Method and system for controlling output of RF medical generator

Abstract
A system for monitoring and/or controlling tissue modification during an electrosurgical procedure is disclosed. The system includes a sensor module and a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module. The sensor module further includes at least one optical source configured to generate light and at least one optical detector configured to analyze a portion of the light transmitted through, and/or reflected from, the tissue.
Description
BACKGROUND

The present invention is directed to electrosurgical surgery and, in particular, to a closed loop control system for an electrosurgical generator.


Technical Field

Electrosurgical generators are employed by surgeons in conjunction with an electrosurgical instrument to cut, coagulate, dessicate and/or seal patient tissue. High frequency electrical energy, e.g., radio frequency (RF) energy, is produced by the electrosurgical generator and applied to the tissue by the electrosurgical tool. Both monopolar and bipolar configurations are commonly used during electrosurgical procedures.


Electrosurgical techniques and instruments can be used to coagulate small diameter blood vessels or to seal large diameter vessels or tissue, e.g., soft tissue structures, such as lung, brain and intestine. A surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding, by controlling the intensity, frequency and duration of the electrosurgical energy applied between the electrodes and through the tissue. For the purposes herein, the term “cauterization” is defined as the use of heat to destroy tissue (also called “diathermy” or “electrodiathermy”). The term “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” is defined as the process of liquefying the collagen and elastin in the tissue so that it reforms into a fused mass with significantly-reduced demarcation between the opposing tissue structures (opposing walls of the lumen). Coagulation of small vessels is usually sufficient to permanently close them. Larger vessels or tissue need to be sealed to assure permanent closure.


In order to achieve one of the above desired surgical effects without causing unwanted charring of tissue at the surgical site or causing collateral damage to adjacent tissue, e.g., thermal spread, it is necessary to control the output from the electrosurgical generator, e.g., power, waveform, voltage, current, pulse rate, etc.


It is known that measuring the electrical impedance and change thereof across the tissue at the surgical site provides a good indication of the state of desiccation or drying of the tissue, e.g., as the tissue dries or looses moisture, the impedance across the tissue rises. This observation has been utilized in some electrosurgical generators to regulate the electrosurgical power based on a measurement of tissue impedance. For example, commonly owned U.S. Pat. No. 6,210,403 relates to a system and method for automatically measuring the tissue impedance and altering the output of the electrosurgical generator based on the measured impedance across the tissue. The entire contents of this patent is hereby incorporated by reference herein.


It has been determined that the particular waveform of electrosurgical energy can be tailored to enhance a desired surgical effect, e.g., cutting, coagulation, sealing, blend, etc. For example, the “cutting” mode typically entails generating an uninterrupted sinusoidal waveform in the frequency range of 100 kHz to 4 MHz with a crest factor in the range of 1.4 to 2.0. The “blend” mode typically entails generating an uninterrupted cut waveform with a duty cycle in the range of 25% to 75% and a crest factor in the range of 2.0 to 5.0. The “coagulate” mode typically entails generating an uninterrupted waveform with a duty cycle of approximately 10% or less and a crest factor in the range of 5.0 to 12.0. In order to effectively and consistently seal vessels or tissue, a pulse-like waveform is preferred. Energy may be supplied in a continuous fashion to seal vessels in tissue if the energy input/output is responsive to tissue hydration/volume through feedback control. Delivery of the electrosurgical energy in pulses allows the tissue to cool down and also allows some moisture to return to the tissue between pulses which are both known to enhance the sealing process.


It is further known to clamp or clip excess voltage output from the electrosurgical generator by the use of avalanche devices, such as diodes, zener diodes and transorbs, resulting in absorption and dissipation of excess energy in the form of heat.


Commonly owned U.S. Pat. No. 6,398,779 discloses a sensor which measures the initial tissue impedance with a calibrating pulse which, in turn, sets various electrical parameters based on a look-up table stored in a computer database. The transient pulse width associated with each pulse measured during activation is used to set the duty cycle and amplitude of the next pulse. Generation of electrosurgical power is automatically terminated based on a predetermined value of the tissue impedance across the tissue.


Thus a need exists to develop an electrosurgical generator having improved control circuitry and/or processing for providing continuous control of various electrical parameters (e.g., pulse frequency and intensity, voltage, current, power) of the electrosurgical generator based upon sensing information obtained from the surgical site relating to tissue impedance, changes in tissue impedance, tissue temperature, changes in tissue temperature, surgical intent (e.g., cutting, coagulating, sealing), tissue type, leakage current, applied voltage, applied current, tissue hydration levels, tissue compliance, and/or tissue optic transmission.


SUMMARY

A closed-loop control system is disclosed for use with an electrosurgical generator that generates electrosurgical energy. The closed loop control system includes a user interface for allowing a user to select at least one pre-surgical parameter, such as the type of surgical instrument operatively connected to the generator, the type of tissue and/or desired surgical effect. A sensor module is also included for continually sensing at least one of electrical and physical properties proximate a surgical site and generating at least one signal relating thereto. The closed loop control system also includes a control module for continually receiving the selected at least one pre-surgical parameter from the user interface and each of the signals from the sensor module, and processing each of the signals in accordance with the at least one pre-surgical parameter using a microprocessor, computer algorithm and/or a mapping (e.g., look-up table, continuous mapping and equivalent). The control module generates at least one corresponding control signal relating to each signal from the sensor module, and relays the control signal to the electrosurgical generator for controlling the generator.


A method is also disclosed for performing an electrosurgical procedure at a surgical site on a patient. The method includes the steps of applying at least one electrical pulse (pulsed or continuous) to the surgical site; continually sensing electrical and physical properties proximate the surgical site; and varying pulse parameters of the individual pulses of the at least one pulse in accordance with the continually-sensed properties.


In another embodiment, a control system is provided, which includes a sensor module for sensing at least one property associated with a surgical site prior to a surgical procedure (pre-surgical), during the surgical procedure and/or after the surgical procedure (post-surgical). The sensor module generates at least one signal relating to the property back to the control module. A control module which is executable on a processor receives each signal and processes the signals utilizing a computer algorithm and/or a mapping and generates one or more control signals relating thereto. The control signal is then communicated to the electrosurgical generator for controlling the generator.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments will be described herein below with reference to the drawings wherein:



FIG. 1 is a schematic diagram of a closed-loop control system for use with an electrosurgical generator according to the present disclosure;



FIG. 2 is a schematic diagram of a sensor module for use with the closed-loop control system of FIG. 1;



FIG. 3 is a flowchart illustrating a method of operation of the closed-loop control system according to the present disclosure; and



FIG. 4 is a block diagram of a dual loop control system in accordance with another embodiment of the invention.





DETAILED DESCRIPTION

Reference should be made to the drawings where like reference numerals refer to similar elements throughout the various figures. Referring to FIG. 1, there is shown a schematic diagram of one embodiment of the presently disclosed closed loop control system 100 for use with an electrosurgical generator 101. Control system 100 includes a control module 102, user interface 108 and sensor module 110. The control module 102 is operatively connected to the electrosurgical generator 101. The electrosurgical generator 101 preferably includes electrosurgical energy output stage 104 and a power supply 106, where the output stage 104 receives power from the power supply 106 and delivers RF energy to a patient 112 via at least one electrode (not shown). As can be appreciated one or more electrodes may be used with the electrosurgical instrument for performing monopolar or bipolar surgery.


The sensor module 110 senses various electrical and physical parameters or properties at the operating site and communicates with the control module 102 to regulate the electrosurgical output from the output stage 104. It is envisioned that the sensor module 110 may be configured to measure or “sense” various electrical or electromechanical conditions at the operating site such as: tissue impedance, changes in tissue impedance, tissue temperature, changes in tissue temperature, leakage current, applied voltage and applied current. Preferably, the sensor module 110 measures one or more of these conditions continuously or in “real time” such that the control module 102 can continually modulate the electrosurgical output according to a specific purpose or desired surgical intent. More particularly, analog signals provided by the sensor module 110 are converted to digital signals via an analog-to-digital converter (ADC) 114, which in turn are provided to the control module 102.


The control module 102, thereafter, regulates the power supply 106 and/or the output stage 104 according to the information obtained from the sensor module 110. The user interface 108 is electrically connected to the control module 102 to allow the user to control various parameters of the electrosurgical energy output to the patient 114 during surgery to manually set, regulate and/or control one or more electrical parameters of the delivered RF energy, such as voltage, current, power, frequency, amplified, and/or pulse parameters, e.g., pulse width, duty cycle, crest factor, and/or repetition rate depending upon a particular purpose or to change surgical intent.


The control module 102 includes at least one microprocessor capable of executing software instructions for processing data received by the user interface 108 and the sensor module 110 for outputting control signals to the output stage 104 and/or the power supply 106, accordingly. The software instructions executable by the control module are stored in an internal memory in the control module 102, an internal or external memory bank accessible by the control module 102 and/or an external memory, e.g., an external hard drive, floppy diskette, CD-ROM, etc. Control signals from the control module 102 to the electrosurgical generator 101 may be converted to analog signals by a digital-to-analog converter (DAC) 116.


The power supply 106 is preferably a high voltage DC power supply for producing electrosurgical current, e.g., radiofrequency (RF) current. Signals received from the control module 102 control the magnitude of the voltage and current output by the DC power supply. The output stage 104 receives the output current from the DC power supply and generates one or more pulses via a waveform generator (not shown). As can be appreciated, the pulse parameters, such as pulse width, duty cycle, crest factor and repetition rate are regulated in response to the signals received from the control module 102. Alternatively, the power supply 106 may be an AC power supply, and the output stage 104 may vary the waveform of the signal received from power supply 106 to achieve a desired waveform.


As mentioned above, the user interface 108 may be local to or remote from the control module 102. A user may enter data such as the type of electrosurgical instrument being used, the type of electrosurgical procedure to be performed, and/or the tissue type upon which the electrosurgical procedure is being performed. It is envisioned that the closed loop control system 100, in particular the sensor module, may include one or more smart sensors which provide feedback to the surgeon relating to one or more of these physical parameters. Furthermore, the user may enter commands, such as a target effective voltage, current or power level to be maintained, or a target response e.g., change in regulation of the power supply 106 and/or output stage 104, to changes in sensed values, such as an effective change in voltage, current and/or power level as a function of the changes. Preferably, the user may also enter commands for controlling electrical parameters of the RF energy, delivered by the electrosurgical generator 101, as described above. It is envisioned that default values are provided for the above target levels and target responses.


The sensor module 110 includes a plurality of sensors (not shown) strategically located for sensing various properties or conditions at or proximate points “A” and “B”. Sensors positioned at or proximate point “A” (hereinafter referred to as at point “A”) sense properties and/or parameters of electrosurgical output from output stage 104, and/or properties, parameters or conditions prior to surgical effect of the currently administered electrosurgical energy during the surgical procedure. For example, sensors positioned at point “A” may be provided with or attached proximate the generator 101.


Sensors positioned at or proximate point “B” (hereinafter referred to as at point “B”) sense parameters, properties and/or conditions at or across the operating site prior to the surgical procedure and/or in response to surgical effect during the surgical procedure. Preferably, one or more of these sensors may be included with the electrosurgical instrument, (e.g., on one end effector or opposing end effectors) or attached proximate the operating site. For example, optical sensors, proximity sensors, temperature sensors may be used to detect certain tissue characteristics, and electrical sensors may be employed to sense other parameters of the tissue or operating effects. It is noteworthy that point “A” may be located proximate the surgical site “B” at a location where the signals outputted by the generator 101 are propagated before they are applied or approximately when they are applied to the surgical site “B”.


The sensors are provided with leads or wireless means for transmitting information to the control module, where the information is provided directly to the control module 102, and/or provided to the control module 102 via the sensor module 110 and/or the ADC 114. The sensor module 110 may include means for receiving information from multiple sensors, and providing the information and the source of the information (e.g., the particular sensor providing the information) to the control module 102.


With reference to FIG. 2, the inner-working components of the sensor module 110 are shown in greater detail. More particularly, the sensor module 110 preferably includes a real-time voltage sensing system 202 and a real-time current sensing system 204 for sensing real-time values for applied voltage and current at the surgical site “B”. The sensor module 110 also preferably includes a real-time voltage sensing system 206 and a real-time current sensing system 208 for sensing real-time values of signals returned from the patent at a point “A”. An RMS voltage sensing system 210 and an RMS current sensing system 212 are also included for sensing and deriving RMS values for applied voltage and current at the surgical site “B”, and an RMS voltage sensing system 214 and an RMS current sensing system 216 are included for sensing and deriving RMS values of signals at point “A”. A temperature sensing system 218 is preferably included for sensing tissue temperature at the surgical site “B”. Real-time and RMS current and voltage sensing systems are known in the art. The sensor module 110 may further include sensors (not shown) for sensing voltage and current output by the generator.


The measured or sensed values are further processed, either by circuitry and/or a processor (not shown) in the sensor module 110 and/or by the control module 102, for deriving changes in sensed values and tissue impedance at the surgical site “B”. Tissue impedance and changes in tissue impedance may be determined by measuring the voltage and/or current across the tissue and/or calculating changes thereof over time, and comparing the voltage and current values to known and/or desired values associated with various tissue types for use by the control system 100 to drive electrical output to achieve desired impedance and/or change in impedance values. As can be appreciated, these known and/or desired values, tissue types and ranges may be stored in an internal look-up table, “a continuous value map” or in an external searchable memory. Commonly owned U.S. Pat. No. 6,398,779, U.S. Pat. No. 6,203,541, U.S. Pat. No. 5,827,271 and U.S. application Ser. No. 10,073,761 disclose methods for measuring tissue impedance, and are incorporated by reference herein in their entirety.


It is envisioned that deriving tissue impedance (or other physical and electrical parameters) from real-time value(s) provides the benefit of monitoring real-time tissue impedance and/or changes in tissue impedance. As the surgical procedure proceeds, it is believed that the tissue impedance fluctuates in response to removal and restoration of liquids from the tissue at the surgical site “B”. As the control module 102 monitors the tissue impedance and changes in tissue impedance (or other physical and electrical parameters) the control module 102 regulates the power supply 106 and output stage 104 accordingly for achieving the desired and optimal electrosurgical effect.


Before beginning an electrosurgical procedure, an operator of the electrosurgical instrument enters information via the user interface 108. Information entered includes, for example, the type of electrosurgical instrument being used, the type of procedure being performed (i.e., desired surgical effect), the type of tissue, relevant patient information, and a control mode setting. The control mode setting determines the amount of or type of control that the control module 102 will provide. As mentioned above, one or more sensors (not shown) may also be included to automatically provide information to the control module 102 relating to tissue type, initial tissue thickness, initial tissue impedance, etc.


Exemplary modes include, but are not limited to, one or a combination of one or more of the following modes: a first mode wherein the control module 102 maintains a steady selected output power, current and/or voltage value at site “A”; a second mode wherein the control module 102 maintains a steady selected output power, current and/or voltage value at site “B”; a third mode wherein the control module 102 maintains a variable selected output power, current and/or voltage values at site “A” which is dependent upon (i.e., a function of) time value(s) and/or sensed parameter(s) or changes in sensed parameter(s) during the procedure; a fourth mode wherein the control module 102 maintains a variable selected output power, current and/or voltage values at site “B”, which is dependent upon (i.e., a function of) time value(s) and/or sensed parameter(s) or changes in sensed parameter(s) during the procedure. Functions performed on the time value(s) and sensed properties(s) include operations such as calculations and/or look-up operations using a table or map stored by or accessible by the control module 102. The control module 102 processes the selected output power, current and voltage values, such as by performing calculations or table look up operations, to determine power control signal values and output control values.


It is also envisioned that, the control module 102 determines initial settings for control signals to the power supply 106 and the output stage 104 by using and/or processing operator-entered data or settings, performing calculations and/or accessing a look-up table stored by or accessible by the control module 102. Once the electrosurgical procedure begins, the sensors of sensor module 110 sense various physical and electrical properties and provide feedback to the control module 102 through the ADC 114 as needed. The control module 102 processes the feedback information in accordance with the pre selected mode, as well as any additional operator-entered commands entered during the procedure. The control module then sends control information to the power supply 106 and the output stage 104. It is contemplated that the generator 101 may be provided with override controls, to allow the operator to override the control signals provided by the control module 102, if needed, e.g., by entering override commands via the user interface 108.



FIG. 3 shows a flow chart illustrating a method for controlling operation of the closed loop control system 100 during an electrosurgical procedure in accordance with an embodiment of the present disclosure. At step 302, the method includes continually sensing various physical and electrical properties at the surgical site. At step 304, the sensed properties are continually processed. At step 306, power supply control signals are continually generated for controlling the magnitude of the signals output by the electrosurgical generator and output stage control signals are continually generated, for controlling pulse parameters of the output signals in accordance with the continually-processed sensed properties.


It is contemplated that the sensor module 110 further includes a proximity sensor for sensing (measuring) tissue thickness proximate the surgical site “B”, and generating a tissue thickness value. An initial tissue thickness value may be provided to the control module 102 as a pre-surgical parameter. Sensed real time tissue thickness values and/or changes in tissue thickness values over time (.DELTA.[difference] thickness/.DELTA.[difference] time) may further be provided to the control module 102 during the surgical procedure, where the control module 102 modulates the electrical surgical output in accordance with the sensed real time tissue thickness values and/or changes in tissue thickness values over time.


It is further contemplated that the sensor module 110 further includes an additional sensor module (or the same sensor module 110 with additional capabilities) for sensing (measuring) tissue moisture (which is often indicative of tissue type) and generating a moisture content value and/or determining tissue type. It is envisioned that moisture content is determined from tissue compliance data or optical clarity. The additional sensor module may include an infrared, optical, or light sensor 220 for sensing (measuring) light or energy generated by a source 118, such as an infrared or other light source, which is transmitted through or reflected from the tissue, where the sensed value is indicative of tissue moisture content and/or tissue type of tissue proximate the surgical site “B”. An initial tissue moisture content value and/or tissue type may be provided to the control module 102 as a pre-surgical parameter. Sensed real time moisture content values and/or changes in moisture content over time (Δ(difference) moisture content/Δ·(difference) time) may further be provided to the control module 102 during the surgical procedure, where the control module 102 modulates the electrical surgical output in accordance with the sensed real time moisture content values and/or changes in moisture content values over time.


Accordingly, the present disclosure provides a closed loop control system 100 for providing continual control of the power supply 106 and the output stage 104 in response to “sensed” physical or electrical properties at the surgical site and/or proximate the output stage.


In an additional embodiment according to the present disclosure and in particular reference to FIG. 4, the control module 102 is provided with two control loops, an inner loop controlled by inner loop control module 402 and an outer loop controlled by outer loop control module 404. Preferably, the inner and outer loop control modules 402, 404 are software modules executable by a processor of the control module 102. The inner and outer loop control modules 402, 404 both receive signals generated by sensor module 110.


The inner loop control module 402 controls the amount of current, voltage and/or power delivered to the tissue for controlling a variable, e.g., I, V or P, sensed at the tissue and/or calculated from sensed values, until a desired event occurs (a rapid dz/dt or impedance rise is achieved), e.g., an impedance value is reached preferably in the range of about 200 ohms to about 400 ohms. The control variable is controlled to change during the course of the seal cycle according to impedance value (or other sensed and/or derived values), as determined by generator limitations (power, current, voltage) and surgical limitations (maximum limits for application of energy to tissue).


The inner loop control module 402 continually receives real time sensed values, such as current I and voltage V, from the sensor module 110 and may perform calculations on the received values for deriving additional real time values, such as power P and impedance Z. A desired inner loop value for I, V, and/or P are obtained by accessing at least one stored inner mapping of continuous values 408, look-up table or equivalent, where preferably the inner mapping 408 is in accordance with a function of impedance. Preferably, the inner loop control module 402 consults the inner mapping 408 for obtaining the desired inner loop value for the impedance currently being sensed and derived.


An algorithm is used to compare the real time value of I, V and/or P to the respective desired inner loop value and output an RF command to the electrosurgical generator 101 accordingly for achieving the desired inner loop value without exceeding the desired inner loop value, e.g., the RF command raises the target current, voltage and/or power output by the electrosurgical generator 101 when the real time value for I, V and/or P is lower than the respective desired inner loop value for I, V and/or P, and vice versa. It is contemplated that the RF command controls waveform parameters of electrosurgical energy output by the electrosurgical generator 101, including current, power, voltage, duty cycle, frequency, waveshape, etc. It is further contemplated that the inner loop is used without the outer loop for achieving the desired tissue effect.


The outer loop control module 404, layered over the inner loop control module 402, provides additional control of a variable for reaching a desired output value or effect. For example, control of the variable may monitor/regulate the rate of change of impedance of the tissue (sensed and calculated). In different embodiments, the variables controlled may include temperature, rate of change of temperature, and/or the energy input to the tissue. Outer loop control module 404 continually receives sensed values, such as I, V and temperature T from the sensor module 110 at a time “t” and performs calculations on the sensed values and preferably stored values for deriving values such as rate of change of impedance and/or rate of change in temperature. For example, the value for change in impedance (dz/dt) is obtained in accordance with:

dz/dt=(Z−Z_OLD)/(t−t_OLD);
Z_OLD=Z;  (1)

    • where Z is the impedance in accordance with values measured at time t; and
    • Z_OLD is the stored impedance in accordance with values measured at a previous time interval at time t_OLD


An outer loop desired value for the control variable is obtained by accessing a stored outer mapping of continuous values 406, or alternatively a table or equivalent. The desired rate of change according to outer mapping 406 may be steady, or may depend on the stage of the seal cycle and change over time. The tissue is in a dynamic state during the seal procedure, and the outer loop monitors the rate of change throughout the procedure to determine the degree to which the desired rate of change is being achieved. When the control variable is temperature, a temperature map may be used for outer mapping 406 in which desired temperature is plotted versus time. When the control variable is rate of change in temperature, a rate of change in temperature map may be used for outer mapping 406 in which desired temperature is plotted versus time. Energy may be applied in a similar fashion, where an energy function can be calculated using equations derived for specific tissue types or using sensed values.


An algorithm is used to compare the real time sensed/calculated value of rate of change of impedance, temperature, rate of change of temperature and/or energy at time “t” to the respective desired outer value at time “t” obtained from the outer mapping 406 for determining if the desired outer value is met, and if not, for determining the ratio of the difference between the real time value and the desired outer value to the desired outer value. If the desired outer value is not being met, the outer loop module 406 generates a set point value which is provided to the inner loop module 402. The set point value is raised when the real time value for rate of change of impedance, temperature and/or rate of change of temperature is lower than the respective desired outer value for rate of change of impedance, temperature and/or rate of change of temperature, and vice versa.


The set point value is preferably a ratio signal for altering the inner mapping 408 by raising or lowering a plotted curve of the inner mapping 408 along the y-axis. Preferably, the ratio signal is a proportional integral derivative (PID) control signal, as is known in the art. The inner loop control module 402 responds instantaneously by accessing the altered inner mapping 408 for obtaining a desired inner value from the outer loop, comparing the real time value of the control variable, generating an RF command for achieving the desired inner value without exceeding the desired inner value, and outputting the RF command accordingly to the electrosurgical generator 101 for controlling voltage, current and/or power needed for achieving a desired tissue effect.


Preferably the outer loop control module 404 uses the real time value of rate of change of impedance, temperature, rate of change of temperature, and/or total energy delivered to determine if a desired outer value has been reached which indicates completion of a seal. Upon determination of seal completion, a stop signal is generated for stopping the sealing process. Otherwise, the outer loop continues to monitor, receive and process sensed values from the sensor module 110.


Control of I, V and/or P by the inner loop control module 402 improves system stability and control capabilities in low impedance ranges, e.g., 0-20 ohms, which are critical for seal initiation, particularly by avoiding a low-end impedance break point which induces oscillation and lack of system control. The outer loop control enhances the control module's ability to control sealing in accordance with desired trends or events, to change seal intensity by changing the rate of change of impedance, and to enhance uniform sealing of tissue, i.e., normalize tissue in terms of variability, including tissue hydration, volume and composition. With feedback control and continuous sensing of the tissue's condition, there is not a need to switch control variables (i.e., low/high end break points), which improves system stability as explained above.


It is contemplated that the control module 102 controls a module for producing resistive heat for regulating heat applied to the tissue for achieving the desired tissue effect instead of or in addition to controlling the electrosurgical output stage 104 and/or the power supply 106. The control module 102 responds to sensed tissue temperature or other sensed properties indicative of tissue temperature, accesses at least one mapping, data table or equivalent using the sensed values for obtaining desired output current or resistivity values, and outputs a command signal for controlling output heat resistivity. Preferably, the module for producing resistive heat includes a current source and/or a variable resistor which are responsive to the command signal for outputting a desired current or providing a desired resistance, respectively.


It is envisioned that in another embodiment of the invention the control system includes a sensor module for sensing at least one property associated with a surgical site during at least one of a pre-surgical time prior to a surgical procedure, the surgical procedure and a post-surgical time following the surgical procedure for generating at least one signal relating thereto; and a control module executable on a processor for receiving said at least one signal and processing each of said signals using at least one of a computer algorithm and a mapping and generating at least one control signal in accordance with the processing, and providing the at least one control signal to the electrosurgical generator for controlling the generator. Preferably, the processing includes determining tissue type of tissue proximate the surgical site.


In an additional preferred embodiment, the sensor module 110 (or an additional sensor module (not shown)) senses at least one property as a pre-surgical condition, as a concurrent surgical condition and/or as a post-surgical condition. Preferably, the sensor module 110 senses at least two surgical conditions (or changes in surgical conditions over time) selected from pre-surgical, concurrent surgical and post-surgical conditions. Pre-surgical conditions include: degree of opaqueness of tissue proximate the surgical site; moisture content level of the tissue; and/or thickness of the tissue. Concurrent conditions include: degree of opaqueness of the tissue proximate the surgical site; moisture content level of the tissue; thickness of the tissue; temperature of the tissue; impedance of the tissue; current across the tissue; voltage across the tissue; power across the tissue; changes in degree of opaqueness of the tissue; changes in moisture content level of the tissue; changes in thickness of the tissue; changes in temperature of the tissue; changes in impedance of the tissue; changes in current across the tissue; changes in voltage across the tissue; and changes in power across the tissue. The post-surgical conditions include: degree of opaqueness of tissue; proximate the surgical site; moisture content level of the tissue; thickness of the tissue: temperature of the tissue; and impedance of the tissue.


Preferably, at least one property sensed during the post-surgical condition is indicative of the quality of a tissue seal formed during the surgical procedure. In a preferred embodiment the sensor module 110 includes a light sensor 220 for detecting light generated by a light source 118 and transmitted through (or reflected from) the tissue proximate the surgical site. A proximity sensor having sensing elements placed at opposite surfaces of the tissue may also be included for sensing the distance between the elements which is indicative of the tissue thickness.


Although this disclosure has been described with respect to preferred embodiments, it will be readily apparent to those having ordinary skill in the art to which it appertains that changes and modifications may be made thereto without departing from the spirit or scope of the disclosure. For example, it is contemplated that the control module 102 may include circuitry and other hardware, rather than, or in combination with, programmable instructions executed by a microprocessor for processing the sensed values and determining the control signals to be sent to the power supply 106 and the output stage 104.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosures be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments.

Claims
  • 1. A system for monitoring and/or controlling tissue modification during an electrosurgical procedure, comprising: a sensor module including: at least one optical source configured to generate light; andat least one optical detector configured to analyze a portion of the light transmitted through the tissue; anda control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module,wherein the control module uses a closed-loop control loop that includes an inner control loop configuration for controlling a first set of variables, the first set of variables selectively used to derive a second set of variables and an outer control loop configuration providing additional control of a subset of at least one of the first and second sets of variables of the inner control loop.
  • 2. The system according to claim 1, wherein the sensor module is configured to monitor the delivery of energy in real-time during the electrosurgical procedure.
  • 3. The system according to claim 1, wherein the sensor module detects thermal damage of tissue.
  • 4. The system according to claim 1, wherein the sensor module detects hydration of tissue.
  • 5. A system for monitoring and/or controlling tissue modification during an electrosurgical procedure, comprising: a sensor module including: at least one optical source configured to generate light; andat least one optical detector configured to analyze a portion of the light reflected from the tissue; anda control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module,wherein the control module uses a closed-loop control loop that includes an inner control loop configuration for controlling a first set of variables, the first set of variables selectively used to derive a second set of variables and an outer control loop configuration providing additional control of a subset of at least one of the first and second sets of variables of the inner control loop.
  • 6. The system according to claim 5, wherein the sensor module is configured to control the delivery of energy in real-time during the electrosurgical procedure.
  • 7. The system according to claim 5, wherein the sensor module detects thermal damage of tissue.
  • 8. The system according to claim 5, wherein the sensor module detects hydration of tissue.
  • 9. A method for monitoring and/or controlling tissue modification during an electrosurgical procedure comprising the steps of: transmitting an optical signal from a sensor module to a surgical site, the sensor module including: at least one optical source configured to generate light; andat least one optical detector configured to analyze a portion of the light transmitted through the tissue; anddetecting, by the sensor module at least prior to a surgical procedure, at least a portion of the optical signal modified by the surgical site; andcontrolling the delivery of electrosurgical energy to tissue based on information provided at least prior to a surgical procedure by the sensor module,wherein controlling the delivery of electrosurgical energy includes a closed-loop control loop that includes an inner control loop configuration for controlling a first set of variables, the first set of variables selectively used to derive a second set of variables and an outer control loop configuration providing additional control of a subset of at least one of the first and second sets of variables of the inner control loop.
  • 10. The method according to claim 9, further comprising the step of: generating an initial power supply control signal and an initial output stage control signal in accordance with the information provided prior to the surgical procedure by the sensor module.
  • 11. The method according to claim 9, further comprising the step of: determining tissue type prior to the surgical procedure with the information provided prior to the surgical procedure by the sensor module.
  • 12. The method according to claim 9, further comprising the step of: determining an initial tissue moisture content value and as a pre-surgical parameter with the information provided prior to the surgical procedure by the sensor module.
  • 13. The method according to claim 9, further comprising the step of: determining an initial tissue thickness as the pre-surgical parameter with the information provided prior to a surgical procedure by the sensor module.
  • 14. A method for monitoring and/or controlling tissue modification during an electrosurgical procedure comprising the steps of: transmitting an optical signal from a sensor module to a surgical site, the sensor module including: at least one optical source configured to generate light; andat least one optical detector configured to analyze a portion of the light transmitted through the tissue; anddetecting, by the sensor module at least during a surgical procedure, at least a portion of the optical signal modified by the surgical site;providing a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy; andcontrolling the delivery of electrosurgical energy to tissue based on information provided during the surgical procedure by the sensor module,wherein controlling the delivery of electrosurgical energy includes a closed-loop control loop that includes an inner control loop configuration for controlling a first set of variables, the first set of variables selectively used to derive a second set of variables and an outer control loop configuration providing additional control of a subset of at least one of the first and second sets of variables of the inner control loop.
  • 15. The method according to claim 14, further comprising the step of: determining a real time moisture content during the surgical procedure.
  • 16. The method according to claim 14, further comprising the step of: determining a change in moisture content over time during the surgical procedure.
  • 17. The method according to claim 14, further comprising the step of: modulating the delivery of electrosurgical energy in accordance with the sensed real time moisture content values and/or changes in moisture content values over time.
  • 18. The method according to claim 14, further comprising the step of: determining a real time tissue thickness value during the surgical procedure.
  • 19. The method according to claim 18, further comprising the step of: determining a change in the tissue thickness value over time during the surgical procedure.
  • 20. The method according to claim 14, further comprising the step of: modulating the delivery of electrosurgical energy in accordance with the sensed real time tissue thickness values and/or changes in tissue thickness values over time.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application of U.S. application Ser. No. 11/585,506, filed on Oct. 24, 2006, by Wham et al., entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR”, now U.S. Pat. No. 8,105,323, which is a divisional application of U.S. application Ser. No. 10/427,832, filed on May 1, 2003, by Wham et al., entitled “VESSEL SEALING SYSTEM,”, now U.S. Pat. No. 7,137,980, which is a continuation-in-part of U.S. application Ser. No. 10/073,761, filed on Feb. 11, 2002, by Wham et al., entitled “VESSEL SEALING SYSTEM”, now U.S. Pat. No. 6,796,981, which is a continuation-in-part of U.S. Ser. No. 09/408,944, now U.S. Pat. No. 6,398,779, filed on Sep. 30, 1999 by Buysse et al., entitled “VESSEL SEALING SYSTEM”, which claims the benefit of the priority date for provisional application No. 60/105,417, filed on Oct. 23, 1998, the entire contents of all of these applications are hereby incorporated by reference herein in their entirety.

US Referenced Citations (998)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2693106 Henry Jun 1951 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
2883198 Narumi Apr 1959 A
3001132 Britt Sep 1961 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3154365 Crimmins Oct 1964 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Giannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3642008 Bolduc Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Bierlein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768019 Podowski Oct 1973 A
3768482 Shaw Oct 1973 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3898554 Knudsen Aug 1975 A
3905373 Gonser Sep 1975 A
3908176 De Boer et al. Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3938072 Baird et al. Feb 1976 A
3944936 Pryor Mar 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3978393 Wisner et al. Aug 1976 A
3980085 Ikuno Sep 1976 A
3998538 Urso et al. Dec 1976 A
4005714 Hilebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4097773 Lindmark Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4153880 Navratil May 1979 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gonser Apr 1980 A
4204549 Paglione May 1980 A
4209018 Meinke et al. Jun 1980 A
4228809 Paglione Oct 1980 A
4229714 Yu Oct 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gonser Dec 1980 A
4247815 Larsen et al. Jan 1981 A
4266547 Komiya May 1981 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4296413 Milkovic Oct 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4359626 Potter Nov 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4397314 Vaguine Aug 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4430625 Yokoyama Feb 1984 A
4436091 Banko Mar 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4463759 Garito et al. Aug 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4532924 Auth et al. Aug 1985 A
4559496 Harnden, Jr. et al. Dec 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4572190 Azam et al. Feb 1986 A
4582057 Auth et al. Apr 1986 A
4586120 Malik et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4595248 Brown Jun 1986 A
4608977 Brown Sep 1986 A
4615330 Nagasaki et al. Oct 1986 A
4630218 Hurley Dec 1986 A
4632109 Paterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4651264 Shiao-Chung Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4691703 Auth et al. Sep 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4741348 Kikuchi et al. May 1988 A
4744372 Kikuchi et al. May 1988 A
4754757 Feucht Jul 1988 A
4767999 VerPlanck Aug 1988 A
4768969 Bauer et al. Sep 1988 A
4785829 Convert et al. Nov 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827927 Newton May 1989 A
4848335 Manes Jul 1989 A
4854320 Dew et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4887199 Whittle Dec 1989 A
4890610 Kirwan et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4925089 Chaparro et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4959606 Forge Sep 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
4969885 Farin Nov 1990 A
4992719 Harvey Feb 1991 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5024668 Peters et al. Jun 1991 A
5044977 Vindigni Sep 1991 A
5057105 Malone et al. Oct 1991 A
5067953 Feucht Nov 1991 A
5071417 Sinofsky Dec 1991 A
5075839 Fisher et al. Dec 1991 A
5078153 Nordlander et al. Jan 1992 A
5087257 Farin Feb 1992 A
5099840 Goble et al. Mar 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker Apr 1992 A
5113116 Wilson May 1992 A
5119284 Fisher et al. Jun 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5161893 Shigezawa et al. Nov 1992 A
5167658 Ensslin Dec 1992 A
5167659 Ohtomo et al. Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5216338 Wilson Jun 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5234427 Ohtomo et al. Aug 1993 A
5244462 Delahuerga et al. Sep 1993 A
5249121 Baum et al. Sep 1993 A
5249585 Turner et al. Oct 1993 A
5254117 Rigby et al. Oct 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin Dec 1993 A
5271413 Dalamagas et al. Dec 1993 A
5281213 Milder et al. Jan 1994 A
5282840 Hudrlik Feb 1994 A
5290283 Suda Mar 1994 A
5295857 Toly Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia Apr 1994 A
5304917 Somerville Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334191 Poppas et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5344418 Ghaffari Sep 1994 A
5346406 Hoffman et al. Sep 1994 A
5346491 Oertli Sep 1994 A
5348554 Imran et al. Sep 1994 A
5354325 Chive et al. Oct 1994 A
5364392 Warner et al. Nov 1994 A
5369567 Furuta et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5396194 Williamson et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409481 Poppas et al. Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5422926 Smith et al. Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5429596 Arias et al. Jul 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5436566 Thompson Jul 1995 A
5438302 Goble Aug 1995 A
5443462 Hannant Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5448466 Erckert Sep 1995 A
5451224 Goble et al. Sep 1995 A
5452725 Martenson Sep 1995 A
5454809 Janssen Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5474464 Drewnicki Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5496314 Eggers Mar 1996 A
5498261 Strul Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5511993 Yamada et al. Apr 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540677 Sinofsky Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540682 Gardner et al. Jul 1996 A
5540683 Ichikawa Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5545161 Imran Aug 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5559688 Pringle Sep 1996 A
5562720 Stern et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5596466 Ochi Jan 1997 A
5596995 Sherman et al. Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5599348 Gentelia et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5609560 Ichikawa et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5620481 Desai et al. Apr 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5628771 Mizukawa et al. May 1997 A
5640113 Hu Jun 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5662643 Kung et al. Sep 1997 A
5664953 Reylek Sep 1997 A
5674217 Wahlstrom et al. Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5681307 McMahan Oct 1997 A
5685840 Schechter et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693042 Bioarski et al. Dec 1997 A
5693078 Desai et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696441 Mak et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718246 Vona Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5729448 Haynie et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5738683 Osypka Apr 1998 A
5743900 Hara Apr 1998 A
5743903 Stern et al. Apr 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern May 1998 A
5762609 Benaron et al. Jun 1998 A
5766153 Eggers et al. Jun 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu Jun 1998 A
5772659 Becker et al. Jun 1998 A
5777519 Simopoulos Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5797902 Netherly Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5807253 Dumoulin et al. Sep 1998 A
5810804 Gough et al. Sep 1998 A
5814092 King Sep 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Bussey et al. Oct 1998 A
5830212 Cartmell Nov 1998 A
5831166 Kozuka et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843075 Taylor Dec 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5849010 Wurzer et al. Dec 1998 A
5853409 Swanson et al. Dec 1998 A
5860832 Wayt et al. Jan 1999 A
5865788 Edwards et al. Feb 1999 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5906614 Stern et al. May 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5935124 Klumb et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5944553 Yasui et al. Aug 1999 A
5948007 Starkenbaum et al. Sep 1999 A
5951545 Schilling Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5959253 Shinchi Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5961871 Bible et al. Oct 1999 A
5964746 McCary Oct 1999 A
5971980 Sherman Oct 1999 A
5971981 Hill et al. Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
6007532 Netherly Dec 1999 A
6010499 Cobb Jan 2000 A
6013074 Taylor Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6022346 Panescu et al. Feb 2000 A
6022347 Lindenmeier et al. Feb 2000 A
RE36634 Ghaffari Mar 2000 E
6033399 Gines Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6039732 Ichikawa et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6055458 Cochran et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6059780 Gough et al. May 2000 A
6059781 Yamanashi et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6063085 Tay et al. May 2000 A
6066137 Greep May 2000 A
6068627 Orszulak et al. May 2000 A
6074089 Hollander et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074388 Tockweiler et al. Jun 2000 A
6080149 Huang et al. Jun 2000 A
6088614 Swanson Jul 2000 A
6089864 Buckner et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6093186 Goble Jul 2000 A
6102497 Ehr et al. Aug 2000 A
6102907 Smethers et al. Aug 2000 A
6104248 Carver Aug 2000 A
6106524 Eggers et al. Aug 2000 A
6113591 Whayne et al. Sep 2000 A
6113592 Taylor Sep 2000 A
6113593 Tu et al. Sep 2000 A
6113596 Hooven Sep 2000 A
6123701 Nezhat Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6139349 Wright Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6155975 Urich et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6165169 Panescu et al. Dec 2000 A
6165173 Kamdar et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6186147 Cobb Feb 2001 B1
6188211 Rincon-Mora et al. Feb 2001 B1
6193713 Geistert et al. Feb 2001 B1
6197023 Muntermann Mar 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6222356 Taghizadeh-Kaschani Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6228078 Eggers et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek May 2001 B1
6232556 Daugherty et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6235022 Hallock et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman May 2001 B1
6241723 Heim et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
6243654 Johnson et al. Jun 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245063 Uphoff Jun 2001 B1
6245065 Panescu Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6254422 Feye-Hohmann Jul 2001 B1
6258085 Eggleston Jul 2001 B1
6261285 Novak Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6267760 Swanson Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6273886 Edwards Aug 2001 B1
6275786 Daners Aug 2001 B1
6287304 Eggers et al. Sep 2001 B1
6293941 Strul Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6304138 Johnson Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6322558 Taylor et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6341981 Gorman Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6370408 Merchant et al. Apr 2002 B1
6371963 Nishtala et al. Apr 2002 B1
6383183 Sekino et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6413256 Truckai et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6422896 Aoki et al. Jul 2002 B2
6423057 He et al. Jul 2002 B1
6424186 Quimby et al. Jul 2002 B1
6426886 Goder Jul 2002 B1
6428537 Swanson et al. Aug 2002 B1
6436096 Hareyama Aug 2002 B1
6440157 Shigezawa et al. Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6454594 Sawayanagi Sep 2002 B2
6458121 Rosenstock Oct 2002 B1
6458122 Pozzato Oct 2002 B1
6464689 Qin Oct 2002 B1
6464696 Oyama Oct 2002 B1
6468270 Hovda et al. Oct 2002 B1
6468273 Leveen et al. Oct 2002 B1
6469481 Tateishi Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6494880 Swanson et al. Dec 2002 B1
6497659 Rafert Dec 2002 B1
6498466 Edwards Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside Jan 2003 B1
6517538 Jacob et al. Feb 2003 B1
6522931 Manker et al. Feb 2003 B2
6524308 Muller et al. Feb 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6544258 Fleenor et al. Apr 2003 B2
6544260 Markel et al. Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6557559 Eggers et al. May 2003 B1
6558376 Bishop May 2003 B2
6558377 Lee et al. May 2003 B2
6560470 Pologe May 2003 B1
6562037 Paton May 2003 B2
6565559 Eggleston May 2003 B2
6565562 Shah et al. May 2003 B1
6569173 Blatter et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6578579 Burnside et al. Jun 2003 B2
6579288 Swanson et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6602243 Noda Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6620157 Dabney et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623423 Sakurai Sep 2003 B2
6623494 Blatter Sep 2003 B1
6626901 Treat et al. Sep 2003 B1
6629973 Wårdell et al. Oct 2003 B1
6629974 Penny et al. Oct 2003 B2
6632193 Davison et al. Oct 2003 B1
6635056 Kadhiresan et al. Oct 2003 B2
6635057 Harano Oct 2003 B2
6645198 Bommannan et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652514 Ellman Nov 2003 B2
6653569 Sung Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards et al. Dec 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6672151 Schultz et al. Jan 2004 B1
6679875 Honda Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim et al. Feb 2004 B1
6693782 Lash Feb 2004 B1
6695837 Howell Feb 2004 B2
6696844 Wong et al. Feb 2004 B2
6712813 Ellman Mar 2004 B2
6723091 Goble et al. Apr 2004 B2
6730078 Simpson et al. May 2004 B2
6730079 Lovewell May 2004 B2
6730080 Harano May 2004 B2
6733495 Bek May 2004 B1
6733498 Paton May 2004 B2
6740079 Eggers May 2004 B1
6740085 Hareyama May 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6749624 Knowlton Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761716 Kadhiresan et al. Jul 2004 B2
6766187 Black et al. Jul 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6778044 Fehrenbach et al. Aug 2004 B2
6783523 Qin et al. Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6792390 Burnside et al. Sep 2004 B1
6796980 Hall Sep 2004 B2
6796981 Wham Sep 2004 B2
6809508 Donofrio Oct 2004 B2
6818000 Muller et al. Nov 2004 B2
6819027 Saraf Nov 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson et al. Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6843682 Matsuda et al. Jan 2005 B2
6843789 Goble Jan 2005 B2
6849073 Hoey Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano Feb 2005 B2
6860881 Sturm Mar 2005 B2
6864686 Novak Mar 2005 B2
6875210 Refior Apr 2005 B2
6890331 Kristensen May 2005 B2
6893435 Goble May 2005 B2
6899538 Matoba May 2005 B2
6923804 Eggers et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6939344 Kreindel Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6939347 Thompson Sep 2005 B2
6942660 Pantera et al. Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958064 Rioux et al. Oct 2005 B2
6962587 Johnson et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6970752 Lim et al. Nov 2005 B1
6974453 Woloszko et al. Dec 2005 B2
6974463 Magers et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6994704 Qin et al. Feb 2006 B2
6994707 Ellman et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7008369 Cuppen Mar 2006 B2
7008417 Eick Mar 2006 B2
7008421 Daniel et al. Mar 2006 B2
7025764 Paton et al. Apr 2006 B2
7033351 Howell Apr 2006 B2
7041096 Malis et al. May 2006 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7058372 Pardoen et al. Jun 2006 B1
7060063 Marion et al. Jun 2006 B2
7062331 Zarinetchi et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7074217 Strul et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7094231 Ellman et al. Aug 2006 B1
7104834 Robinson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7115121 Novak Oct 2006 B2
7115124 Xiao Oct 2006 B1
7118564 Ritchie et al. Oct 2006 B2
7122031 Edwards et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7146210 Palti Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7151964 Desai et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156842 Sartor et al. Jan 2007 B2
7156844 Reschke et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160293 Sturm et al. Jan 2007 B2
7163536 Godara Jan 2007 B2
7166986 Kendall Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7175618 Dabney et al. Feb 2007 B2
7175621 Heim et al. Feb 2007 B2
7190933 DeRuijter et al. Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7200010 Broman et al. Apr 2007 B2
7203556 Daners Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7211081 Goble May 2007 B2
7214224 Goble May 2007 B2
7217266 Anderson et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7223264 Daniel et al. May 2007 B2
7226447 Uchida et al. Jun 2007 B2
7229469 Witzel et al. Jun 2007 B1
7232437 Berman et al. Jun 2007 B2
7233278 Eriksson Jun 2007 B2
7238181 Daners et al. Jul 2007 B2
7238183 Kreindel Jul 2007 B2
7244255 Daners et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250048 Francischelli et al. Jul 2007 B2
7250746 Oswald et al. Jul 2007 B2
7255694 Keppel Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7282048 Goble et al. Oct 2007 B2
7282049 Orszulak et al. Oct 2007 B2
7285117 Krueger et al. Oct 2007 B2
7294127 Leung et al. Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300437 Pozzato Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7305311 Van Zyl Dec 2007 B2
7311703 Turovskiy et al. Dec 2007 B2
7316682 Konesky Jan 2008 B2
7317954 McGreevy Jan 2008 B2
7317955 McGreevy Jan 2008 B2
7324357 Miura et al. Jan 2008 B2
7333859 Rinaldi et al. Feb 2008 B2
7341586 Daniel et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354436 Rioux et al. Apr 2008 B2
7357800 Swanson Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7364578 Francischelli et al. Apr 2008 B2
7364972 Ono et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
RE40388 Gines Jun 2008 E
7384420 Dycus et al. Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
7402754 Kirwan, Jr. et al. Jul 2008 B2
D574323 Waaler Aug 2008 S
7407502 Strul et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
7416549 Young et al. Aug 2008 B2
7422582 Malackowski et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7452355 Khomchenko Nov 2008 B2
7465302 Odell et al. Dec 2008 B2
7470272 Mulier et al. Dec 2008 B2
7477080 Fest Jan 2009 B1
7479140 Ellman et al. Jan 2009 B2
7491199 Goble Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7503917 Sartor et al. Mar 2009 B2
7511472 Xia et al. Mar 2009 B1
7513896 Orszulak Apr 2009 B2
7517351 Culp et al. Apr 2009 B2
7525398 Nishimura et al. Apr 2009 B2
7568619 Todd et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7621041 Banerji et al. Nov 2009 B2
7628786 Plaven et al. Dec 2009 B2
7648499 Orszulak et al. Jan 2010 B2
7651492 Wham Jan 2010 B2
7651493 Arts et al. Jan 2010 B2
7655003 Lorang et al. Feb 2010 B2
7675429 Cernasov Mar 2010 B2
7678105 McGreevy et al. Mar 2010 B2
7684846 Johnson et al. Mar 2010 B2
7722601 Wham et al. May 2010 B2
7731717 Odom et al. Jun 2010 B2
7736358 Shores et al. Jun 2010 B2
7744593 Mihori Jun 2010 B2
7749217 Podhajsky Jul 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766905 Paterson et al. Aug 2010 B2
7780662 Bahney Aug 2010 B2
7780764 Baksh Aug 2010 B2
7794457 McPherson et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7824400 Keppel Nov 2010 B2
7834484 Sartor Nov 2010 B2
7863841 Menegoli et al. Jan 2011 B2
7864129 Konishi Jan 2011 B2
7901400 Wham et al. Mar 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7947039 Sartor May 2011 B2
7956620 Gilbert Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972332 Arts et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
8004121 Sartor Aug 2011 B2
8012150 Wham et al. Sep 2011 B2
8025660 Plaven et al. Sep 2011 B2
8034049 Odom et al. Oct 2011 B2
8105323 Buysse et al. Jan 2012 B2
8777945 Floume et al. Jul 2014 B2
20020029036 Goble et al. Mar 2002 A1
20030153908 Goble et al. Aug 2003 A1
20030181898 Bowers Sep 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040015159 Slater et al. Jan 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040068304 Paton Apr 2004 A1
20040097912 Gonnering May 2004 A1
20040133189 Sakurai Jul 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040176752 Alfano et al. Sep 2004 A1
20050004634 Ricart et al. Jan 2005 A1
20050021020 Blaha et al. Jan 2005 A1
20050109111 Manlove et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050261568 Hular et al. Nov 2005 A1
20060015095 Desinger et al. Jan 2006 A1
20060079774 Anderson Apr 2006 A1
20060111711 Goble May 2006 A1
20060161148 Behnke Jul 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060291178 Shih Dec 2006 A1
20070038209 Buysse et al. Feb 2007 A1
20070088413 Weber et al. Apr 2007 A1
20070093801 Behnke Apr 2007 A1
20070129716 Daw et al. Jun 2007 A1
20070173802 Keppel Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070179484 Sade Aug 2007 A1
20070203481 Gregg et al. Aug 2007 A1
20070265612 Behnke et al. Nov 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20070293858 Fischer Dec 2007 A1
20080004619 Malis et al. Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015564 Wham et al. Jan 2008 A1
20080015570 Ormsby et al. Jan 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080071257 Kotmel et al. Mar 2008 A1
20080071260 Shores Mar 2008 A1
20080119843 Morris May 2008 A1
20080125767 Blaha May 2008 A1
20080132893 D'Amelio et al. Jun 2008 A1
20080147106 Mohr et al. Jun 2008 A1
20080177199 Podhajsky Jul 2008 A1
20080188736 Bambot et al. Aug 2008 A1
20080188849 Goldberg et al. Aug 2008 A1
20080203997 Foran et al. Aug 2008 A1
20080262489 Steinke Oct 2008 A1
20080281311 Dunning et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080281316 Carlton et al. Nov 2008 A1
20080287791 Orszulak et al. Nov 2008 A1
20080287838 Orszulak et al. Nov 2008 A1
20080287943 Weber et al. Nov 2008 A1
20090018536 Behnke Jan 2009 A1
20090036883 Behnke Feb 2009 A1
20090036912 Wiener et al. Feb 2009 A1
20090069801 Jensen et al. Mar 2009 A1
20090082765 Collins et al. Mar 2009 A1
20090146635 Qiu et al. Jun 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090157072 Wham et al. Jun 2009 A1
20090157073 Orszulak Jun 2009 A1
20090157075 Wham et al. Jun 2009 A1
20090234350 Behnke et al. Sep 2009 A1
20090237169 Orszulak Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248003 Orszulak Oct 2009 A1
20090248006 Paulus et al. Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090259224 Wham et al. Oct 2009 A1
20090292283 Odom Nov 2009 A1
20090299360 Ormsby Dec 2009 A1
20090306648 Podhajsky et al. Dec 2009 A1
20100030210 Paulus Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100057076 Behnke et al. Mar 2010 A1
20100063494 Orszulak Mar 2010 A1
20100063497 Orszulak Mar 2010 A1
20100076424 Carr Mar 2010 A1
20100079215 Brannan et al. Apr 2010 A1
20100082022 Haley et al. Apr 2010 A1
20100082023 Brannan et al. Apr 2010 A1
20100082024 Brannan et al. Apr 2010 A1
20100082025 Brannan et al. Apr 2010 A1
20100082083 Brannan et al. Apr 2010 A1
20100082084 Brannan et al. Apr 2010 A1
20100094271 Ward et al. Apr 2010 A1
20100094275 Wham Apr 2010 A1
20100094288 Kerr Apr 2010 A1
20100160791 Liu et al. Jun 2010 A1
20100179529 Podhajsky et al. Jul 2010 A1
20100179533 Podhajsky Jul 2010 A1
20100179534 Podhajsky et al. Jul 2010 A1
20100179535 Podhajsky et al. Jul 2010 A1
20100179536 Podhajsky et al. Jul 2010 A1
20100179538 Podhajsky Jul 2010 A1
20100179541 Joseph et al. Jul 2010 A1
20100179542 Joseph et al. Jul 2010 A1
20100191233 Wham et al. Jul 2010 A1
20100211063 Wham et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100217264 Odom et al. Aug 2010 A1
20100318079 McPherson et al. Dec 2010 A1
20100318080 Keppel Dec 2010 A1
20110028963 Gilbert Feb 2011 A1
20110054460 Gilbert Mar 2011 A1
20110060329 Gilbert Mar 2011 A1
20110071516 Gregg Mar 2011 A1
20110071521 Gilbert Mar 2011 A1
20110077631 Keller Mar 2011 A1
20110112530 Keller May 2011 A1
20110115562 Gilbert May 2011 A1
20110144635 Harper et al. Jun 2011 A1
20110178516 Orszulak et al. Jul 2011 A1
20110202056 Sartor Aug 2011 A1
20110204903 Gilbert Aug 2011 A1
20110208179 Prakash et al. Aug 2011 A1
20110213354 Smith Sep 2011 A1
20110213355 Behnke, II Sep 2011 A1
20110301607 Couture Dec 2011 A1
20110318948 Plaven et al. Dec 2011 A1
20110319881 Johnston Dec 2011 A1
20120004703 Deborski et al. Jan 2012 A1
20120010610 Keppel Jan 2012 A1
20120022521 Odom et al. Jan 2012 A1
20120029515 Couture Feb 2012 A1
Foreign Referenced Citations (170)
Number Date Country
179607 Mar 1905 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
390937 Apr 1989 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4206433 Sep 1993 DE
4339049 May 1995 DE
19506363 Aug 1996 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
246350 Nov 1987 EP
267403 May 1988 EP
296777 Dec 1988 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
336742 Oct 1989 EP
390937 Oct 1990 EP
556705 Aug 1993 EP
569130 Nov 1993 EP
608609 Aug 1994 EP
640317 Mar 1995 EP
694291 Jan 1996 EP
617925 Jul 1996 EP
836868 Apr 1998 EP
878169 Nov 1998 EP
882955 Dec 1998 EP
1051948 Nov 2000 EP
1053720 Nov 2000 EP
1151725 Nov 2001 EP
1278007 Jan 2003 EP
1293171 Mar 2003 EP
1472984 Nov 2004 EP
1495712 Jan 2005 EP
1500378 Jan 2005 EP
1146827 Mar 2005 EP
1535581 Jun 2005 EP
870473 Sep 2005 EP
1609430 Dec 2005 EP
1366724 Jan 2006 EP
1707144 Mar 2006 EP
1645235 Apr 2006 EP
880220 Jun 2006 EP
1681026 Jul 2006 EP
1707143 Oct 2006 EP
1744354 Jan 2007 EP
1776929 Apr 2007 EP
1810628 Jul 2007 EP
1810630 Jul 2007 EP
1810631 Jul 2007 EP
1810632 Jul 2007 EP
1810633 Jul 2007 EP
1810634 Jul 2007 EP
1854423 Nov 2007 EP
1862137 Dec 2007 EP
2025297 May 2008 EP
1263181 Sep 2008 EP
2253286 Nov 2010 EP
1594392 Jun 2011 EP
1275415 Oct 1961 FR
1347865 Nov 1963 FR
2313708 Dec 1976 FR
2364461 Jul 1978 FR
2502935 Oct 1982 FR
2517953 Jun 1983 FR
2573301 May 1986 FR
607850 Sep 1948 GB
702510 Jan 1954 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
2154881 Sep 1985 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2331247 May 1999 GB
2358934 Aug 2001 GB
2434872 Aug 2007 GB
166452 Jan 1965 SU
727201 Apr 1980 SU
WO9206642 Apr 1992 WO
WO9207622 May 1992 WO
WO9324066 Dec 1993 WO
WO9410922 May 1994 WO
WO9424949 Nov 1994 WO
WO9428809 Dec 1994 WO
WO9509577 Apr 1995 WO
WO9518575 Jul 1995 WO
WO9519148 Jul 1995 WO
WO9525471 Sep 1995 WO
WO9525472 Sep 1995 WO
WO9602180 Feb 1996 WO
WO9604860 Feb 1996 WO
WO9608794 Mar 1996 WO
WO9618349 Jun 1996 WO
WO9629946 Oct 1996 WO
WO9639085 Dec 1996 WO
WO9639086 Dec 1996 WO
WO9639088 Dec 1996 WO
WO9639914 Dec 1996 WO
WO9706739 Feb 1997 WO
WO9706740 Feb 1997 WO
WO9706855 Feb 1997 WO
WO9710763 Mar 1997 WO
WO9711648 Apr 1997 WO
WO9717029 May 1997 WO
WO9743971 Nov 1997 WO
WO9807378 Feb 1998 WO
WO9818395 May 1998 WO
WO9827880 Jul 1998 WO
WO9912607 Mar 1999 WO
WO9956647 Nov 1999 WO
WO0048672 Aug 2000 WO
WO0054683 Sep 2000 WO
WO0101847 Jan 2001 WO
WO0200129 Jan 2002 WO
WO0211634 Feb 2002 WO
WO0232333 Apr 2002 WO
WO0245589 Jun 2002 WO
WO0247565 Jun 2002 WO
WO02053048 Jul 2002 WO
WO02088128 Jul 2002 WO
WO03047446 Jun 2003 WO
WO03090630 Nov 2003 WO
WO03090635 Nov 2003 WO
WO03092520 Nov 2003 WO
WO2004028385 Apr 2004 WO
WO2004098385 Apr 2004 WO
WO2004043240 May 2004 WO
WO2004047659 Jun 2004 WO
WO2004052182 Jun 2004 WO
WO2004073488 Sep 2004 WO
WO2004103156 Dec 2004 WO
WO2005046496 May 2005 WO
WO2005048809 Jun 2005 WO
WO2005050151 Jun 2005 WO
WO2005060365 Jul 2005 WO
WO2005060849 Jul 2005 WO
WO2005115235 Dec 2005 WO
WO2005117735 Dec 2005 WO
WO2006050888 May 2006 WO
WO2006105121 Oct 2006 WO
WO2007055491 May 2007 WO
WO2007067522 Jun 2007 WO
WO2007105963 Sep 2007 WO
WO2008002517 Jan 2008 WO
WO2008003058 Jan 2008 WO
WO2008011575 Jan 2008 WO
WO2008043999 Apr 2008 WO
WO2008044000 Apr 2008 WO
WO2008044013 Apr 2008 WO
WO2008053532 May 2008 WO
WO2008070562 Jun 2008 WO
WO2008071914 Jun 2008 WO
WO2008110756 Sep 2008 WO
Non-Patent Literature Citations (137)
Entry
US 6,878,148, 04/2005, Goble et al. (withdrawn)
U.S. Appl. No. 10/406,690, filed Apr. 3, 2003, Robert J. Behnke, II.
U.S. Appl. No. 10/573,713, filed Mar. 28, 2006, Robert H. Wham.
U.S. Appl. No. 10/761,524, filed Jan. 21, 2004, Robert Wham.
U.S. Appl. No. 11/242,458, filed Oct. 3, 2005, Daniel J. Becker.
U.S. Appl. No. 12/985,063, filed Jan. 5, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/034,822, filed Feb. 25, 2011, Mark A. Johnston.
U.S. Appl. No. 13/048,639, filed Mar. 15, 2011, James S. Cunningham.
U.S. Appl. No. 13/049,459, filed Mar. 16, 2011, James H. Orszulak.
U.S. Appl. No. 13/050,770, filed Mar. 17, 2011, Robert B. Smith.
U.S. Appl. No. 13/085,258, filed Apr. 12, 2011, Ronald J. Podhajsky.
U.S. Appl. No. 13/085,278, filed Apr. 12, 2011, James A. Gilbert.
U.S. Appl. No. 13/118,973, filed May 31, 2011, James H. Orszulak.
U.S. Appl. No. 13/186,107, filed Jul. 19, 2011, George J. Collins.
U.S. Appl. No. 13/186,121, filed Jul. 19, 2011, George J. Collins.
U.S. Appl. No. 13/195,607, filed Aug. 1, 2011, James H. Orszulak.
U.S. Appl. No. 13/221,424, filed Aug. 30, 2011, James E. Krapohl.
U.S. Appl. No. 13/228,996, filed Sep. 9, 2011, Robert B. Smith.
U.S. Appl. No. 13/236,997, filed Sep. 20, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/237,068, filed Sep. 20, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/237,187, filed Sep. 20, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/237,342, filed Sep. 20, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/237,488, filed Sep. 20, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/247,043, filed Sep. 28, 2011, Donald W. Heckel.
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Vallfors et al., “Automatically Controlled Bipolar Electrosoagulation-‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
Prutchi et al. “Design and Development of Medical Electronic Instrumentation”, John Wiley & Sons, Inc. 2005.
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Company Newsletter; Sep. 1999.
Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687.
Hadley I C D et al., “Inexpensive Digital Thermometer for Measurements on Semiconductors” International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pp. Jan. 1989.
Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics, 9 (3), May/Jun. 1982.
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83; (1995) pp. 271-276.
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307.
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Cosman et al., “Radiofrequency Lesion Generation and Its Effect on Tissue Impedance” Applied Neurophysiology 51: (1988) pp. 230-242.
Ni W. et al. “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 123 No. 2;(Mar. 2005); pp. 160-164.
Chicharo et al. “A Sliding Goertzel Algorith” Aug. 1996, pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL vol. 52 No. 3.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151.
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15:(1984) pp. 945-950.
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
Medtrex Brochure—Total Control at Full Speed, “The O.R. Pro 300” 1 p. Sep. 1998.
Valleylab Brochure “Valleylab Electroshield Monitoring System” 2 pp. Nov. 1995.
International Search Report EP 98300964.8 dated Dec. 4, 2000.
International Search Report EP 04009964 dated Jul. 13, 2004.
International Search Report EP 04011375 dated Sep. 10, 2004.
International Search Report EP 04015981.6 dated Sep. 29, 2004.
International Search Report EP04707738 dated Jul. 4, 2007.
International Search Report EP 05002769.7 dated Jun. 9, 2006.
International Search Report EP 05014156.3 dated Dec. 28, 2005.
International Search Report EP 05021944.3 dated Jan. 18, 2006.
International Search Report EP 05022350.2 dated Jan. 18, 2006.
International Search Report EP 06000708.5 dated Apr. 21, 2006.
International Search Report—extended EP 06000708.5 dated Aug. 22, 2006.
International Search Report EP 06006717.0 dated Aug. 7, 2006.
International Search Report EP 06010499.9 dated Jan. 29, 2008.
International Search Report EP 06022028.2 dated Feb. 5, 2007.
International Search Report EP 06025700.3 dated Apr. 12, 2007.
International Search Report EP 07001481.6 dated Apr. 23, 2007.
International Search Report EP 07001484.0 dated Jun. 14, 2010.
International Search Report EP 07001485.7 dated May 15, 2007.
International Search Report EP 07001489.9 dated Dec. 20, 2007.
International Search Report EP 07001491 dated Jun. 6, 2007.
International Search Report EP 07001494.9 dated Aug. 25, 2010.
International Search Report EP 07001494.9 extended dated Mar. 7, 2011.
International Search Report EP 07001527.6 dated May 9, 2007.
International Search Report EP 07004355.9 dated May 21, 2007.
International Search Report EP 07008207.8 dated Sep. 13, 2007.
International Search Report EP 07009322.4 dated Jan. 14, 2008.
International Search Report EP 07010673.7 dated Sep. 24, 2007.
International Search Report EP 07015601.3 dated Jan. 4, 2008.
International Search Report EP 07015602.1 dated Dec. 20, 2007.
International Search Report EP 07019174.7 dated Jan. 29, 2008.
International Search Report EP08004667.5 dated Jun. 3, 2008.
International Search Report EP08006733.3 dated Jul. 28, 2008.
International Search Report EP08012503 dated Sep. 19, 2008.
International Search Report EP08013605 dated Feb. 25, 2009.
International Search Report EP08015601.1 dated Dec. 5, 2008.
International Search Report EP08155780 dated Jan. 19, 2009.
International Search Report EP08016540.0 dated Feb. 25, 2009.
International Search Report EP08166208.2 dated Dec. 1, 2008.
International Search Report EP09003678.1 dated Aug. 7, 2009.
International Search Report EP09004250.8 dated Aug. 2, 2010.
International Search Report EP09005160.8 dated Aug. 27, 2009.
International Search Report EP09009860 dated Dec. 8, 2009.
International Search Report EP09012386 dated Apr. 1, 2010.
International Search Report EP09012388.6 dated Apr. 13, 2010.
International Search Report EP09012389.4 dated Jul. 6, 2010.
International Search Report EP09012391.0 dated Apr. 19, 2010.
International Search Report EP09012392 dated Mar. 30, 2010.
International Search Report EP09012396 dated Apr. 7, 2010.
International Search Report EP09012400.9 dated Apr. 13, 2010.
International Search Report EP09156861.8 dated Jul. 14, 2009.
International Search Report EP09158915 dated Jul. 14, 2009.
International Search Report EP09164754.5 dated Aug. 21, 2009.
International Search Report EP09169377.0 dated Dec. 15, 2009.
International Search Report EP09169588.2 dated Mar. 2, 2010.
International Search Report EP09169589.0 dated Mar. 2, 2010.
International Search Report EP09172749.5 dated Dec. 4, 2009.
International Search Report EP10001808.4 dated Jun. 21, 2010.
International Search Report EP10150563.4 dated Jun. 10, 2010.
International Search Report EP10150564.2 dated Mar. 29, 2010.
International Search Report EP10150565.9 dated Mar. 12, 2010.
International Search Report EP10150566.7 dated Jun. 10, 2010.
International Search Report EP10150567.5 dated Jun. 10, 2010.
International Search Report EP10164740.2 dated Aug. 3, 2010.
International Search Report EP10171787.4 dated Nov. 18, 2010.
International Search Report EP10172636.2 dated Dec. 6, 2010.
International Search Report EP10174476.1 dated Nov. 12, 2010.
International Search Report EP10178287.8 dated Dec. 14, 2010.
International Search Report EP10179321.4 dated Mar. 18, 2011.
International Search Report EP10179353.7 dated Dec. 21, 2010.
International Search Report EP10179363.6 dated Jan. 12, 2011.
International Search Report EP10180004.3 dated Jan. 5, 2011.
International Search Report EP10180964.8 dated Dec. 22, 2010.
International Search Report EP10180965.5 dated Jan. 26, 2011.
International Search Report EP10181018.2 dated Jan. 26, 2011.
International Search Report EP10181060.4 dated Jan. 26, 2011.
International Search Report EP10182003.3 dated Dec. 28, 2010.
International Search Report EP10182005.8 dated Jan. 5, 2011.
International Search Report EP10188190.2 dated Nov. 22, 2010.
International Search Report EP10191319.2 dated Feb. 22, 2011.
International Search Report EP10195393.3 dated Apr. 11, 2011.
International Search Report EP11155959.7 dated Jun. 30, 2011.
International Search Report EP11155960.5 dated Jun. 10, 2011.
International Search Report PCT/US03/33711 dated Jul. 16, 2004.
International Search Report PCT/US03/33832 dated Jun. 17, 2004.
International Search Report PCT/US03/37110 dated Jul. 25, 2005.
International Search Report PCT/US03/37310 dated Aug. 13, 2004.
International Search Report PCT/US04/02961 dated Aug. 2, 2005.
International Search Report PCT/US04/13443 dated Dec. 10, 2004.
International Search Report PCT/US08/052460 dated Apr. 24, 2008.
International Search Report PCT/US09/46870 dated Jul. 21, 2009.
Related Publications (1)
Number Date Country
20120150170 A1 Jun 2012 US
Provisional Applications (1)
Number Date Country
60105417 Oct 1998 US
Divisions (1)
Number Date Country
Parent 10427832 May 2003 US
Child 11585506 US
Continuations (1)
Number Date Country
Parent 11585506 Oct 2006 US
Child 13362816 US
Continuation in Parts (2)
Number Date Country
Parent 10073761 Feb 2002 US
Child 10427832 US
Parent 09408944 Sep 1999 US
Child 10073761 US