This application claims the benefit of U.S. Provisional Application Ser. No. 61/676,261, filed on 26 Jul. 2012, and U.S. Provisional Application Ser. No. 61/751,773, filed on 11 Jan. 2013, which are incorporated in their entirety by this reference.
This invention relates generally to the telephony messaging field, and more specifically to a new and useful method and system for controlling message routing in the telephony messaging field.
Text messaging is one of the most widely used communication methods in the world. In recent years, telephony based applications have been able to utilize text and multimedia messaging as a form of communication with users. Despite the wide use of text messaging, the underlying infrastructure is complex and obfuscated. Telephony infrastructure is highly dependent on constantly changing contracts, negotiations, and international regulations. As a result, application platforms and other parties wishing to facilitate the sending and receiving of messages in some situations do not retain control over how a message is sent. Platforms sending a message often must trust partners and other parties to deliver the message. Those partners and parties may also rely on other parties to participate in message delivery. There is little visibility into message delivery. Delivery receipts can be used to indicate if a message delivery succeeded or failed. However, the delivery reports are often unreliable and cannot always be a trusted indicator of message delivery.
Additionally, when sending a message in a telephony system, such as sending a short message service (SMS) message, the message is routed through multiple messaging nodes. The intermediary nodes through which the message passes may be operated by various networks, may reside in arbitrary locations, may have various protocols for handling messages, or may impact the outcome of message routing in a number of alternative ways. In the current telephony messaging ecosystem, a single party does not control the dynamics of how messages are routed. Thus, the route of a message is highly dependent on multiple variable parties. Messages may be altered, delayed, dropped, split into multiple messages, suffer from character encoding issues, or have any number of issues due to the message handling of an encountered node on the message's way to the destination. This makes it extremely difficult for a party wishing to send and/or receive a message to ensure the integrity and reliability of communicating a message. Thus, there is a need in the telephony field to create a new and useful method and system for controlling message routing. This invention provides such a new and useful method and system.
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The method is preferably implemented by a telephony platform with messaging support such as the telephony platform described in published U.S. Patent Application No. 2009/0252159, titled “SYSTEM AND METHOD FOR PROCESSING TELEPHONY SESSIONS”, which is hereby incorporated in its entirety by this reference. Telephony messaging preferably includes SMS, multimedia messaging service (MMS), image messaging, animation messaging, video messaging, audio/music messaging, internet protocol (IP) messaging, push notifications, and/or any suitable messaging technique. The method may alternatively or additionally apply to messaging mediums outside of the telephony field. The telephony platform preferably includes a message router responsible for sending and/or receiving messages. The message router is preferably configured to have at least two routing options. The second channel is preferably a channel differing from the first channel. In one exemplary variation, the first channel is a SMS message routing channel and the second channel is an internet network channel. A system implementing the method may include system components such as user feedback interface coupled to the telephony platform, a link redirector, a pin code API service, or any other suitable feedback mechanism for capturing and communicating feedback. As the routing patterns of a routing option may vary considerably with time, the method preferably obtains feedback through the second channel and responds by updating a new selected routing option in substantially real time. In some variations, the feedback requires action by the receiver of the message. After feedback is acquired the selected routing option for subsequent messages may be updated appropriately.
Block S110, which recites at a message router sending a first outgoing message through a first channel using a routing option selected from a plurality of routing options, functions to exercise the control of a sender over the routing of a message. The message router is preferably configured to have a plurality of message routing options. Routing options are preferably different initial nodes to which a message may be initially sent. The routing options may be characterized by different service providers, networks, geographic locations, physical machines, resource addresses, contractual agreements, communication protocols, time-dependent quality/performance properties, and/or any other suitable distinguishing characteristics of message routing node. For example, a message router may be configured to selectively transmit a message to one of four different service providers. Depending on the message medium and possibly the source and destination endpoints, the routing options may be different channel protocols directed at different service provider destinations. For an SMS message, the routing options may be SMPP connections to various service provider destinations. For an MMS message, the routing option may be an SMTP connection to various service provider destinations. Depending on the used protocol, the routing options of an MMS message can be SMTP connections to various service provider destinations (for MM4) or alternatively they can be various service resources accessed over HTTP/SOAP (for MM7). The routing options preferably include various commercial relationships between the service provider and the communication platform. As another example, a message router may be configured to selectively transmit a message using a routing option selected from SMS routing options, proprietary push notification routing options (e.g., Apple or Google push notifications) and application messaging routing options (e.g., message sent to a Whatsapp user). The message router may or may not have visibility into the routing beyond the initial node. The selection of an initial node preferably functions as a fundamental point of control to the full route a message will take to arrive at a destination. In one preferred embodiment the method is preferably implemented in a continuous manner, such that the first selected routing option was preferably selected according to an optimality assessment as described below for Block S140. The first channel is preferably the messaging channel such as communication with a SMS or MMS gateway used to communicate the message to the destination. In some situations, internal routing such as over the internet may be used to access additional routing option. There may additionally be a plurality of types of channels available for sending a message such as SMS or MMS, push notifications, or any suitable messaging channel. The outgoing message is preferably sent to a single destination endpoint (e.g., a phone number) but may alternatively be sent to a plurality of endpoints. In a variation where the outgoing message is sent to a plurality of destination endpoints, Block S130 preferably includes receiving message delivery reports through at least a second channel for a plurality of destination endpoints.
Block S120, which recites receiving a message delivery report through at least a second channel, functions to obtain feedback from the message destination. The message delivery report preferably indicates the status of the message at the destination endpoint, and the message delivery report is preferably generated in response to the message arriving at the destination. In one variation, the message delivery report indicates the success or failure of message delivery to the intended destination(s). If a message is received, the message delivery report will preferably indicate that the message was successfully received. The message delivery report will preferably include an indicator that the message was undelivered if the message is not received at the destination. An undelivered message delivery report is preferably sent after a specified amount of time has elapsed. The time out period is preferably the maximum satisfactory amount of time a message should take to be delivered to a destination. This timeout may additionally be dynamically adjusted based on the destination to accommodate for longer than expected delivery times. The delivery report may additionally or alternatively include other information about the message received at the destination such as message condition. Message condition preferably describes properties such as if the message was altered, censored, truncated, encoded improperly, split into multiple messages, or otherwise not conforming to the original outgoing message.
The message delivery report is preferably received in near real-time (e.g., under a minute from a message being delivered or classified as undelivered), but the message delivery report may occur at any suitable time. For example, message delivery reports may be retrieved or collected at designated intervals. In an alternative variation described below, the message delivery report may be collected from user feedback at a time well after the message has been received.
Preferably the delivery report is transmitted in response to an action at the destination endpoint, but delivery reports may be stored and actively retrieved by the message router or any suitable system. For example, the status of a message in the form of a delivery report may be an accessible resource accessed through an API. A default delivery report status may be set or assumed. For example, if no message delivery report is received, then the report for the transmission of the sent message may default to un-received status until the delivery report is updated based on a received message.
Additionally, Block S120 of a preferred embodiment may additionally include generating a delivery report S122 as shown in
As shown in
As shown in
As shown in
Block S130, which recites updating message routing data with the message delivery report, functions to adjust the criteria used in selecting routing options of messages in Block S140. The information included in the message delivery report is preferably added to message routing data that is preferably a record of previous delivery reports. The message routing data is preferably used to improve subsequent message routing. In other iterations of the method the sending of a message through a routing option will typically use a routing option that is preferably more optimal than the initially used routing option according to the collected delivery report. Updating the message routing data can include ranking routing options based at least in part on delivery success rates. Other properties of the routing option may additionally be considered such as price, contract obligations, time of day. Alternatively, the message routing data may only store a limited number of delivery reports. The message routing data may be limited to data associated to messages sent in a particular time-window, the nth most recent outgoing messages, or any suitable group of data. The message routing data may additionally include data from sources other than the delivery reports. Data or parameters from routing option contracts, data from message routing infrastructure such as Signaling System No. 7 (SS7), or any other resource that may be used in determining an optimality assessment. The optimality assessment, mapping for optimal/preferred/recommended routing options, may be updated on receipt of new message delivery reports, but alternatively, the data from delivery reports may be added to the message routing data and optimal new routing options calculated periodically, when a new message requires routing, or at any suitable time. The message routing data is preferably used to improve message delivery performance. In a variation described where outgoing messages are classified, message routing data is preferably stored with an associative link between a message classification type and the message delivery report. This allows historical data to be filtered based on message classification.
Block S140, which recites selecting a second routing option for a second outgoing message, the second routing option selected from the plurality of routing options according to an optimality assessment of the message routing data, functions to determine a preferred way to route a message. As indicated above, the selection of an initial node preferably functions as a fundamental point of control to the full node-to-node route a message will take to arrive at a destination. The optimality assessment is preferably a statistical computation for determining the optimal routing option for a particular destination endpoint. The optimality assessment may factor in message delivery rate, delivered message quality, message delivery time, cost, time of day, message properties/classification, or any suitable parameter of message communication. Additionally, the operator of the message router may consider additional factors in the optimality assessment. For example, an operator may have various service agreements for the plurality of routing options, some of which may have minimum messaging requirements that must be satisfied during a specified time period. Such data is preferably stored in the message routing data, but may be stored or retrieved from any suitable source.
In a variation of the preferred method, the optimality assessment may indicate a processing rule to be applied to a message for a particular routing option. For example, a message may be edited, split, encoded into a different format, translated, compressed, linked to through a URL, or otherwise altered in any suitable manner. The processing rule is preferably applied to mitigate poor messaging performance based on historical data collected. This may be performed for particular regions or message types that historically have poor messaging performance for all routing options or perhaps could see improved deliverability if altered.
As shown in
Additionally, selecting a routing option of Step S140 may include querying destination properties S142 as shown in
As shown in
As shown in
Block S210, which includes providing a messaging-supported service, functions to implement a service that forces user interaction with a second channel as a result of a message received in a first channel. The service preferably promotes expected user behavior when a message is delivered. Typically, the user behavior required to complete a request is the result of an initial user interaction with the service. For example, a two-factor authentication service often includes the user behavior of reading and entering in a code delivered over SMS, MMS, voice, or other communication medium. Alternatively, the user behavior may be one that a typical user feels compelled to complete based on the request of another entity. For example, a user will typically view links and/or media sent by a friend. If the service is a link shortening and messaging service, content sent through the service can enable the tracking of message delivery. In addition to a two-factor authentication service, the messaging-supported service may be a link-shortening service, a media-proxying service, a coupon code service, an application-notification service, a game mechanic service (e.g., virtual item collection), and/or any suitable service.
Block S220, which includes sending a coded identifier in a message, functions to use a unique identifier used in detecting a completed user interaction. The coded identifier is preferably unique to a particular message. The messaging-supported service preferably creates a mapping between the identifier and at least one component of the communication (e.g., the routing option, the communication destination, message content, etc.). The coded identifier may be a text or graphical code readable by a user or machine. The user will typically be required to report the text or graphical code through a second communication channel (e.g., a webpage login screen or in a coupon redemption form). Similarly, a code-reader may scan and read the code. The coded identifier may alternatively be redirection-URI. The redirection URI is a tracking URI that monitors when a user accesses the URI and also redirects a user to an original URI. The redirection URI may additionally be a shortened URI. In a similar variation, the message includes a resource link that sends a user to a controlled resource. The controlled resource may be a webpage, an application, or any suitable resource. The controlled resource is preferably monitored and when a user accesses that resource that action can be mapped to a coded identifier associated with the communication. Any other suitable coded identifier may alternatively be used.
Block S230, which includes tracking message delivery through a processed coded identifier, functions to identify when a coded identifier is triggered. The message delivery is preferably tracked through a communication channel that is different from the one used in transmitting the message. A coded identifier is preferably triggered when a user completes a user interaction associated with the coded identifier. The user interaction is preferably logically associated with the receipt of the sent message. So when a user completes the desired user interaction, explicitly or implicitly using the coded identifier, the service can determine if a message succeeded or failed in delivery. Other states of message deliverability may also be tracked such as pending, message corruption, delivery delay, delivery error, or any suitable state of message delivery. In tracking delivery delay, the time between sending the message and completing the user interaction is preferably tracked. The time from sending to first interaction may have a strong correlation to speed of delivery, especially in certain variations where user interaction is expected to occur immediately after message delivery.
In a variation where the service is a two-factor authentication service, block S220 includes sending an authentication code. The code is used for authenticating a user by providing some level of proof that the user has access to a particular device, as is commonly done in two-factor authentication. Message delivery is preferably marked as delivered if the code is correctly verified and used in authenticating the user. Message delivery is preferably marked as a failed delivery if the user does not complete authentication. Additionally, message delivery may be marked with corrupted delivery, encoding failure, or some other error diagnosis if the code is incorrectly entered but follows patterns of a corrupted message delivery. The two-factor authentication service can be extended to a coupon redemption service. The coupon service preferably delivers requested coupons to a user in an SMS or other message. The user is required to enter a code or scan a graphic to redeem the coupon.
In a variation where the service is a link shortening service, block S220 includes converting a URI to a redirection URI. When a user clicks on the redirection URI, a browser is preferably directed to the redirection URI. The redirection URI is preferably unique to that message. A message is preferably marked as successfully delivered if the redirection URI is visited. The message delivery state preferably defaults to un-delivered unless the redirection URI is visited.
Block S240, which includes generating a score for message delivery, functions to use tracked message delivery across the message-supported service to determine a state of message communication. The score preferably relates to the quality of message deliverability. The message-supported service can additionally selectively use different message delivery options to generate a score for particular communication options. For example, the service can track what routing option is used for sending the coded identifier, and message delivery is tracked for that particular routing option. Steps S220 and S230 are preferably performed a plurality of times for different users and messages during various uses of the service. The combined usage of the service enables a plurality of communication data samples. The results are preferably consolidated and used together to generate a score. With a wide variety of samples, the score may be function of one or more variables such as time of day, carrier, originating endpoint, destination endpoint, origination geographic location, destination geographic location, message content, and/or any suitable communication variable. The score may be used in the determination of routing options, providing communication analytics, or used in any suitable application.
The above methods are preferably implemented continuously on at least a sub-set of messages that are transmitted by a communication platform. In one variation, not all messages provide delivery reports, but at least a sub-set does provide delivery reports. For example, the messaging service may enable developers to programmatically send messages for any suitable use-case. Of those, a subset may share links or send pin codes. This subset of use-cases can preferably provide routing data to inform the routing of other messages. When implemented on a multitenant communication platform this can be particularly beneficial to the various entities using the platform. Some use-cases may not have the necessary message volume or coverage to generate enough data. Or a use case may not have a reasonable mechanism to obtain message delivery reports. When implemented across multiple accounts, the combined message delivery reports of multiple accounts can improve route option selection. Additionally, multiple techniques can be combined. For example, coded identifier service can be used to contribute message delivery successes and failures (as shown in
The above methods are preferably implemented by a system that includes telephony message service, a routing option database, and at least an interface to communication of a second channel. The telephony message service is preferably used in transmission of messages. As described above, the messages are preferably SMS or MMS, but can be any suitable type of message. The telephony message is preferably enabled for programmatic transmission of messages. The telephony messages may be sent based on API requests or from application instructions. The telephony message service is preferably a multitenant service. Multiple users and multiple account holders (e.g., application developers) are preferably used to facilitate collection of delivery receipt confirmation. When the above methods are implemented across multiple accounts and with multiple users, the routing options (even a set of routing options covering various global regions) can be simply checked and monitored. The routing option database preferably stores any routing option data and information to establish communication with a routing option service/carrier entity. A routing service may provide an interface in front of the routing option database. The service can be used to easily determine what routing option should be used. Similarly, the interface may simplify the act of providing new message delivery report data.
An alternative embodiment preferably implements the above methods in a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with a message router. The message router is preferably part of a telephony platform and may additionally be coupled with a feedback interface, a link redirector, pin code API, or any suitable component to facilitate message delivery feedback. The computer-readable medium may be stored on any suitable computer readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a processor but the instructions may alternatively or additionally be executed by any suitable dedicated hardware device.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5274700 | Gechter et al. | Dec 1993 | A |
5526416 | Dezonno et al. | Jun 1996 | A |
5581608 | Jreij et al. | Dec 1996 | A |
5598457 | Foladare et al. | Jan 1997 | A |
6094681 | Shaffer et al. | Jul 2000 | A |
6138143 | Gigliotti et al. | Oct 2000 | A |
6185565 | Meubus et al. | Feb 2001 | B1 |
6192123 | Grunsted et al. | Feb 2001 | B1 |
6223287 | Douglas et al. | Apr 2001 | B1 |
6269336 | Ladd et al. | Jul 2001 | B1 |
6425012 | Trovato et al. | Jul 2002 | B1 |
6430175 | Echols et al. | Aug 2002 | B1 |
6434528 | Sanders | Aug 2002 | B1 |
6445694 | Swartz | Sep 2002 | B1 |
6445776 | Shank et al. | Sep 2002 | B1 |
6459913 | Cloutier | Oct 2002 | B2 |
6493558 | Bernhart et al. | Dec 2002 | B1 |
6496500 | Johnson et al. | Dec 2002 | B2 |
6501832 | Saylor et al. | Dec 2002 | B1 |
6507875 | Mellen-Garnett et al. | Jan 2003 | B1 |
6600736 | Ball et al. | Jul 2003 | B1 |
6606596 | Zirngibl et al. | Aug 2003 | B1 |
6614783 | Sonesh et al. | Sep 2003 | B1 |
6625258 | Ram et al. | Sep 2003 | B1 |
6625576 | Kochanski et al. | Sep 2003 | B2 |
6662231 | Drosset et al. | Dec 2003 | B1 |
6704785 | Koo et al. | Mar 2004 | B1 |
6707889 | Saylor et al. | Mar 2004 | B1 |
6711249 | Weissman et al. | Mar 2004 | B2 |
6738738 | Henton | May 2004 | B2 |
6757365 | Bogard | Jun 2004 | B1 |
6765997 | Zirngibl et al. | Jul 2004 | B1 |
6768788 | Langseth et al. | Jul 2004 | B1 |
6778653 | Kallas et al. | Aug 2004 | B1 |
6785266 | Swartz | Aug 2004 | B2 |
6788768 | Saylor et al. | Sep 2004 | B1 |
6792086 | Saylor et al. | Sep 2004 | B1 |
6798867 | Zirngibl et al. | Sep 2004 | B1 |
6807529 | Johnson et al. | Oct 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6819667 | Brusilovsky et al. | Nov 2004 | B1 |
6829334 | Zirngibl et al. | Dec 2004 | B1 |
6834265 | Balasuriya | Dec 2004 | B2 |
6836537 | Zirngibl et al. | Dec 2004 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6850603 | Eberle et al. | Feb 2005 | B1 |
6870830 | Schuster et al. | Mar 2005 | B1 |
6873952 | Bailey et al. | Mar 2005 | B1 |
6874084 | Dobner et al. | Mar 2005 | B1 |
6885737 | Gao et al. | Apr 2005 | B1 |
6888929 | Saylor et al. | May 2005 | B1 |
6895084 | Saylor et al. | May 2005 | B1 |
6898567 | Balasuriya | May 2005 | B2 |
6912581 | Johnson et al. | Jun 2005 | B2 |
6922411 | Taylor | Jul 2005 | B1 |
6931405 | El-Shimi et al. | Aug 2005 | B2 |
6937699 | Schuster et al. | Aug 2005 | B1 |
6940953 | Eberle et al. | Sep 2005 | B1 |
6941268 | Porter et al. | Sep 2005 | B2 |
6947417 | Laursen et al. | Sep 2005 | B2 |
6961330 | Cattan et al. | Nov 2005 | B1 |
6964012 | Zirngibl et al. | Nov 2005 | B1 |
6970915 | Partovi et al. | Nov 2005 | B1 |
6977992 | Zirngibl et al. | Dec 2005 | B2 |
6985862 | Stroem et al. | Jan 2006 | B2 |
7003464 | Ferrans et al. | Feb 2006 | B2 |
7006606 | Cohen et al. | Feb 2006 | B1 |
7010586 | Allavarpu et al. | Mar 2006 | B1 |
7020685 | Chen et al. | Mar 2006 | B1 |
7039165 | Saylor et al. | May 2006 | B1 |
7062709 | Cheung | Jun 2006 | B2 |
7076428 | Anastasakos et al. | Jul 2006 | B2 |
7089310 | Ellerman et al. | Aug 2006 | B1 |
7103003 | Brueckheimer et al. | Sep 2006 | B2 |
7103171 | Annadata et al. | Sep 2006 | B1 |
7111163 | Haney | Sep 2006 | B1 |
7140004 | Kunins et al. | Nov 2006 | B1 |
7143039 | Stifelman et al. | Nov 2006 | B1 |
7197331 | Anastasakos et al. | Mar 2007 | B2 |
7197461 | Eberle et al. | Mar 2007 | B1 |
7197462 | Takagi et al. | Mar 2007 | B2 |
7197544 | Wang et al. | Mar 2007 | B2 |
7225232 | Elberse | May 2007 | B2 |
7227849 | Raesaenen | Jun 2007 | B1 |
7266181 | Zirngibl et al. | Sep 2007 | B1 |
7269557 | Bailey et al. | Sep 2007 | B1 |
7272212 | Eberle et al. | Sep 2007 | B2 |
7272564 | Phillips et al. | Sep 2007 | B2 |
7277851 | Henton | Oct 2007 | B1 |
7283515 | Fowler | Oct 2007 | B2 |
7286521 | Jackson et al. | Oct 2007 | B1 |
7287248 | Adeeb | Oct 2007 | B1 |
7289453 | Riedel et al. | Oct 2007 | B2 |
7298732 | Cho | Nov 2007 | B2 |
7308085 | Weissman | Dec 2007 | B2 |
7308408 | Stifelman et al. | Dec 2007 | B1 |
7324633 | Gao et al. | Jan 2008 | B2 |
7324942 | Mahowald et al. | Jan 2008 | B1 |
7330890 | Partovi et al. | Feb 2008 | B1 |
7340040 | Saylor et al. | Mar 2008 | B1 |
7349714 | Lee et al. | Mar 2008 | B2 |
7369865 | Gabriel et al. | May 2008 | B2 |
7376223 | Taylor et al. | May 2008 | B2 |
7376586 | Partovi et al. | May 2008 | B1 |
7376740 | Porter et al. | May 2008 | B1 |
7412525 | Cafarella et al. | Aug 2008 | B2 |
7428302 | Zirngibl et al. | Sep 2008 | B2 |
7440898 | Eberle et al. | Oct 2008 | B1 |
7447299 | Partovi et al. | Nov 2008 | B1 |
7454459 | Kapoor et al. | Nov 2008 | B1 |
7457397 | Saylor et al. | Nov 2008 | B1 |
7486780 | Zirngibl et al. | Feb 2009 | B2 |
7496054 | Taylor | Feb 2009 | B2 |
7500249 | Kampe et al. | Mar 2009 | B2 |
7505951 | Thompson et al. | Mar 2009 | B2 |
7519359 | Chiarulli et al. | Apr 2009 | B2 |
7522711 | Stein et al. | Apr 2009 | B1 |
7536454 | Balasuriya | May 2009 | B2 |
7552054 | Stifelman et al. | Jun 2009 | B1 |
7571226 | Partovi et al. | Aug 2009 | B1 |
7613287 | Stifelman et al. | Nov 2009 | B1 |
7623648 | Oppenheim et al. | Nov 2009 | B1 |
7630900 | Strom | Dec 2009 | B1 |
7631310 | Henzinger | Dec 2009 | B1 |
7644000 | Strom | Jan 2010 | B1 |
7657433 | Chang | Feb 2010 | B1 |
7657434 | Thompson et al. | Feb 2010 | B2 |
7672295 | Andhare et al. | Mar 2010 | B1 |
7675857 | Chesson | Mar 2010 | B1 |
7882253 | Pardo-Castellote et al. | Feb 2011 | B2 |
7920866 | Bosch et al. | Apr 2011 | B2 |
7926099 | Chakravarty et al. | Apr 2011 | B1 |
7936867 | Hill et al. | May 2011 | B1 |
7962644 | Ezerzer et al. | Jun 2011 | B1 |
8081958 | Soederstroem et al. | Dec 2011 | B2 |
8103725 | Gupta et al. | Jan 2012 | B2 |
8126128 | Hicks, III et al. | Feb 2012 | B1 |
8150918 | Edelman et al. | Apr 2012 | B1 |
8266327 | Kumar et al. | Sep 2012 | B2 |
20020006124 | Jimenez et al. | Jan 2002 | A1 |
20020006125 | Josse et al. | Jan 2002 | A1 |
20020006193 | Rodenbusch et al. | Jan 2002 | A1 |
20020077833 | Arons et al. | Jun 2002 | A1 |
20020126813 | Partovi et al. | Sep 2002 | A1 |
20030006137 | Wei et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030026426 | Wright et al. | Feb 2003 | A1 |
20030046366 | Pardikar et al. | Mar 2003 | A1 |
20030051037 | Sundaram et al. | Mar 2003 | A1 |
20030059020 | Meyerson et al. | Mar 2003 | A1 |
20030061404 | Atwal et al. | Mar 2003 | A1 |
20030088421 | Maes et al. | May 2003 | A1 |
20030123640 | Roelle et al. | Jul 2003 | A1 |
20030211842 | Kempf et al. | Nov 2003 | A1 |
20030231647 | Petrovykh | Dec 2003 | A1 |
20040071275 | Bowater et al. | Apr 2004 | A1 |
20040101122 | Da Palma et al. | May 2004 | A1 |
20040172482 | Weissman et al. | Sep 2004 | A1 |
20040213400 | Golitsin et al. | Oct 2004 | A1 |
20050010483 | Ling | Jan 2005 | A1 |
20050025303 | Hostetler | Feb 2005 | A1 |
20050038772 | Colrain | Feb 2005 | A1 |
20050135578 | Ress et al. | Jun 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050240659 | Taylor | Oct 2005 | A1 |
20050243977 | Creamer et al. | Nov 2005 | A1 |
20050246176 | Creamer et al. | Nov 2005 | A1 |
20060015467 | Morken et al. | Jan 2006 | A1 |
20060047666 | Bedi et al. | Mar 2006 | A1 |
20060067506 | Flockhart et al. | Mar 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060168334 | Potti et al. | Jul 2006 | A1 |
20060203979 | Jennings | Sep 2006 | A1 |
20060209695 | Archer et al. | Sep 2006 | A1 |
20060215824 | Mitby et al. | Sep 2006 | A1 |
20060217823 | Hussey | Sep 2006 | A1 |
20060217978 | Mitby et al. | Sep 2006 | A1 |
20060256816 | Yarlagadda et al. | Nov 2006 | A1 |
20060262915 | Marascio et al. | Nov 2006 | A1 |
20060285489 | Francisco et al. | Dec 2006 | A1 |
20070002744 | Mewhinney et al. | Jan 2007 | A1 |
20070036143 | Alt et al. | Feb 2007 | A1 |
20070050306 | Mcqueen | Mar 2007 | A1 |
20070070906 | Thakur | Mar 2007 | A1 |
20070070980 | Phelps et al. | Mar 2007 | A1 |
20070071223 | Lee et al. | Mar 2007 | A1 |
20070074174 | Thornton | Mar 2007 | A1 |
20070121651 | Casey et al. | May 2007 | A1 |
20070127691 | Lert | Jun 2007 | A1 |
20070127703 | Siminoff | Jun 2007 | A1 |
20070130260 | Weintraub et al. | Jun 2007 | A1 |
20070133771 | Stifelman et al. | Jun 2007 | A1 |
20070153711 | Dykas et al. | Jul 2007 | A1 |
20070192629 | Saito | Aug 2007 | A1 |
20070208862 | Fox et al. | Sep 2007 | A1 |
20070242626 | Altberg et al. | Oct 2007 | A1 |
20070265073 | Novi et al. | Nov 2007 | A1 |
20070286180 | Marquette et al. | Dec 2007 | A1 |
20070291905 | Halliday et al. | Dec 2007 | A1 |
20080040484 | Yardley | Feb 2008 | A1 |
20080091843 | Kulkarni | Apr 2008 | A1 |
20080104348 | Kabzinski et al. | May 2008 | A1 |
20080134049 | Gupta et al. | Jun 2008 | A1 |
20080146268 | Gandhi et al. | Jun 2008 | A1 |
20080152101 | Griggs | Jun 2008 | A1 |
20080154601 | Stifelman et al. | Jun 2008 | A1 |
20080162482 | Ahern et al. | Jul 2008 | A1 |
20080165708 | Moore et al. | Jul 2008 | A1 |
20080177883 | Hanai et al. | Jul 2008 | A1 |
20080209050 | Li | Aug 2008 | A1 |
20080232574 | Baluja et al. | Sep 2008 | A1 |
20080313318 | Vermeulen et al. | Dec 2008 | A1 |
20080317222 | Griggs et al. | Dec 2008 | A1 |
20090052437 | Taylor et al. | Feb 2009 | A1 |
20090052641 | Taylor et al. | Feb 2009 | A1 |
20090074159 | Goldfarb et al. | Mar 2009 | A1 |
20090075684 | Cheng et al. | Mar 2009 | A1 |
20090089699 | Saha et al. | Apr 2009 | A1 |
20090093250 | Jackson et al. | Apr 2009 | A1 |
20090125608 | Werth et al. | May 2009 | A1 |
20090136011 | Goel | May 2009 | A1 |
20090171659 | Pearce et al. | Jul 2009 | A1 |
20090171669 | Engelsma et al. | Jul 2009 | A1 |
20090171752 | Galvin et al. | Jul 2009 | A1 |
20090220057 | Waters | Sep 2009 | A1 |
20090221310 | Chen et al. | Sep 2009 | A1 |
20090222341 | Belwadi et al. | Sep 2009 | A1 |
20090225748 | Taylor | Sep 2009 | A1 |
20090232289 | Drucker et al. | Sep 2009 | A1 |
20090252159 | Lawson et al. | Oct 2009 | A1 |
20100037204 | Lin et al. | Feb 2010 | A1 |
20100082513 | Liu | Apr 2010 | A1 |
20100087215 | Gu et al. | Apr 2010 | A1 |
20100088187 | Courtney et al. | Apr 2010 | A1 |
20100088698 | Krishnamurthy | Apr 2010 | A1 |
20100115041 | Hawkins et al. | May 2010 | A1 |
20100142516 | Lawson et al. | Jun 2010 | A1 |
20100150139 | Lawson et al. | Jun 2010 | A1 |
20100188979 | Thubert et al. | Jul 2010 | A1 |
20100191915 | Spencer | Jul 2010 | A1 |
20100208881 | Kawamura | Aug 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20100232594 | Lawson et al. | Sep 2010 | A1 |
20100235539 | Carter et al. | Sep 2010 | A1 |
20100251329 | Wei | Sep 2010 | A1 |
20100281108 | Cohen | Nov 2010 | A1 |
20110029882 | Jaisinghani | Feb 2011 | A1 |
20110078278 | Cui et al. | Mar 2011 | A1 |
20110081008 | Lawson et al. | Apr 2011 | A1 |
20110083179 | Lawson et al. | Apr 2011 | A1 |
20110096673 | Stevenson et al. | Apr 2011 | A1 |
20110176537 | Lawson et al. | Jul 2011 | A1 |
20110211679 | Mezhibovsky et al. | Sep 2011 | A1 |
20110255675 | Jasper et al. | Oct 2011 | A1 |
20110276892 | Jensen-Horne et al. | Nov 2011 | A1 |
20110280390 | Lawson et al. | Nov 2011 | A1 |
20110283259 | Lawson et al. | Nov 2011 | A1 |
20110299672 | Chiu et al. | Dec 2011 | A1 |
20110320550 | Lawson et al. | Dec 2011 | A1 |
20120036574 | Heithcock et al. | Feb 2012 | A1 |
20120201238 | Lawson et al. | Aug 2012 | A1 |
20120281536 | Gell et al. | Nov 2012 | A1 |
20120288082 | Segall | Nov 2012 | A1 |
20120290706 | Lin et al. | Nov 2012 | A1 |
20130156024 | Burg | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
1684587 | Mar 1971 | DE |
0282126 | Sep 1988 | EP |
1464418 | Oct 2004 | EP |
1770586 | Apr 2007 | EP |
2134107 | Sep 1999 | ES |
02087804 | Nov 2002 | WO |
2009018489 | Feb 2009 | WO |
2009124223 | Oct 2009 | WO |
2010037064 | Apr 2010 | WO |
2010040010 | Apr 2010 | WO |
2010101935 | Sep 2010 | WO |
2011091085 | Jul 2011 | WO |
Entry |
---|
Complaint for Patent Infringement, Telinit Technologies, LLC v. Twilio Inc., dated Oct. 12, 2012. |
Number | Date | Country | |
---|---|---|---|
20140031070 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61751773 | Jan 2013 | US | |
61676261 | Jul 2012 | US |