This invention relates to memory systems, and, more particularly, to a memory system having several memory modules each of which includes a memory hub coupled to several memory devices.
Computer systems use memory devices, such as dynamic random access memory (“DRAM”) devices, to store instructions and data that are accessed by a processor. These memory devices are normally used as system memory in a computer system. In a typical computer system, the processor communicates with the system memory through a processor bus and a memory controller. The processor issues a memory request, which includes a memory command, such as a read command, and an address designating the location from which data or instructions are to be read. The memory controller uses the command and address to generate appropriate command signals as well as row and column addresses, which are applied to the system memory. In response to the commands and addresses, data are transferred between the system memory and the processor. The memory controller is often part of a system controller, which also includes bus bridge circuitry for coupling the processor bus to an expansion bus, such as a PCI bus.
The operating speed of memory devices has continuously increased, thereby providing ever-increasing memory bandwidths. However, this increase in memory bandwidth has not kept pace with increases in the operating speed of processors. One approach to increasing memory bandwidth is to access a larger number of memory devices in parallel with each other so that this data are read from or written to this larger number of memory devices with each memory access. One memory architecture that lends itself well to allowing are larger number of memory devices to be simultaneously accessed is a memory hub architecture. In a memory hub architecture, a system controller or memory hub controller is coupled to several memory modules, each of which includes a memory hub coupled to several memory devices. The memory hub efficiently routes memory requests and responses between the controller and the memory devices. Computer systems employing this architecture can have a higher bandwidth because a processor can read data from or write data to one memory module while another memory module is responding to a prior memory access. For example, the processor can output write data to the memory devices in one of the memory modules while the memory devices in another memory module are preparing to provide read data to the processor.
Although memory modules using memory hubs may provide increased memory bandwidth, the presence of memory hubs in the modules can make it difficult to coordinate the flow of command and address signals to the memory modules and the flow of data signals to and from the memory modules. A memory controller in a conventional memory system directly accesses memory devices in memory modules. The absence of any control device, such as a memory hub, between the memory controller and the memory devices makes it relatively easy for the memory controller to coordinate its operation with each of the memory modules. In particular, since the memory controller is actively controlling the activity in each of the memory modules, the memory controller is able to determine the status of memory accesses to each memory module based on the signals it has transmitted to or received from the memory modules. In contrast, the presence of a memory hub on each of the memory modules to control access to the memory devices makes it difficult for a controller to determine the status of memory requests to each memory module since the controller is no longer directly controlling the memory accesses. For example, the controller can no longer determine when a read memory request will be issued to the memory devices on that module. Since the controller cannot determine when the read memory request is issued, it cannot determine when the read data will be coupled from the memory module. As a result, the controller cannot determine when it can issue another read or write memory request to the same or another memory module. Similarly, the controller cannot determine if several memory requests issued to a memory module have been serviced, and thus cannot determine whether additional memory requests should be issued to the memory module. Other types of coordination issues will be apparent to one skilled in the art.
There is therefore a need for a memory system architecture that allows a controller or other device coupled to a plurality of hub-based memory modules to coordinate the issuing of memory requests to the memory modules.
A memory module hub controller is coupled to a plurality of memory modules each of which includes a memory hub coupled to a plurality of memory devices in the respective module. The memory hub controller stores a plurality of memory requests and transmits each stored memory request to the memory hub in one of the memory modules responsive to a flow control signal that is generated as a function of memory request status signals received from the memory hub to which the memory request is being transmitted. The memory hub stores the received memory requests and couples memory request signals corresponding to the stored memory requests to the memory devices in the memory module. The memory hub also transmits write data to or subsequently receives read data from the memory devices. The memory hub also generates memory request status signals identifying the memory requests that have been serviced by the memory devices coupled to the memory hub. The memory hub then couples the memory request status signals and any read data to the memory hub controller. The controller outputs the received read data and generates the flow control signal based on the memory request status signals to control the number of outstanding memory requests that are stored in each of the memory modules.
A computer system 100 according to one example of the invention is shown in
The system controller 110 serves as a communications path to the processor 104 for a variety of other components. More specifically, the system controller 110 includes a graphics port that is typically coupled to a graphics controller 112, which is, in turn, coupled to a video terminal 114. The system controller 110 is also coupled to one or more input devices 118, such as a keyboard or a mouse, to allow an operator to interface with the computer system 100. Typically, the computer system 100 also includes one or more output devices 120, such as a printer, coupled to the processor 104 through the system controller 110. One or more data storage devices 124 are also typically coupled to the processor 104 through the system controller 110 to allow the processor 104 to store data or retrieve data from internal or external storage media (not shown). Examples of typical storage devices 124 include hard and floppy disks, tape cassettes, and compact disk read-only memories (CD-ROMs).
The system controller 110 also includes a memory hub controller 126 that is coupled to several memory modules 130a,b . . . n, which serve as system memory for the computer system 100. The memory modules 130 are preferably coupled to the memory hub controller 126 through a high-speed link 134, which may be an optical or electrical communication path or some other type of communications path. In the event the high-speed link 134 is implemented as an optical communication path, the optical communication path may be in the form of one or more optical fibers, for example. In such case, the memory hub controller 126 and the memory modules 130 will include an optical input/output port or separate input and output ports coupled to the optical communication path. The memory modules 130 are shown coupled to the memory hub controller 126 in a multi-drop or daisy chain arrangement in which the single high-speed link 134 is coupled to all of the memory modules 130. However, it will be understood that other topologies may also be used, such as a point-to-point coupling arrangement in which a separate high-speed link (not shown) is used to couple each of the memory modules 130 to the memory hub controller 126. A switching topology may also be used in which the memory hub controller 126 is selectively coupled to each of the memory modules 130 through a switch (not shown). Other topologies that may be used will be apparent to one skilled in the art.
Each of the memory modules 130 includes a memory hub 140 for controlling access to 6 memory devices 148, which, in the example illustrated in
One example of the memory hub controller 126 and the memory hub 140 of
With further reference to
The memory hub controller 126 also includes a memory response queue 170 that receives read response signals and write response signals from the system controller 110. The read response signals include read data signals as well as read status signals that identify the read request corresponding to the read data. The write response signals include write status signals that identify a write request that has been serviced by one of the memory modules. The response queue 170 stores the memory response signals in the order they are received, and it preferably, but not necessarily, couples the read data signals 172 to the system controller 110 in that same order. The memory response queue 170 also couples to the flow control unit 174 the read status signals 176 and the write status signals 178 so that the flow control unit 174 can determine which read requests and which write requests have been serviced. The flow control unit 174 makes this determination by comparing the status signals 176, 178 to the Request IDs generated by the flow control unit 174 and coupled to the memory request queue 160. The flow control unit 174 then outputs flow control signals to the memory request queue 160 to allow the memory request queue 160 to determine whether and when it should issue additional memory requests to each of the memory modules 130 (
With further reference to
When the request queue 190 has issued the reformatted read request signals to the memory devices 148 responsive to read request signals from the memory hub controller 126, it applies a Read Released signal to a flow control unit 194 to indicate that a read request has been issued to the memory devices 148. Similarly, when the request queue 190 has issued the reformatted write request signals to the memory devices 148 responsive to write request signals from the memory hub controller 126, it applies a Write Released signal to the flow control unit 194 to indicate that a write request has been issued to the memory devices 148. The Read Released and Write Released signals are used to formulate the read and write status signals 192, 196, respectively, that uniquely identify each read request and write request serviced by each of the memory modules 130. More specifically, the flow control unit 194 assigns a unique read response ID, which preferably corresponds to the Request ID coupled to the memory request queue 160 from the flow control unit 174, to each released read request. The flow control unit 194 also assigns a unique write response ID to each released write request, which preferably also corresponds to the Request ID. These response IDs are coupled to the response queue 170 as read and write status signals. As previously explained, these status signals are coupled to the memory response queue 170, which separates the status signals from any read data included in the response and couples the status signals to the flow control unit 174.
In response to a read memory request from the request queue 190, the memory devices 148 couples read data signals to the memory hub 140. These read data signals are stored in a read queue 200. The read queue 200 subsequently couples the read data signals to a response generator 204, which also receives the read status signals 192 from the flow control unit 194.
When the request queue 190 issues write requests, signals indicating that the write requests have been issued are stored in a write queue 206. The write queue 206 subsequently couples the signals indicative of issued write requests to the response generator 204, which also receives the write status signals 196 from the flow control unit 194.
The response generator 204 associates the read data signals from the read queue 200 with the read status signals 192 from the flow control unit 194, which, as previously mentioned, identifies the read request corresponding to the read data. The combined read data signals and read status signals 192 are combined into a read response 210. In response to the signals from the write queue 206, the response generator 204 generates a write response 214 containing the write status signals 192. The response generator 204 then transmits the read response 210 or the write response 214 to the response queue 170 in the memory hub controller 126. More specifically, the read data signals are transmitted from the response generator 204 to the response queue 170. The read and write status signals 192, 196, respectively, are also transmitted from the response generator 204 to the response queue 170, either alone in the case of some of the write status signals or in combination with read data signals in the case of the read status signals or the other write status signals. Thus, the read response 210 contains the read data as well as information uniquely identifying the read request corresponding to the read data, and the write response 214 contains information uniquely identifying each write request serviced by the memory module 130.
The number of write requests or read requests that can be outstanding in any memory module 130 before the memory request queue 160 will not issue any additional memory requests can be either fixed or user selectable by programming either the memory hub controller 126 with values indicative of the allowable request queue depth. Further, the number of read requests that can be outstanding may be the same or be different from the number of write requests that can be outstanding.
An example of a memory request coupled from the memory request queue 160 in the memory hub controller 126 to the memory request queue 190 in the memory hubs 140 is shown in
The first 2 bits of a second packet word 228 are unused in the packet example shown in
The memory request queue 190 in one of the memory hubs 140 may use the high order bits 37:16 as a row address and the low order bits 15:2 as a column address, or it may use these addresses in some other manner. The next 4 bits of the second packet word 228 are Count 3:0 bits that specify the number of double words or bytes that will be read from or written to the memory devices 148 on the memory module. The final 16 bits of the second packet word 228 consist of mask data Mask 15:0 that can be coupled to the memory hub controller 126 instead of read data called for by a read memory request. Masking data in this manner is well known to one skilled in the art.
Following the first 2 packet words 224, 228 for a write request is at least one packet word 230 of write data. The number of packet words 230 will depend upon the value of Count 3:0 in the second packet word 228 and whether the memory write command is for writing a double word or a byte. For example, a Count 3:0 value of “0100” (i.e., 4) in a packet requesting a double word write will require 4 packet words 230 of write data. A Count 3:0 value of 4 in a packet requesting a byte write will require only a single packet word 230 of write data. A packet 220 for a read request will not, of course, include any packet words 230 following the first two packet words 224, 228.
An example of a memory response 210 or 214 coupled from the response generator 204 in one of the memory hubs 140 to the memory response queue 170 in the memory hub controller 126 is shown in
Returning to
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. For example, although the memory hub controller 126 has been described as permitting a specific number or programmable number of memory requests to be outstanding in any memory module 130, other operating protocols are possible. Also, rather than simply delay issuing memory requests to a memory module 130 having too many outstanding memory requests, the memory hub controller 126 may instead route memory requests to a different memory module 130. Accordingly, the invention is not limited except as by the appended claims.
This application is a continuation of pending U.S. patent application Ser. No. 11/881,010, filed Jul. 24, 2007, which is a continuation of U.S. patent application Ser. No. 10/963,824, filed Oct. 12, 2004, issued as U.S. Pat. No. 7,249,236, which is a continuation of U.S. patent application Ser. No. 10/232,473, filed Aug. 29, 2002, issued as U.S. Pat. No. 6,820,181.
Number | Name | Date | Kind |
---|---|---|---|
4045781 | Levy et al. | Aug 1977 | A |
4240143 | Besemer et al. | Dec 1980 | A |
4245306 | Besemer et al. | Jan 1981 | A |
4253144 | Bellamy et al. | Feb 1981 | A |
4253146 | Bellamy et al. | Feb 1981 | A |
4707823 | Holdren et al. | Nov 1987 | A |
4724520 | Athanas et al. | Feb 1988 | A |
4930128 | Suzuki et al. | May 1990 | A |
5133059 | Ziegler et al. | Jul 1992 | A |
5241506 | Motegi et al. | Aug 1993 | A |
5243703 | Farmwald et al. | Sep 1993 | A |
5251303 | Fogg, Jr. et al. | Oct 1993 | A |
5269022 | Shinjo et al. | Dec 1993 | A |
5317752 | Jewett et al. | May 1994 | A |
5319755 | Farmwald et al. | Jun 1994 | A |
5355391 | Horowitz et al. | Oct 1994 | A |
5432823 | Gasbarro et al. | Jul 1995 | A |
5432907 | Picazo, Jr. et al. | Jul 1995 | A |
5442770 | Barratt | Aug 1995 | A |
5461627 | Rypinski | Oct 1995 | A |
5465229 | Bechtolsheim et al. | Nov 1995 | A |
5465343 | Henson et al. | Nov 1995 | A |
5479370 | Furuyama et al. | Dec 1995 | A |
5497476 | Oldfield et al. | Mar 1996 | A |
5502621 | Schumacher et al. | Mar 1996 | A |
5544319 | Acton et al. | Aug 1996 | A |
5566325 | Bruce, II et al. | Oct 1996 | A |
5577220 | Combs et al. | Nov 1996 | A |
5581767 | Katsuki et al. | Dec 1996 | A |
5606717 | Farmwald et al. | Feb 1997 | A |
5619670 | Shindo | Apr 1997 | A |
5638334 | Farmwald et al. | Jun 1997 | A |
5638534 | Mote, Jr. | Jun 1997 | A |
5659713 | Goodwin et al. | Aug 1997 | A |
5659798 | Blumrich et al. | Aug 1997 | A |
5715456 | Bennett et al. | Feb 1998 | A |
5729709 | Harness | Mar 1998 | A |
5796413 | Shipp et al. | Aug 1998 | A |
5818844 | Singh et al. | Oct 1998 | A |
5819304 | Nilsen et al. | Oct 1998 | A |
5822255 | Uchida | Oct 1998 | A |
5832250 | Whittaker | Nov 1998 | A |
5838931 | Regenold et al. | Nov 1998 | A |
5875352 | Gentry et al. | Feb 1999 | A |
5875454 | Craft et al. | Feb 1999 | A |
5887159 | Burrows | Mar 1999 | A |
5928343 | Farmwald et al. | Jul 1999 | A |
5953743 | Jeddeloh | Sep 1999 | A |
5966724 | Ryan | Oct 1999 | A |
5973935 | Schoenfeld et al. | Oct 1999 | A |
5973951 | Bechtolsheim et al. | Oct 1999 | A |
5978567 | Rebane et al. | Nov 1999 | A |
6006340 | O'Connell | Dec 1999 | A |
6023726 | Saksena | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6031241 | Silfvast et al. | Feb 2000 | A |
6033951 | Chao | Mar 2000 | A |
6061263 | Boaz et al. | May 2000 | A |
6061296 | Ternullo, Jr. et al. | May 2000 | A |
6067262 | Irrinki et al. | May 2000 | A |
6073190 | Rooney | Jun 2000 | A |
6076139 | Welker et al. | Jun 2000 | A |
6079008 | Clery, III | Jun 2000 | A |
6092158 | Harriman et al. | Jul 2000 | A |
6098158 | Lay et al. | Aug 2000 | A |
6105075 | Ghaffari | Aug 2000 | A |
6125431 | Kobayashi | Sep 2000 | A |
6128703 | Bourekas et al. | Oct 2000 | A |
6128706 | Bryg et al. | Oct 2000 | A |
6134624 | Burns et al. | Oct 2000 | A |
6137709 | Boaz et al. | Oct 2000 | A |
6144587 | Yoshida | Nov 2000 | A |
6145033 | Chee | Nov 2000 | A |
6157743 | Goris et al. | Dec 2000 | A |
6157962 | Hodges et al. | Dec 2000 | A |
6167465 | Parvin et al. | Dec 2000 | A |
6167486 | Lee et al. | Dec 2000 | A |
6175571 | Haddock et al. | Jan 2001 | B1 |
6185352 | Hurley | Feb 2001 | B1 |
6185676 | Poplingher et al. | Feb 2001 | B1 |
6186400 | Dvorkis et al. | Feb 2001 | B1 |
6191663 | Hannah | Feb 2001 | B1 |
6201724 | Ishizaki et al. | Mar 2001 | B1 |
6212590 | Melo et al. | Apr 2001 | B1 |
6216178 | Stracovsky et al. | Apr 2001 | B1 |
6216219 | Cai et al. | Apr 2001 | B1 |
6223301 | Santeler et al. | Apr 2001 | B1 |
6233376 | Updegrove | May 2001 | B1 |
6243769 | Rooney | Jun 2001 | B1 |
6243831 | Mustafa et al. | Jun 2001 | B1 |
6246618 | Yamamoto et al. | Jun 2001 | B1 |
6247107 | Christie | Jun 2001 | B1 |
6249802 | Richardson et al. | Jun 2001 | B1 |
6252821 | Nizar et al. | Jun 2001 | B1 |
6256692 | Yoda et al. | Jul 2001 | B1 |
6272609 | Jeddeloh | Aug 2001 | B1 |
6285349 | Smith | Sep 2001 | B1 |
6294937 | Crafts et al. | Sep 2001 | B1 |
6301637 | Krull et al. | Oct 2001 | B1 |
6327642 | Lee et al. | Dec 2001 | B1 |
6330205 | Shimizu et al. | Dec 2001 | B2 |
6330639 | Fanning et al. | Dec 2001 | B1 |
6347055 | Motomura | Feb 2002 | B1 |
6349363 | Cai et al. | Feb 2002 | B2 |
6356573 | Jonsson et al. | Mar 2002 | B1 |
6367074 | Bates et al. | Apr 2002 | B1 |
6370068 | Rhee | Apr 2002 | B2 |
6370611 | Callison et al. | Apr 2002 | B1 |
6373777 | Suzuki | Apr 2002 | B1 |
6381190 | Shinkai | Apr 2002 | B1 |
6389514 | Rokicki | May 2002 | B1 |
6392653 | Malandain et al. | May 2002 | B1 |
6401213 | Jeddeloh | Jun 2002 | B1 |
6405280 | Ryan | Jun 2002 | B1 |
6421744 | Morrison et al. | Jul 2002 | B1 |
6430696 | Keeth | Aug 2002 | B1 |
6433785 | Garcia et al. | Aug 2002 | B1 |
6434639 | Haghighi | Aug 2002 | B1 |
6434696 | Kang | Aug 2002 | B1 |
6434736 | Schaecher et al. | Aug 2002 | B1 |
6438622 | Haghighi et al. | Aug 2002 | B1 |
6438668 | Esfahani et al. | Aug 2002 | B1 |
6449308 | Knight, Jr. et al. | Sep 2002 | B1 |
6453393 | Holman et al. | Sep 2002 | B1 |
6460108 | McCoskey et al. | Oct 2002 | B1 |
6460114 | Jeddeloh | Oct 2002 | B1 |
6462978 | Shibata et al. | Oct 2002 | B2 |
6463059 | Movshovich et al. | Oct 2002 | B1 |
6467013 | Nizar | Oct 2002 | B1 |
6470422 | Cai et al. | Oct 2002 | B2 |
6473828 | Matsui | Oct 2002 | B1 |
6477592 | Chen et al. | Nov 2002 | B1 |
6477614 | Leddige et al. | Nov 2002 | B1 |
6477621 | Lee et al. | Nov 2002 | B1 |
6479322 | Kawata et al. | Nov 2002 | B2 |
6487628 | Duong et al. | Nov 2002 | B1 |
6490188 | Nuxoll et al. | Dec 2002 | B2 |
6496193 | Surti et al. | Dec 2002 | B1 |
6496909 | Schimmel | Dec 2002 | B1 |
6501471 | Venkataraman et al. | Dec 2002 | B1 |
6502161 | Perego et al. | Dec 2002 | B1 |
6505287 | Uematsu | Jan 2003 | B2 |
6523092 | Fanning | Feb 2003 | B1 |
6523093 | Bogin et al. | Feb 2003 | B1 |
6526483 | Cho et al. | Feb 2003 | B1 |
6539490 | Forbes et al. | Mar 2003 | B1 |
6552564 | Forbes et al. | Apr 2003 | B1 |
6553476 | Ayaki et al. | Apr 2003 | B1 |
6587912 | Leddige et al. | Jul 2003 | B2 |
6590816 | Perner | Jul 2003 | B2 |
6594713 | Fuoco et al. | Jul 2003 | B1 |
6594722 | Willke, II et al. | Jul 2003 | B1 |
6598154 | Vaid et al. | Jul 2003 | B1 |
6615325 | Mailloux et al. | Sep 2003 | B2 |
6622227 | Zumkehr et al. | Sep 2003 | B2 |
6628294 | Sadowsky et al. | Sep 2003 | B1 |
6629220 | Dyer | Sep 2003 | B1 |
6631440 | Jenne et al. | Oct 2003 | B2 |
6633959 | Arimilli et al. | Oct 2003 | B2 |
6636110 | Ooishi et al. | Oct 2003 | B1 |
6646929 | Moss et al. | Nov 2003 | B1 |
6647470 | Janzen | Nov 2003 | B1 |
6658509 | Bonella et al. | Dec 2003 | B1 |
6662304 | Keeth et al. | Dec 2003 | B2 |
6667895 | Jang et al. | Dec 2003 | B2 |
6681292 | Creta et al. | Jan 2004 | B2 |
6681302 | Cho et al. | Jan 2004 | B2 |
6697926 | Johnson et al. | Feb 2004 | B2 |
6704817 | Steinman et al. | Mar 2004 | B1 |
6718440 | Maiyuran et al. | Apr 2004 | B2 |
6721195 | Brunelle et al. | Apr 2004 | B2 |
6724685 | Braun et al. | Apr 2004 | B2 |
6728800 | Lee et al. | Apr 2004 | B1 |
6735679 | Herbst et al. | May 2004 | B1 |
6735682 | Segelken et al. | May 2004 | B2 |
6745275 | Chang | Jun 2004 | B2 |
6751703 | Chilton | Jun 2004 | B2 |
6754812 | Abdallah et al. | Jun 2004 | B1 |
6756661 | Tsuneda et al. | Jun 2004 | B2 |
6760833 | Dowling | Jul 2004 | B1 |
6771538 | Shukuri et al. | Aug 2004 | B2 |
6772295 | Spencer et al. | Aug 2004 | B2 |
6775747 | Venkatraman | Aug 2004 | B2 |
6782466 | Steele et al. | Aug 2004 | B1 |
6788104 | Singh et al. | Sep 2004 | B2 |
6789173 | Tanaka et al. | Sep 2004 | B1 |
6792059 | Yuan et al. | Sep 2004 | B2 |
6792496 | Aboulenein et al. | Sep 2004 | B2 |
6795899 | Dodd et al. | Sep 2004 | B2 |
6799246 | Wise et al. | Sep 2004 | B1 |
6799268 | Boggs et al. | Sep 2004 | B1 |
6804760 | Wiliams | Oct 2004 | B2 |
6804764 | LaBerge et al. | Oct 2004 | B2 |
6807630 | Lay et al. | Oct 2004 | B2 |
6816947 | Huffman | Nov 2004 | B1 |
6820181 | Jeddeloh et al. | Nov 2004 | B2 |
6823023 | Hannah | Nov 2004 | B1 |
6829705 | Smith | Dec 2004 | B2 |
6832303 | Tanaka | Dec 2004 | B2 |
6889304 | Perego et al. | May 2005 | B2 |
6928528 | Hewitt | Aug 2005 | B1 |
6941433 | Libby et al. | Sep 2005 | B1 |
6980042 | LaBerge | Dec 2005 | B2 |
7107415 | Jeddeloh et al. | Sep 2006 | B2 |
7117316 | Jeddeloh | Oct 2006 | B2 |
7120727 | Lee et al. | Oct 2006 | B2 |
7133972 | Jeddeloh | Nov 2006 | B2 |
7162567 | Jeddeloh | Jan 2007 | B2 |
7188219 | Jeddeloh | Mar 2007 | B2 |
7213082 | Jeddeloh | May 2007 | B2 |
7254075 | Woo et al. | Aug 2007 | B2 |
7315053 | Hosomi et al. | Jan 2008 | B2 |
7318130 | Morrow et al. | Jan 2008 | B2 |
7716444 | Jeddeloh et al. | May 2010 | B2 |
20010039612 | Lee | Nov 2001 | A1 |
20020002656 | Honma et al. | Jan 2002 | A1 |
20020078298 | Jeddeloh | Jun 2002 | A1 |
20020112119 | Halbert et al. | Aug 2002 | A1 |
20020116588 | Beckert et al. | Aug 2002 | A1 |
20020120709 | Chow et al. | Aug 2002 | A1 |
20020144064 | Fanning | Oct 2002 | A1 |
20020178319 | Sanchez-Olea | Nov 2002 | A1 |
20030005223 | Coulson et al. | Jan 2003 | A1 |
20030014578 | Pax | Jan 2003 | A1 |
20030015899 | Clay | Jan 2003 | A1 |
20030043158 | Wasserman et al. | Mar 2003 | A1 |
20030043426 | Baker et al. | Mar 2003 | A1 |
20030093630 | Richard et al. | May 2003 | A1 |
20030156639 | Liang | Aug 2003 | A1 |
20030163649 | Kapur et al. | Aug 2003 | A1 |
20030177320 | Sah et al. | Sep 2003 | A1 |
20030193927 | Hronik | Oct 2003 | A1 |
20030223295 | Ozguz et al. | Dec 2003 | A1 |
20030227798 | Pax | Dec 2003 | A1 |
20030229762 | Maiyuran et al. | Dec 2003 | A1 |
20030229770 | Jeddeloh | Dec 2003 | A1 |
20030235072 | Kim et al. | Dec 2003 | A1 |
20040006671 | Handgen et al. | Jan 2004 | A1 |
20040015666 | Rojas et al. | Jan 2004 | A1 |
20040019728 | Sharma | Jan 2004 | A1 |
20040022094 | Radhakrishnan et al. | Feb 2004 | A1 |
20040024959 | Taylor | Feb 2004 | A1 |
20040024978 | Jeddeloh | Feb 2004 | A1 |
20040034753 | Jeddeloh | Feb 2004 | A1 |
20040034825 | Jeddeloh | Feb 2004 | A1 |
20040039886 | Christofferson et al. | Feb 2004 | A1 |
20040044833 | Ryan | Mar 2004 | A1 |
20040049649 | Durrant | Mar 2004 | A1 |
20040064602 | George | Apr 2004 | A1 |
20040122988 | Han et al. | Jun 2004 | A1 |
20040158677 | Dodd | Aug 2004 | A1 |
20040170196 | Susnow | Sep 2004 | A1 |
20040260909 | Lee et al. | Dec 2004 | A1 |
20040268061 | Khare et al. | Dec 2004 | A1 |
20050060533 | Woo et al. | Mar 2005 | A1 |
20050066137 | Jeddeloh et al. | Mar 2005 | A1 |
20050071542 | Weber et al. | Mar 2005 | A1 |
20050078506 | Rao et al. | Apr 2005 | A1 |
20050105350 | Zimmerman | May 2005 | A1 |
20050149774 | Jeddeloh et al. | Jul 2005 | A1 |
20050223161 | Jeddeloh | Oct 2005 | A1 |
20050246558 | Ku | Nov 2005 | A1 |
20050286506 | LaBerge | Dec 2005 | A1 |
20060085616 | Zeighami et al. | Apr 2006 | A1 |
20060168407 | Stern | Jul 2006 | A1 |
20060200642 | LaBerge | Sep 2006 | A1 |
20060206679 | Jeddeloh et al. | Sep 2006 | A1 |
20060212655 | Jeddeloh et al. | Sep 2006 | A1 |
20060212666 | Jeddeloh | Sep 2006 | A1 |
20060288172 | Lee et al. | Dec 2006 | A1 |
20070011392 | Lee et al. | Jan 2007 | A1 |
20070033353 | Jeddeloh | Feb 2007 | A1 |
20070055817 | Jeddeloh | Mar 2007 | A1 |
20070088915 | Archambault et al. | Apr 2007 | A1 |
20070113027 | Jeddeloh | May 2007 | A1 |
Number | Date | Country |
---|---|---|
0395559 | Oct 1990 | EP |
0843261 | May 1998 | EP |
0849685 | Jun 1998 | EP |
1199637 | Apr 2002 | EP |
2244157 | Nov 1991 | GB |
06004401 | Jan 1994 | JP |
06028180 | Feb 1994 | JP |
08185383 | Jul 1996 | JP |
10214223 | Aug 1998 | JP |
10228413 | Aug 1998 | JP |
000067533 | Nov 2000 | KR |
491970 | Jun 2002 | TW |
WO-9318459 | Sep 1993 | WO |
WO-9319422 | Sep 1993 | WO |
WO-9704401 | Feb 1997 | WO |
WO-9923570 | May 1999 | WO |
WO-9934294 | Jul 1999 | WO |
WO-0026798 | May 2000 | WO |
WO-0043902 | Jul 2000 | WO |
WO-0227499 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20100191924 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11881010 | Jul 2007 | US |
Child | 12754011 | US | |
Parent | 10963824 | Oct 2004 | US |
Child | 11881010 | US | |
Parent | 10232473 | Aug 2002 | US |
Child | 10963824 | US |