and, hence, to the optical signal 116. Preferably, the sensor-signal conditioning circuitry may include either a digital potentiometer or a gain switching circuit.
The sensor-signal conditioning circuitry 114 within the controller system 100 (
The following paragraphs will now describe various embodiments of methods, in accordance with the present invention, of closed-loop control for maintaining constant average laser power, these methods being entirely implemented within the firmware of a microprocessor (or micro controller), such as, preferably, the microprocessor 106 of the system 100. No ASIC is required to implement the servo.
A first method 200, in accordance with the present invention, of closed-loop control for maintaining constant average laser power is now described. The method 200 comprises an algorithm that is schematically illustrated in
In step 260, Kp is the proportional gain of the controller system and Kd is the derivative gain of the controller system. The method 200 proceeds from step 260 to step 270, in which the index variable k is incremented. Finally, the method 200 passes from step 270 back to step 220 and the sequence of steps 220-270 are iterated repeatedly as described above.
A second alternative method 300, in accordance with the present invention, of closed-loop control for maintaining constant average laser power is now described. The method 300 comprises an algorithm that is schematically illustrated in
In step 360, Kp is the proportional gain of the controller system and Kd is the derivative gain of the controller system. The method 300 proceeds from step 360 to step 370, in which the index variable k is incremented. Finally, method 300 passes from step 370 back to step 320 and the sequence of steps 320-370 are iterated repeatedly as described above.
It may be observed that, except for the equation utilized in Step 4, the two-above described methods are identical. Depending on the type of laser being controlled, one of these algorithms may work better than the other in terms of response time and settling time. The laser bias current ukb needs to be limited to stay within an acceptable minimum and maximum value. To minimize computational delay, preliminary calculations can be performed on the portion of ukb that does not depend on the subsequent, (k+1)th sample.
The targeted or desired laser power can be varied as a function of the laser temperature, and/or any other pertinent parameters, if needed. The variation of the targeted laser power can be implemented either as a table lookup or as an explicit equation of one or more variables. For example, a simple linear variation in laser power as a function of temperature is given by:
rk=rk0+c1(Tk−T0)
where rk0 is the targeted or desired average power without considering the temperature effect, and Tk and T0 are the current laser temperature (i.e., at the time of the kth sample) and the nominal laser temperature (e.g. room temperature) and c1 is the slope of the average power versus temperature.
A third method 400, in accordance with the present invention, for controlling a laser source is now described with reference to
The method 400 comprises the following steps:
Step 3 may be accomplished by multiplying the nominal loop gain by the following factor, f:
in which ynom1 and ynom2 are the nominal value, while the yk2 and yk1 represent the actual measured back facet laser current corresponding to the two applied laser bias current in open-loop mode. Further, as illustrated in
Due to the large variation in sensor gain (back facet diode's responsivity), a digital potentiometer can be controlled by the microprocessor (or micro controller) to deal with the large open-loop gain variation. The potentiometer's resistance is adjusted such that at the desired average laser power the back facet voltage is equal to a fixed value. The back facet voltage is the voltage across the digital potentiometer, thus it is equal to the potentiometer resistance times the back facet current.
A simple gain switching circuit employing a shunt regulator (a.k.a. a zener diode) can also be used to deal with the large open-loop gain variation. For a back facet diode with low monitor current, the slope of the back facet monitor voltage vs. current is increased to provide a much wider range of the ADC value. By increasing the sensor output when the inherent signal is weak due to low responsivity, the servo system now has more range to work with. The amplification of the sensor measurements which has low inherent signal facilitates the stabilization and accuracy of the average laser power servo loop.
The modulation DAC is adjusted from its nominal value as the laser bias DAC changes. The average target power can be kept constant or adjusted as a function of laser temperature. The adjustment of the modulation DAC as a function of the bias DAC is given by a relationship that can be determined empirically for a given laser diode type. The empirical data can be obtained by subjecting the laser diode to temperature variations and recording the corresponding laser modulation and bias DAC values. Note that the curve fit can be any order and thus not limited to the specific order. It has been demonstrated using the system described herein that a second or third order function is most likely adequate to yield good results. The concept of least-square fitting or table look up on these particular quantities is also applicable, and thus another variation of the same algorithm. An example of the adjustment is given by:
ukm=unomma(ukb−unomb)+b(ukb−unomb)2
where ukm is the instantaneous modulation DAC output, unomm is the nominal steady state modulation DAC output at room temperature, ukb is the instantaneous laser bias DAC output, unomb is the nominal steady state laser bias DAC at room temperature and a and b are empirically determined constants.
Use a look up table or a curve fit of initial laser bias current vs. temperature to speed up the laser power response and settling time. This is implemented in the firmware of the microprocessor. The initial bias DAC value to apply to the laser diode is looked up as a function of temperature. An example of this look up can be implemented in the firmware using a quadratic expression as follows:
unomb+(Tk−T0)+d(Tk−T0)2
where unomb, as defined previously, is the nominal steady state laser bias DAC output at room temperature, and Tk and T0 are the current laser temperature and the nominal laser temperature and c and d are the first-order and second-order coefficients of the initial laser bias current DAC vs temperature.
A novel and useful method and system for control of laser diodes in optical communications systems have been disclosed. Although the present invention has been disclosed in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications could readily be envisioned by one of skill in the art without departing from the spirit and scope of the appended claims, which claims alone limit the invention.
This application claims benefit of U.S. provisional patent application Ser. No. 60/569,309, filed May 6, 2004, which is herein incorporated by reference.
| Number | Date | Country | |
|---|---|---|---|
| 60569309 | May 2004 | US |