Incorporated by reference in its entirety is a computer-readable nucleotide/amino acid sequence listing submitted concurrently herewith and identified as follows: One 6 KB ACII (Text) file named “45458B_SeqListing.txt,” created on Mar. 16, 2011.
This patent is directed to the conversion of electrical energy into alternative energy resources, such as fuels. In particular, the patent relates to conversion of carbon dioxide into methane and other energy resources using electrical energy, which conversion may also create or generate other products or byproducts, such as carbon credits or oxygen, for example.
The United States annually consumes about 90 ExaJoules (EJ) of carbon-based fuels, 88% of its total energy consumption in 2008. The use of these fuels is supported by heavily capitalized processing, distribution and utilization industries.
The sustainability of these systems is questionable on two counts. First, the US imports 25% of the energy it uses, a proportion that is projected to increase substantially. Imported energy is obtained from sources that are under pressure to serve increasing demand from growing economies in other parts of the world. Second, more than 96% of the carbon-based fuels are obtained from fossil reserves, which are finite. Useful energy is obtained from carbon-based fuels by oxidizing reduced states of carbon to carbon dioxide. For fossil fuels, this process is basically open-loop, producing CO2 with no compensating carbon reduction process to close the cycle. The consequent gradual accumulation of atmospheric CO2 is beginning to cause changes in the global climate that threaten many aspects of our way of life. Therefore, a process that can close this carbon energy cycle for the total energy economy is needed.
An annual flux of 58,000 EJ of solar energy strikes US soil, making it our most abundant carbon-free energy resource—500 times current consumption. Solar energy has the unique advantage of being a domestic resource not just in the US, but everywhere that people live. Its widespread use as a primary resource would secure energy independence throughout the world. Nevertheless, today solar energy is only a marginal component of the energy economy, providing less than 0.1% of marketed US energy consumption. Exploitation of solar energy is limited principally because it is intermittent and cannot be relied upon to provide the base-load energy that must be available whenever needed. What is lacking is a method for storing solar energy in a stable form that can be tapped whenever needed. Ideally, such a storage form should fit smoothly into the existing energy infrastructure so that it can be quickly deployed once developed.
There is a need in the energy industry for systems to convert one form of energy into another. In particular, there is a need for systems to convert electricity into a form of energy that can be stored inexpensively on industrial scales. Many sources of electricity generation cannot be adjusted to match changing demand. For example, coal power plants run most efficiently when maintained at a constant rate and cannot be adjusted as easily as natural gas (methane) fired power plants. Likewise, wind turbines generate electricity when the wind is blowing which may not necessarily happen when electricity demand is highest.
There is also a need to convert electricity into a form that can be transported long distances without significant losses. Many opportunities for wind farms, geothermal, hydroelectric or solar based power generation facilities are not located close to major population centers, but electric power losses over hundreds of miles add significant cost to such distant power facilities.
Methane is one of the most versatile forms of energy and can be stored easily. There already exists much infrastructure for transporting and distributing methane as well as infrastructure for converting methane into electricity and for powering vehicles. Methane also has the highest energy density per carbon atom of all fossil fuels, and therefore of all fossil fuels, methane releases the least carbon dioxide per unit energy when burned. Hence, systems for converting electricity into methane would be highly useful and valuable in all energy generation and utilization industries.
In principle, it would be possible to produce methane from electric power in a two-step process, such as outlined schematically in
According to an aspect of the present disclosure, a system to convert electric power into methane includes a reactor having a first chamber and a second chamber separated by a proton permeable barrier. The first chamber includes a passage between an inlet and an outlet containing at least a porous electrically conductive cathode, a culture comprising living methanogenic microorganisms, and water. The second chamber includes at least an anode. The reactor has an operating state wherein the culture is maintained at a temperature above 50° C. The system also includes a source of electricity coupled to the anode and the cathode, and a supply of carbon dioxide coupled to the first chamber. The outlet of the system receives methane from the first chamber.
It is believed that the disclosure will be more fully understood from the following description taken in conjunction with the accompanying drawings. Some of the figures may have been simplified by the omission of selected elements for the purpose of more clearly showing other elements. Such omissions of elements in some figures are not necessarily indicative of the presence or absence of particular elements in any of the exemplary embodiments, except as may be explicitly delineated in the corresponding written description. None of the drawings is necessarily to scale.
Although the following text sets forth a detailed description of numerous different embodiments of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘______’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term be limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.
The present disclosure addresses the processing or conversion of carbon dioxide into methane using an electro-biological apparatus. The apparatus may be referred to herein as a reactor, biological reactor, bioreactor, processor, converter or generator. It will be recognized that this designation is not intended to limit the role that the reactor may perform within a system including one or more reactor.
For example, the apparatus provides a non-fossil carbon-based energy resource. In this regard, the apparatus is being used to generate an energy resource that may be substituted for fossil-based carbon fuels, to reduce reliance on fossil-based carbon fuels, for example. Additionally, the apparatus converts or processes carbon dioxide to generate this energy resource. In this regard, the apparatus removes carbon dioxide from the environment, which may be a beneficial activity in and of itself. Such removal of carbon dioxide from the environment may happen by removing carbon dioxide directly from the atmosphere or by utilizing carbon dioxide from another industrial process and thereby preventing such carbon dioxide from being released into the atmosphere or into a storage system or into another process. Further, the apparatus converts or processes carbon dioxide into methane using electricity to convert electricity into another energy resource when demand for electricity may be such that the electricity would otherwise be wasted or even sold at a loss to the electricity producer, for example. In this regard, the apparatus may be viewed as part of an energy storage system. In the operation of a power grid, or an individual power plant or other power source on the grid, or as part of a facility not associated with a power grid, or in the operation of a biological reactor, available power output may be used by one or more biological reactors to consume as an input carbon dioxide, water or electrical power and to produce methane or oxygen when business conditions are favorable to provide an incentive greater than for other use of such inputs. Such conditions may exist when certain regulatory policies, power purchase agreements, carbon credits, futures trading opportunities, storage capacity, electrical demand, taxes, tax credits or abatements, contracts, customer preferences, transmission capacity, pricing conditions, or other market incentives can provide sufficient value for operation of the biological reactor to produce methane or oxygen or to consume carbon dioxide, water or electrical power. In addition to the above and other uses, the apparatus converts electrical energy or power into methane which may be transmitted via natural gas transmission pipes which on a per unit energy basis are less expensive than electrical transmission lines and in some locales the electrical transmission lines may not have as much spare transmission capacity as the natural gas transmission lines. In this regard, the apparatus may be viewed as part of an energy transmission system. All of these roles may be performed by an apparatus according to the present disclosure.
As illustrated in
Methanogenic microorganisms may be cultured, for example, in shake or stirred tank bioreactors, hollow fiber bioreactors, or fluidized bed bioreactors, and operated in a batch, fed batch, continuous, semi-continuous, or perfusion mode. In batch mode (single batch), an initial amount of medium containing nutrients necessary for growth is added to the biological reactor, and the biological reactor is operated until the number of viable cells rises to a steady-state maximum, or stationary condition. In fed-batch mode, concentrated media or selected amounts of single nutrients are added at fixed intervals to the culture. Methanogenic microorganisms can survive for years under fed batch conditions, provided that any waste products are effectively minimized or removed to prevent loss of efficiency of methane production over time. Any inhibitory waste products may be removed by continuous perfusion production processes, well known in the art. Perfusion processes may involve simple dilution by continuous feeding of fresh medium into the culture, while the same volume is continuously withdrawn from the reactor. Perfusion processes may also involve continuous, selective removal of medium by centrifugation while cells are retained in the culture or by selective removal of toxic components by dialysis, adsorption, electrophoresis, or other methods. Continuously perfused cultures may be maintained for weeks, months or years.
The biological reactor 102 may also include a selectively permeable barrier 112, which may be a proton permeable barrier, separating the anode 110 from the cathode 108. The barrier 112 may be at least gas semipermeable (e.g., certain gases may pass through, while others are limited), although according to certain embodiments, the barrier 112 is impermeable to gases. According to certain embodiments, the barrier 112 may prevent gases produced on each side of the barrier from mixing.
According to certain embodiments, the barrier 112 may be a solid polymer electrolyte membrane (PEM), such as is available under tradename Nafion from E. I. du Pont de Nemours and Company. For optimum energy conversion in the reactor according to certain embodiments, it is believed that the permeability of the barrier to hydronium ions should preferably be a minimum of two orders of magnitude greater on a molar basis than permeability of the barrier to oxygen under conditions of operation of the reactor. Other suitable PEM membranes that meet these criteria, such as sulfonated polyarylene block co-polymers (see, e.g., Bae, B., K Miyatake, and M. Watanabe. Macromolecules 43:2684-2691 (2010), which is incorporated by reference herein in its entirety) and PTFE-supported Nafion (see, e.g., G.-B. Jung, et al, J Fuel Cell Technol 4:248-255 (2007), which is incorporated by reference herein in its entirety), are under active development in numerous laboratories. Suitable commercial PEM membranes, in addition to Nafion, include Gore-Select (PRIMEA), Flemion (Asahi), 3M Fluoropolymer ionomer, SPEEK (Polyfuel), Kynar blended membrane (Arkema), Fumapem (FuMA-Tech), and Solupor (Lydall).
In the biological reactor 102, water acts as a primary net electron donor for the methanogenic microorganisms (e.g., methanogenic archaea) in the biological reactor. Accordingly, it is also believed that the barrier 112 should be permeable for hydronium ions (H3O+) (i.e., enable hydronium ions to cross the barrier 112 from the anode 110 to the cathode 108 and complete the electrical circuit). Nafion PEM is one example of a suitable material for such a barrier 112.
The cathode 108 may be of a high surface to volume electrically conductive material. For example, the cathode 108 may be made of a porous electrically conductive material. In particular, the cathode 108 may be made from a reticulated vitreous carbon foam according to certain embodiments. As explained in greater detail below, other materials may be used. According to certain embodiments, the pores of the cathode may be large enough (e.g., greater than 1-2 micrometers in minimum dimension) to accommodate living methanogenic microorganisms within the pores. The electrical conductivity of the cathode matrix is preferably at least two orders of magnitude greater than the ion conductivity of the aqueous electrolytic medium contained within its pores.
It will be recognized that the role of the cathode 108 is to supply electrons to the microorganisms while minimizing side-reactions and minimizing energy loss. Additionally, it is advantageous for the cathode to be inexpensive. At the present time, it is believed that certain materials may be more or less suitable for inclusion in the reactor.
For instance, platinum cathodes may be less suitable for inclusion in the reactor. In this regard, the platinum provides a surface highly active for catalyzing hydrogen gas production from the combination of protons or hydronium ions with electrons provided by the cathode. The activity of platinum cathode catalysts for hydrogen formation in aqueous solutions is so high that the hydrogen concentration in the vicinity of the catalyst quickly rises above its solubility limit and hydrogen gas bubbles emerge. Despite the fact that the methanogenic microorganisms are evolved to consume hydrogen in the process of methane formation, hydrogen in bubbles re-dissolves only slowly in the medium and is largely unavailable to the microorganisms. Consequently, much of the energy consumed in hydrogen formation at a platinum catalyst does not contribute to methane formation. Additionally, the binding energy of hydrogen is higher than the binding energy per bond of methane. This difference results in an energetic loss when hydrogen gas is produced as an intermediate step.
On the other hand, a solid carbon cathode is an example of an inexpensive, electrically conductive material that has low activity for hydrogen formation and that can provide electrons to microorganisms. However, it will be recognized that electron transfer between microorganisms and an external electron source or sink, such as an electrode, requires some level of proximity between the microorganisms and the electrode and the total rate of electron transfer is related to the area of electrode in close contact with microorganisms. Since a porous electrode that allows the microorganisms to enter the pores has a much larger surface area in proximity to the microorganisms than a planar electrode of equivalent dimensions, the porous electrode is expected to provide superior volumetric current density.
A suitable porous cathode material may be provided by reticulated vitreous carbon foam, as demonstrated in Example 1. It is inexpensive and conductive. Its porous structure provides for electrical connections to a large number of the microorganisms allowing for a high volumetric productivity. Additionally, the vitreous nature of the carbon provides low activity for hydrogen production, which increases both energetic and Faradaic efficiency. It will also be recognized that vitreous carbon is also very resistant to corrosion.
Other suitable porous electrode materials may include, but are not limited to graphite foam (see, e.g., U.S. Pat. No. 6,033,506, which is incorporated by reference herein in its entirety), woven carbon and graphite materials, carbon, graphite or carbon nanotube impregnated paper (see, e.g., Hu, L., et al. Proc Nat Acad Sci USA 106: 21490-4 (2009), which is incorporated by reference herein in its entirety), and metal foams, or woven or non-woven mesh comprised of materials, such as titanium, that are non-reactive under the conditions of the reaction and that present a high surface to volume ratio.
Further enhancement of electron transfer between the cathode and the microorganisms may be achieved with conductive fibers. Suitable conductive fibers may consist of conductive pili generated by the microorganisms as described in more detail below. Alternatively or additionally, nanowires, such as carbon nanotubes (Iijima, S. Nature 354:56 (1991), which is incorporated by reference herein in its entirety), may be attached directly to the cathode. Wang, J. et al, J. Am. Chem. Soc. 125:2408-2409 (2003) and references therein, all of which are incorporated by reference herein in their entirety, provide techniques for modifying glassy carbon electrodes with carbon nanotubes. Additionally, conductive organic polymers may be used for this purpose (see, e.g., Jiang, P. Angewandte Chemie 43:4471-4475 (2004), which is incorporated by reference herein in its entirety). Non-conductive materials that bind the microorganisms to the surface of the electrode may also enhance electron transfer. Suitable non-conductive binders include but are not limited to poly-cationic polymers such as poly-lysine or poly(beta-aminosulfonamides). The living methanogenic microorganisms may also produce biological materials, such as those that support biofilm formation, that effectively bind them to the surface of the electrode.
The anode 110 may comprise a Pt-carbon catalytic layer or other materials known to provide low overpotential for the oxidation of water to oxygen.
As illustrated in
Based upon dynamic computational models of porous electrodes containing aqueous electrolyte, the optimal conductivity of the cathode electrolyte is believed to be preferably in the range of 100 mS/cm to 250 mS/cm or higher in the operating state of the reactor, although according to embodiments of the present disclosure, the range may be from about 5 mS/cm to about 100 mS/cm or from about 100 mS/cm to about 250 mS/cm. Higher conductivity of the electrolyte may reduce ohmic losses in the reactor and hence may increase energy conversion efficiency. Computational models further suggest that the optimal thickness of the porous cathode (perpendicular to the planes of the reactor layers) may be between 0.2 cm and 0.01 cm, or less. Thinner cathode layers may have lower ohmic resistance under a given set of operating conditions and hence may have an increased energy conversion efficiency. It will be recognized, however, that thicker cathodes may also be used.
The biological reactor 102 may operate at an electrical current density above 6 mA/cm2. For example, the biological reactor 102 may operate at an electrical current density of between 6 and 10 mA/cm2. According to certain embodiments, the biological reactor 102 may operate at electrical current densities at least one order of magnitude higher (e.g., 60-100 mA/cm2). The current may be supplied as direct current, or may be supplied as pulsed current such as from rectified alternating current. The frequency of such pulsed current is not constrained by the properties of the reactor. The frequency of the pulsed current may be variable, such as that generated by variable speed turbines, for example wind turbines lacking constant-speed gearing.
The living methanogenic microorganisms (e.g., autotrophic and/or hydrogenotrophic methanogenic archaea) may be impregnated into the cathode 108. Alternatively or in combination, the living methanogenic microorganisms may pass through the cathode 108 along with the circulating medium, electrolytic medium, or electrolyte (which may also be referred to as a catholyte, where the medium passes through, at least in part, the cathode 108). While various embodiments and variants of the microorganisms are described in greater detail in the following section, it is noted that the microorganisms may be a strain of archaea adapted to nearly stationary growth conditions according to certain embodiments of the present disclosure. In addition, according to certain embodiments of the present disclosure, the microorganisms may be Archaea of the subkingdom Euryarchaeota, in particular, the microorganisms may consist essentially of Methanothermobacter thermautotrophicus.
As explained in greater detail below, the biological reactor 102 may have an operating state wherein the culture is maintained at a temperature above 50° C., although certain embodiments may have an operating state in the range of between approximately 60° C. and 100° C. The biological reactor 102 may also have a dormant state wherein electricity and/or carbon dioxide is not supplied to the reactor 102. According to such a dormant state, the production of methane may be significantly reduced relative to the operating state, such that the production may be several orders of magnitude less than the operating state, and likewise the requirement for input electrical power and for input carbon dioxide may be several orders of magnitude less than the operating state. According to certain embodiments of the present disclosure, the biological reactor 102 may change between the operating state and the dormant state or between dormant state and operating state without addition of microorganisms to the reactor 102. Additionally, according to certain embodiments, the reactor 102 may change between dormant and operating state rapidly, and the temperature of the reactor 102 may be maintained during the dormant state to facilitate the rapid change.
The biological reactor 102 may have an inlet 130 connected to the first chamber for receiving gaseous carbon dioxide. The inlet 130 may be coupled to a supply of carbon dioxide 132 to couple the supply of carbon dioxide to the first chamber 104. The biological reactor 102 may also have an outlet 134 to receive methane from the first chamber.
The biological reactor 102 may also have an outlet 136 connected to the second chamber 106 for receiving byproducts. For example, gaseous oxygen may be generated in the second chamber 106 as a byproduct of the production of methane in the first chamber 104. According to certain embodiments, oxygen may be the only gaseous byproduct of the biological reactor 102. In either event, the gaseous oxygen may be received by the outlet 134 connected to the second chamber 106.
In keeping with the disclosure of
The method may also include supplying carbon dioxide to the first chamber 104. As noted above, the method may include recycling carbon dioxide from at least a concentrated industrial source or atmospheric carbon dioxide, which carbon dioxide is supplied to the first chamber 104.
The method may further include collecting methane from the first chamber 104. The method may further include storing and transporting the methane. The method may also include collecting other gaseous products or byproducts of the biological reactor; for example, the method may include collecting oxygen from the second chamber 106.
It will be recognized that while the system of
It will be recognized that the system 100 is only one such embodiment of a system according to the present disclosure. Additional embodiments and variants of the system 100 are illustrated in
The biological reactor 202 includes a housing 210 that defines, in part, first and second chambers 212, 214. The reactor 202 also includes a cathode 216 disposed in the first chamber 212, and an anode 218 disposed in the second chamber 214. The first and second chambers 212, 214 are separated by proton permeable, gas impermeable barrier 220, the barrier 220 having surfaces 222, 224 which also define in part the first and second chambers 212, 214.
The biological reactor 202 also includes current collectors 230, 232, one each for the cathode 216 and the anode 218 (which in turn may, according to certain embodiments, either be backed with a barrier impermeable to fluid, gas, and ions or be replaced by with a barrier impermeable to fluid, gas, and ions). The current collector 230 for the cathode 216 may be made as a solid disc of material, so as to maintain a sealed condition within the chamber 212 between an inlet 234 for the carbon dioxide and an outlet 236 for the methane (and potentially byproducts). The inlet 234 and the outlet 236 may be defined in the housing 210. The current collector 232 for the anode 218 may also define a porous gas diffusion layer, on which the anode catalyst layer is disposed. It will be recognized that a porous gas diffusion layer should be provided so as to permit gaseous byproducts to exit the second chamber 214, because the barrier 220 prevents their exit through the outlet 236 via the first chamber 212.
In keeping with the disclosure above, the cathode 216 is made of a porous material, such as a reticulated carbon foam. The cathode 216 is impregnated with the methanogenic microorganisms and with the aqueous electrolytic medium. The methanogenic microorganisms (e.g., archaea) are thus in a passage 238 formed between the barrier 220 and the current collector 230 between the inlet 234 and the outlet 236.
In operation, carbon dioxide is dissolved into the aqueous electrolytic medium and is circulated through the cathode 216. The methanogenic microorganisms may reside within the circulating electrolytic medium or may be bound to the porous cathode 216. In the presence of an electric current, the methanogenic microorganisms process the carbon dioxide to generate methane. The methane is carried by the electrolytic medium out of the reactor 202 via the outlet 236. According to such an embodiment, post-processing equipment, such as a liquid/gas separator, may be connected to the outlet to extract the methane from the solution.
Unlike the embodiment illustrated in
It will thus be recognized that the carbon dioxide and the methane are not carried by a circulating liquid media according to the embodiment of
Moreover, similar to the embodiment illustrated in
As a result, the embodiment of
In particular, as illustrated in
As seen in
According to this embodiment, the carbon dioxide enters the reactor 402 via an inlet 430 and moves along a passage 432. The carbon dioxide then passes along the porous cathode 414, which is impregnated with methanogenic microorganisms and aqueous electrolytic medium. The methane produced in the cathode 414 then is collected in a space 434 that is connected to the outlet 436.
As illustrated in
In
With regard to the present invention, the reactor (also referred to herein as the electromethanogenic reactor, the electrobiological methanogenesis reactor, the biological reactor, the bioreactor, etc.) comprises a culture comprising methanogenic microorganisms (a term used interchangeably with “methanogens”). The term “culture” as used herein refers to a population of live microorganisms in or on culture medium. When part of the reactor, the culture medium also serves as the electrolytic medium facilitating electrical conduction within the reactor.
In some embodiments, the culture is a monoculture and/or is a substantially-pure culture. As used herein the term “monoculture” refers to a population of microorganisms derived or descended from a single species (which may encompass multiple strains) or a single strain of microorganism. The monoculture in some aspects is “pure,” i.e., nearly homogeneous, except for (a) naturally-occurring mutations that may occur in progeny and (b) natural contamination by non-methanogenic microorganisms resulting from exposure to non-sterile conditions. Organisms in monocultures can be grown, selected, adapted, manipulated, modified, mutated, or transformed, e.g. by selection or adaptation under specific conditions, irradiation, or recombinant DNA techniques, without losing their monoculture nature.
As used herein, a “substantially-pure culture” refers to a culture that substantially lacks microorganisms other than the desired species or strain(s) of microorganism. In other words, a substantially-pure culture of a strain of microorganism is substantially free of other contaminants, which can include microbial contaminants (e.g., organisms of different species or strain). In some embodiments, the substantially-pure culture is a culture in which greater than or about 70%, greater than or about 75%, greater than or about 80%, greater than or about 85%, greater than or about 90%, greater than or about 91%, greater than or about 92%, greater than or about 93%, greater than or about 94%, greater than or about 95%, greater than or about 96%, greater than or about 97%, greater than or about 98%, greater than or about 99% of the total population of the microorganisms of the culture is a single, species or strain of methanogenic microorganism. By way of example, in some embodiments, the substantially-pure culture is a culture in which greater than 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the total population of microorganisms of the culture is a single methanogenic microorganism species, e.g., Methanothermobacter thermautotrophicus.
When initially set up, the biological reactor is inoculated with a pure or substantially pure monoculture. As the culture is exposed to non-sterile conditions during operation, the culture may be contaminated by other non-methanogenic microorganisms in the environment without significant impact on operating efficiency over a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months, or 1.5 or 2 years.
In other embodiments, the culture comprises a plurality of (e.g., a mixture or combination of two or more) different species of methanogenic microorganisms. In some aspects, the culture comprises two, three, four, five, six, seven, eight, nine, ten, or more different species of methanogenic microorganisms. In some aspects, the culture comprises a plurality of different species of methanogenic microorganisms, but the culture is substantially free of any non-methanogenic microorganism.
In yet other embodiments, the culture comprises a plurality of microorganisms of different species, in which at least one is a methanogenic microorganism. In some aspects of this embodiment, the culture comprises at least one species of methanogenic microorganism and further comprises at least one selected non-methanogenic microorganism. In some aspects, the culture comprises two or more different species of methanogens, and, optionally comprises at least one selected non-methanogenic microorganism.
Suitable cultures of mixtures of two or more microbes are also readily isolated from the specified environmental sources (Bryant et al. Archiv Microbiol 59:20-31 (1967) “Methanobacillus omelianskii, a symbiotic association of two species of bacteria.”, which is incorporated by reference herein in its entirety). Suitable mixtures may be consortia in which cells of two or more species are physically associated or they may be syntrophic mixtures in which two or more species cooperate metabolically without physical association. Also, suitable mixtures may be consortia in which cells of two or more species are physically associated or they may be syntrophic mixtures in which two or more species cooperate metabolically with physical association. Mixed cultures may have useful properties beyond those available from pure cultures of known hydrogenotrophic methanogens. These properties may include, for instance, resistance to contaminants in the gas feed stream, such as oxygen, ethanol, or other trace components, or aggregated growth, which may increase the culture density and volumetric gas processing capacity of the culture. Another contaminant in the gas feed stream may be carbon monoxide.
Suitable cultures of mixed organisms may also be obtained by combining cultures isolated from two or more sources. One or more of the species in a suitable mixed culture should be an Archaeal methanogen. Any non-Archael species may be bacterial or eukaryotic.
Mixed cultures have been described in the art. See, for example, Cheng et al., U.S. 2009/0317882, and Zeikus US 2007/7250288, each of which is incorporated by reference in its entirety.
As described herein, the reactor may be in a dormant (e.g., off) state or in an operating (e.g., on) state with regard to the production of methane, and, consequently, the reactor may be turned “on” or “off” as desired in accordance with the need or desire for methane production. In some embodiments, the methanogenic microorganisms of the culture are in a state which accords with the state of the reactor. Therefore, in some embodiments, the methanogenic microorganisms are in a dormant state in which the methanogenic microorganisms are not producing methane (e.g., not producing methane at a detectable level). In alternative embodiments, the methanogenic microorganisms are in an operating state in which the methanogenic microorganisms are producing methane (e.g., producing methane at a detectable level).
When the methanogenic microorganisms are in the operating state, the methanogenic microorganisms may be in one of a variety of growth phases, which differ with regard to the growth rate of the microorganisms (which can be expressed, e.g., as doubling time of microorganism number or cell mass). The phases of growth typically observed include a lag phase, an active growth phase (also known as exponential or logarithmic phase when microorganisms multiply rapidly), a stationary phase, and a death phase (exponential or logarithmic decline in cell numbers). In some aspects, the methanogenic microorganisms of the biological reactor are in a lag phase, an active growth phase, a stationary phase, or a nearly stationary phase.
In some embodiments, the methanogenic microorganisms are in an active growth phase in which the methanogenic microorganisms are actively multiplying at a rapid rate.
In some aspects, during operation of the biological reactor, the doubling time of the microorganisms may be rapid or similar to that observed during the growth phase in its natural environment or in a nutrient-rich environment. For example, the doubling time of many methanogenic microorganisms in the active growth phase is about 15 minutes, about 20 minutes, about 30 minutes, about 45 minutes, about 60 minutes, about 75 minutes, about 80 minutes, about 90 minutes, or about 2 hours.
Stationary phase represents a growth phase in which, after the logarithmic or active growth phase, the rate of cell division and the rate of cell death are in equilibrium or near equilibrium, and thus a relatively constant concentration of microorganisms is maintained in the reactor. (See, Eugene W. Nester, Denise G. Anderson, C. Evans Roberts Jr., Nancy N. Pearsall, Martha T. Nester; Microbiology: A Human Perspective, 2004, Fourth Edition, Chapter 4, which is incorporated by reference herein in its entirety).
In other embodiments, the methanogenic microorganisms are in an stationary growth phase or nearly stationary growth phase in which the methanogenic microorganisms are not rapidly growing or have a substantially reduced growth rate. In some aspects, the doubling time of the methanogenic microorganisms is about 1 week or greater, including about 2, 3, 4 weeks or greater, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months or greater.
In some embodiments, the reactor comprises a culture comprising methanogenic microorganisms, which microorganisms are initially in an active growth phase, and subsequently in a stationary or nearly stationary phase. In some embodiments, the reactor comprises a culture comprising methanogenic microorganisms which cycle between a dormant and an operating state.
As used herein, the term “methanogenic” refers to microorganisms that produce methane as a metabolic byproduct. In some embodiments, the reactor (also referenced herein interchangeably as electromethanogenic reactor, biological reactor or bioreactor, etc.) comprises a culture comprising hydrogenotrophic methanogenic microorganisms. As used herein, the term “hydrogenotrophic” refers to a microorganism capable of converting hydrogen to another compound as part of its metabolism. Hydrogenotrophic methanogenic microorganisms are capable of utilizing hydrogen in the production of methane. In some embodiments, the reactor comprises a culture comprising autotrophic methanogenic microorganisms. As used herein, the term “autotrophic” refers to a microorganism capable of using carbon dioxide and a source of reducing power to provide all carbon and energy necessary for growth and maintenance of the cell (e.g., microorganism). Suitable sources of reducing power may include but are not limited to hydrogen, hydrogen sulfide, sulfur, formic acid, carbon monoxide, reduced metals, sugars (e.g., glucose, fructose), acetate, photons, or cathodic electrodes or a combination thereof. In some aspects, the methanogenic microorganisms produce methane from carbon dioxide, electricity, and water, a process referred to as electrobiological methanogenesis.
The methanogenic microorganisms produce substantial amounts of methane in the operating state, as described herein. In some aspects, the methanogenic microorganisms produce methane in an active growth phase or stationary growth phase or nearly stationary growth phase.
The efficiency of methane production per molecule of carbon dioxide (CO2) by the methanogenic microorganisms may be any efficiency suitable for the purposes herein. It has been reported that naturally-occurring methanogenic microorganisms in the active growth phase produce methane at a ratio of about 8 CO2 molecules converted to methane per molecule of CO2 converted to cellular material, ranging up to a ratio of about 20 CO2 molecules converted to methane per molecule of CO2 converted to cellular material. In some embodiments, the methanogenic microorganisms of the biological reactor of the present invention demonstrate an increased efficiency, particularly when adapted to stationary phase growth conditions. Accordingly, in some aspects, the ratio of the number of CO2 molecules converted to methane to the number of CO2 molecules converted to cellular material is higher than the ratio of naturally-occurring methanogenic microorganisms in the active growth phase. In exemplary embodiments, the ratio of the number of CO2 molecules converted to methane to the number of CO2 molecules converted to cellular material is N:1, wherein N is a number greater than 20, e.g. about 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or higher. In some aspects, N is less than 500, less than 400, less than 300, or less than 200. In some aspects, N ranges from about 40 to about 150.
In some embodiments, the methanogenic microorganisms, e.g., the autotrophic methanogenic microorganisms, are archaea. The term “Archaea” refers to a categorization of organisms of the division Mendosicutes, typically found in unusual environments and distinguished from the rest of the prokaryotes by several criteria, including ether-linked membrane lipids and lack of muramic acid in cell walls. On the basis of ssrRNA analysis, the Archaea consist of two phylogenetically-distinct groups: Crenarchaeota and Euryarchaeota. On the basis of their physiology, the Archaea can be organized into three partially overlapping groupings: methanogens (prokaryotes that produce methane); extreme halophiles (prokaryotes that live at very high concentrations of salt (NaCl); and extreme (hyper) thermophiles (prokaryotes that live at very high temperatures—e.g., 50-122° C.). Besides the unifying archaeal features that distinguish them from bacteria (i.e., no murein in cell wall, ether-linked membrane lipids, etc.), these prokaryotes exhibit unique structural or biochemical attributes which adapt them to their particular habitats. The Crenarchaeota consist mainly of hyperthermophilic sulfur-dependent prokaryotes and the Euryarchaeota contain the methanogens and extreme halophiles.
Methanogens (or methanobacteria) suitable for practice of the invention are readily obtainable from public collections of organisms or can be isolated from a variety of environmental sources. Such environmental sources include anaerobic soils and sands, bogs, swamps, marshes, estuaries, dense algal mats, both terrestrial and marine mud and sediments, deep ocean and deep well sites, sewage and organic waste sites and treatment facilities, and animal intestinal tracts and feces. Examples of suitable organisms have been classified into four different genera within the Methanobacteria class (e.g. Methanobacterium alcaliphilum, Methanobacterium bryantii, Methanobacterium congolense, Methanobacterium defluvii, Methanobacterium espanolae, Methanobacterium formicicum, Methanobacterium ivanovii, Methanobacterium palustre, Methanobacterium thermaggregans, Methanobacterium uliginosum, Methanobrevibacter acididurans, Methanobrevibacter arboriphilicus, Methanobrevibacter gottschalkii, Methanobrevibacter olleyae, Methanobrevibacter rum inantium, Methanobrevibacter smithii, Methanobrevibacter woesei, Methanobrevibacter wolinii, Methanothermobacter marburgensis, Methanothermobacter thermautotrophicum (also known as Methanothermobacter thermautotrophicus, Methanobacterium thermalcaliphilum, Methanobacterium thermoformicicum, Methanobacterium thermautotrophicum, Methanobacterium thermoalcaliphilum, Methanobacterium thermoautotrophicum), Methanothermobacter thermoflexus, Methanothermobacter thermophilus, Methanothermobacter wolfeii, Methanothermus sociabilis), 5 different genera within the Methanomicrobia class (e.g. Methanocorpusculum bavaricum, Methanocorpusculum parvum, Methanoculleus chikuoensis, Methanoculleus submarinus, Methanogenium frigidum, Methanogenium liminatans, Methanogenium marinum, Methanosarcina acetivorans, Methanosarcina barkeri, Methanosarcina mazei, Methanosarcina thermophila, Methanomicrobium mobile), 7 different genera within the Methanococci class (e.g. Methanocaldococcus jannaschii, Methanococcus aeolicus, Methanococcus maripaludis, Methanococcus vannielii, Methanococcus voltaei, Methanothermococcus thermolithotrophicus, Methanocaldococcus fervens, Methanocaldococcus indicus, Methanocaldococcus infernus, Methanocaldococcus vulcanius), and one genus within the Methanopyri class (e.g. Methanopyrus kandleri). Suitable cultures are available from public culture collections (e.g. the American Type Culture Collection, the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, and the Oregon Collection of Methanogens). In some embodiments, the methanogen is selected from the group consisting of Methanosarcinia barkeri, Methanococcus maripaludis, and Methanothermobacter thermautotrophicus.
Additional species of methanogens suitable for purposes of the present invention include, but are not limited to, Methanobacterium formicum, Methanobrevibacter ruminantium, Methanocalculus chunghsingensis, Methanococcoides burtonii, Methanococcus deltae, Methanocorpusculum labreanum, Methanoculleus bourgensis (Methanogenium olentangyi, Methanogenium bourgense), Methanoculleus marisnigri, Methangenium cariaci, Methanogenium organophilum, Methanopyrus kandleri, Methanoregula boonei. In some embodiments, the biological reactor comprises a culture (e.g. monoculture or substantially pure culture) of thermophilic or hyperthermophilic microorganisms, which may also be halophiles. In some embodiments, the methanogenic microorganism is from the phylum Euryarchaeota. Examples of species of thermophilic or hyperthermophilic autotrophic methanogens suitable for the purposes of the present invention include Methanocaldococcus fervens, Methanocaldococcus indicus, Methanocaldococcus infernos, Methanocaldococcus jannaschii, Methanocaldococcus vulcanius, Methanopyrus kandleri, Methanothermobacter defluvii, Methanothermobacter marburgensis, Methanothermobacter thermautotrophicus, Methanothermobacter thermoflexus, Methanothermobacter thermophilus, Methanothermobacter wolfeii, Methanothermococcus okinawensis, Methanothermococcus thermolithotrophicus, Methanothermus fervidus, Methanothermus sociabilis, Methanotorris formicicus, and Methanotorris.
In accordance with the foregoing, in some embodiments, the methanogenic microorganisms are of the superkingdom Archaea, formerly called Archaebacteria. In certain aspects, the archaea are of the phylum: Crenarchaeota, Euryarchaeota, Korarchaeota, Nanoarchaeota, or Thaumarchaeota. In some aspects, the Crenarchaeota are of the class Thermoprotei. In some aspects, the Euryarchaeota are of the class: archaeoglobi, halobacteria, methanobacteria, methanococci, methanomicrobia, methanopyri, thermococci, thermoplasmata. In some embodiments, the Korarchaeota are of the class: Candidatus Korarchaeum or korarchaeote SRI-306. In some aspects, the Nanoarchaeota are of the class nanoarchaeum. In some aspects, the Thaumarchaeota is of the class Cenarchaeales or marine archaeal group 1.
In some embodiments, the methanogenic microorganisms are of the order: Candidatus Korarchaeum, Nanoarchaeum, Caldisphaerales, Desulfurococcales, Fervidicoccales, Sulfolobales, Thermoproteales, Archaeoglobales, Halobacteriales, Methanobacteriales, Methanococcales, Methanocellales, Methanomicrobiales, Methanosarcinales, Methanopyrales, Thermococcales, Thermoplasmatales, Cenarchaeales, or Nitrosopumilales.
In some embodiments, the culture comprises a classified species of the Archaea phylum Euryarchaeota, including, but not limited to, any of those set forth in Table 1. In some embodiments, the culture comprises an unclassified species of Euryarchaeota, including, but not limited to, any of those set forth in Table 2. In some embodiments, the culture comprises an unclassified species of Archaea, including, but not limited to, any of those set forth in Table 3.
In some embodiments, the culture comprises a classified species of the Archaea phylum Crenarchaeota, including but not limited to any of those set forth in Table 4. In some embodiments, the culture comprises an unclassified species of the Archaea phylum Crenarchaeota, including, but not limited to, any of those set forth in Table 5.
The archaea listed in Tables 1-5 are known in the art. See, for example, the entries for “Archaea” in the Taxonomy Browser of the National Center for Biotechnological Information (NCBI) website.
Any of the above naturally-occurring methanogenic microorganisms may be modified. Accordingly, in some embodiments, the culture of the reactor comprises methanogenic microorganisms that have been modified (e.g., adapted in culture, genetically modified) to exhibit or comprise certain characteristics or features, which, optionally, may be specific to a given growth phase (active growth phase, stationary growth phase, nearly stationary growth phase) or reactor state (e.g., dormant state, operating state). For example, in some embodiments, the culture of the reactor comprises a methanogenic microorganism that has been modified to survive and/or grow in a desired culture condition which is different from a prior culture condition in which the methanogenic microorganism survived and/or grew, e.g., the natural environment from which the microorganism was isolated, or a culture condition previously reported in literature. The desired culture conditions may differ from the prior environment in temperature, pH, pressure, cell density, volume, humidity, salt content, conductivity, carbon content, nitrogen content, vitamin-content, amino acid content, mineral-content, or a combination thereof. In some embodiments, the culture of the biological reactor comprises a methanogenic microorganism, which, before adaptation in culture or genetic modification, is one that is not a halophile and/or not a thermophile or hyperthermophile, but, through adaptation in culture or genetic modification, has become a halophile and/or thermophile or hyperthermophile. Also, for example, in some embodiments, the methanogenic microorganism before genetic modification is one which does not express a protein, but through genetic modification has become a methanogenic microorganism which expresses the protein. Further, for example, in some embodiments, the methanogenic microorganism before adaptation in culture or genetic modification, is one which survives and/or grows in the presence of a particular carbon source, nitrogen source, amino acid, mineral, salt, vitamin, or combination thereof but through adaptation in culture or genetic modification, has become a methanogenic microorganism which survives and/or grows in the substantial absence thereof. Alternatively or additionally, in some embodiments, the methanogenic microorganism before adaptation in culture or genetic modification, is one which survives and/or grows in the presence of a particular amount or concentration of carbon source, nitrogen source, amino acid, mineral, salt, vitamin, but through adaptation in culture or genetic modification, has become a methanogenic microorganism which survives and/or grows in a different amount or concentration thereof.
In some embodiments, the methanogenic microorganisms are adapted to a particular growth phase or reactor state. Furthermore, for example, the methanogenic microorganism in some embodiments is one which, before adaptation in culture or genetic modification, is one which survives and/or grows in a given pH range, but through adaptation in culture becomes a methanogenic microorganism that survives and/or grows in different pH range. In some embodiments, the methanogenic microorganisms (e.g., archaea) are adapted in culture to a nearly stationary growth phase in a pH range of about 3.5 to about 10 (e.g., about 5.0 to about 8.0, about 6.0 to about 7.5). Accordingly, in some aspects, the methanogenic microorganisms are adapted in culture to a nearly stationary growth phase at a pH of about 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, or 10.0. In some embodiments, the methanogenic microorganisms (e.g., archaea) are adapted in culture to an active growth phase in a pH range of about 6.5 to about 7.5 (e.g., about 6.8 to about 7.3). Accordingly, in some aspects, the methanogenic microorganisms are adapted in culture to a nearly stationary growth phase at a pH of about 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, or 7.5.
As used herein, the term “adaptation in culture” refers to a process in which microorganisms (e.g., naturally-occurring archaea) are cultured under a set of desired culture conditions (e.g., high salinity, high temperature, substantial absence of any carbon source, low pH, etc.), which differs from prior culture conditions. The culturing under the desired conditions occurs for a period of time which is sufficient to yield modified microorganisms (progeny of the parental line (i.e. the unadapted microorganisms)) which survive and/or grow (and/or produce methane) under the desired condition(s). The period of time of adaptation in some aspects is 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks 4 weeks, 5 weeks, 6 weeks 1 month, 2 months, 3 months, 4 months, 5 months 6 months, 7 months, 8 months, 9 months, 10 months, 12 months, 1 year, 2 years. The process of adapting in culture selects for microorganisms that can survive and/or grow and/or produce methane in the desired culture conditions; these selected microorganisms remain in the culture, whereas the other microorganisms that cannot survive and/or grow and/or produce methane in the desired culture conditions eventually die in the culture. In some embodiments, as a result of the adaptation in culture, the methanogenic microorganisms produce methane at a higher efficiency, e.g., at a ratio of the number of carbon dioxide molecules converted to methane to the number of carbon dioxide molecules converted to cellular materials which is higher than N:1, wherein N is a number greater than 20, as further described herein.
In some embodiments, the adaptation process occurs before the microorganisms are placed in the reactor. In some embodiments, the adaptation process occurs after the microorganisms are placed in the reactor. In some embodiments, the microorganisms are adapted to a first set of conditions and then placed in the reactor, and, after placement into the biological reactor, the microorganisms are adapted to another set of conditions.
For purposes of the present invention, in some embodiments, the culture of the reactor comprises a methanogenic microorganism (e.g., archaea) which has been adapted in culture to survive and/or grow in a high salt and/or high conductivity culture medium. For example, the culture of the biological reactor comprises a methanogenic microorganism (e.g., archaea) which has been adapted in culture to survive and/or grow in a culture medium having a conductivity of about 1 to about 25 S/m.
In alternative or additional embodiments, the culture of the reactor comprises a methanogenic microorganism (e.g., archaea) which has been adapted in culture to survive and/or grow at higher temperature (e.g., a temperature which is between about 1 and about 15 degrees C. greater than the temperature that the microorganisms survives and/or grows before adaptation). In exemplary embodiments, the methanogenic microorganisms are adapted to survive and/or grow in a temperature which is greater than 50° C., e.g., greater than 55° C., greater than 60° C., greater than 65° C., greater than 70° C., greater than 75° C., greater than 80° C., greater than 85° C., greater than 90° C., greater than 95° C., greater than 100° C., greater than 105° C., greater than 110° C., greater than 115° C., greater than 120° C.
In some embodiments, the culture comprises a methanogenic microorganism (e.g., archaea) which has been adapted in culture to grow and/or survive in conditions which are low in or substantially absent of any vitamins. In some aspects, the culture comprises a methanogenic microorganism (e.g., archaea) which has been adapted in culture to grow and/or survive in conditions which are low in or substantially absent of any organic carbon source. In some embodiments, the culture comprises a methanogenic microorganism which has been adapted in culture to grow and/or survive in conditions with substantially reduced amounts of carbon dioxide. In these embodiments, the methanogenic microorganisms may be adapted to exhibit an increased methanogenesis efficiency, producing the same amount of methane (as compared to the unadapted microorganism) with a reduced amount of carbon dioxide. In some embodiments, the culture comprises a methanogenic microorganism which has been adapted in culture to survive in conditions which substantially lacks carbon dioxide. In these embodiments, the methanogenic microorganisms may be in a dormant phase in which the microorganisms survive but do not produce detectable levels of methane. In some embodiments, the methanogenic microorganisms have been adapted to grow and/or survive in conditions which are low in or substantially absent of any hydrogen. In some embodiments, the methanogenic microorganisms have been adapted to grow and/or survive in conditions which are low in or substantially absent of any external source of water, e.g., the conditions do not comprise a dilution step.
In exemplary embodiments, the methanogens are adapted in culture to a nearly stationary growth phase. Such methanogens favor methane production over cell growth as measured, e.g., by the ratio of the number of CO2 molecules converted to methane to the number of CO2 molecules converted to cellular materials. This ratio is increased as compared to unadapted methanogens (which may exhibit, e.g., a ratio ranging from about 8:1 to about 20:1). In some embodiments, the methanogens are adapted in culture to a nearly stationary growth phase by being deprived of one or more nutrients otherwise required for optimal growth for a prolonged period of time (e.g., 1 week, 2 week, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 2 years, 3 years, 4 years, 5 years or more). In some embodiments, the methanogens are deprived of inorganic nutrients (e.g., hydrogen or electrons) necessary for optimum growth. In some embodiments, depriving the methanogens of hydrogen or electrons is achieved by sparging the media with an insert gas mixture such as Ar:CO2 at a flow rate of 250 mL/min for several hours until neither hydrogen nor methane appear in the effluent gas stream. In some embodiments, the methanogenic microorganisms have been adapted to a nearly stationary growth phase in conditions which are low in or substantially absent of any external source of water, e.g., the adaptation conditions do not comprise a dilution step.
In some aspects, the culture comprises a methanogenic microorganism which has been adapted in culture to grow and/or survive in the culture medium set forth herein as Medium 1 and/or Medium 2 or a medium which is substantially similar to Medium 1 or Medium 2.
In some embodiments, the culture comprises methanogenic microorganisms which have been purposefully or intentionally genetically modified to become suitable, e.g., more suitable, for the purposes of the present invention. Suitable cultures may also be obtained by genetic modification of non-methanogenic organisms in which genes essential for supporting autotrophic methanogenesis are transferred from a methanogenic microbe or from a combination of microbes that may or may not be methanogenic on their own. Suitable genetic modification may also be obtained by enzymatic or chemical synthesis of the necessary genes.
In exemplary embodiments, a host cell that is not naturally methanogenic is intentionally genetically modified to express one or more genes that are known to be important for methanogenesis. For example, the host cell in some aspects is intentionally genetically modified to express one or more coenzymes or cofactors involved in methanogenesis. In some specific aspects, the coenzymes or cofactors are selected from the group consisting of F420, coenzyme B, coenzyme M, methanofuran, and methanopterin, the structures of which are known in the art. In some aspects the organisms are modified to express the enzymes, well known in the art, that employ these cofactors in methanogenesis.
In some embodiments, the host cells that are intentionally modified are extreme halophiles. In other embodiments, the host cells that are intentionally modified are thermophiles or hyperthermophiles. In other embodiments, the host cells that are intentionally modified are non-autotrophic methanogens. In some aspects, the host cells that are intentionally modified are methanogens that are not autotrophic. In some aspects, the host cells that are intentionally modified are cells which are neither methanogenic nor autotrophic. In other embodiments, the host cells that are intentionally modified are host cells comprising synthetic genomes. In some aspects, the host cells that are intentionally modified are host cells which comprise a genome which is not native to the host cell.
In some embodiments, the culture comprises microorganisms that have been purposefully or intentionally genetically modified to express pili or altered pili, e.g., altered pili that promote cell adhesion to the cathode or other components of the electrobiological methanogenesis reactor or pili altered to become electrically conductive. Pili are thin filamentous protein complexes that form flexible filaments that are made of proteins called pilins. Pili traverse the outer membrane of microbial cells and can extend from the cell surface to attach to a variety of other surfaces. Pili formation facilitates such disparate and important functions as surface adhesion, cell-cell interactions that mediate processes such as aggregation, conjugation, and twitching motility. Recent in silico analyses of more than twenty archaeal genomes have identified a large number of archaeal genes that encode putative proteins resembling type IV pilins (Szabo et al. 2007, which is incorporated by reference herein in its entirety). The expression of several archaeal pilin-like proteins has since been confirmed in vivo (Wang et al. 2008; Zolghadr et al. 2007; Frols et al. 2007, 2008, which are incorporated by reference herein in their entirety). The sequence divergence of these proteins as well as the differential expression of the operons encoding these proteins suggests they play a variety of roles in distinct biological processes.
Certain microorganisms such as Geobacter and Rhodoferax species, have highly conductive pili that can function as biologically produced nanowires as described in US 20060257985, which is incorporated by reference herein in its entirety. Many methanogenic organisms, including most of the Methanocaldococcus species and the Methanotorris species, have native pili and in some cases these pili are used for attachment. None of these organisms are known to have natively electrically conductive pili.
In certain embodiments of the present invention the pili of a methanogenic organism and/or surfaces in contact with pili of a methanogenic organism or other biological components can be altered in order to promote cell adhesion to the cathode or other components of the electrobiological methanogenesis reactor. Pili of a methanogenic organism can be further engineered to optimize their electrical conductivity. Pilin proteins can be engineered to bind to various complexes. For example, pilin proteins can be engineered to bind iron, mimicking the pili of Geobacter species or alternatively, they can be engineered to bind a low potential ferredoxin-like iron-sulfur cluster that occurs naturally in many hyperthermophilic methanogens. The desired complex for a particular application will be governed by the midpoint potential of the redox reaction.
The cells may be genetically modified, e.g., using recombinant DNA technology. For example, cell or strain variants or mutants may be prepared by introducing appropriate nucleotide changes into the organism's DNA. The changes may include, for example, deletions, insertions, or substitutions of, nucleotides within a nucleic acid sequence of interest. The changes may also include introduction of a DNA sequence that is not naturally found in the strain or cell type. One of ordinary skill in the art will readily be able to select an appropriate method depending upon the particular cell type being modified. Methods for introducing such changes are well known in the art and include, for example, oligonucleotide-mediated mutagenesis, transposon mutagenesis, phage transduction, transformation, random mutagenesis (which may be induced by exposure to mutagenic compounds, radiation such as X-rays, UV light, etc.), PCR-mediated mutagenesis, DNA transfection, electroporation, etc.
The ability of the pili of the methanogenic organisms to adhere to the cathode coupled with an increased ability to conduct electrons, will enable the organisms to receive directly electrons passing through the cathode from the negative electrode of the power source. The use of methanogenic organisms with genetically engineered pili attached to the cathode will greatly increase the efficiency of conversion of electric power to methane.
The culture comprising the methanogenic microorganisms, e.g., the methanogenic archaea, may be maintained in or on a culture medium. In some embodiments, the culture medium is a solution or suspension (e.g., an aqueous solution). In other embodiments, the culture medium is a solid or semisolid. In yet other embodiments, the culture medium comprises or is a gel, a gelatin, or a paste.
In some embodiments, the culture medium is one that encourages the active growth phase of the methanogenic microorganisms. In exemplary aspects, the culture medium comprises materials, e.g., nutrients, in non-limiting amounts that support relatively rapid growth of the microorganisms. The materials and amounts of each material of the culture medium that supports the active phase of the methanogenic microorganisms will vary depending on the species or strain of the microorganisms of the culture. However, it is within the skill of the ordinary artisan to determine the contents of culture medium suitable for supporting the active phase of the microorganisms of the culture. In some embodiments, the culture medium encourages or permits a stationary phase of the methanogenic microorganisms. Exemplary culture medium components and concentrations are described in further detail below. Using this guidance, alternative variations can be selected for particular species for electrobiological methanogenesis in the operating state of the biological reactor using well known techniques in the field.
In some embodiments, the medium for culturing archaea comprises one or more nutrients that are inorganic elements, or salts thereof. Common inorganic elements include but are not limited to sodium, potassium, magnesium, calcium, iron, chloride, sulfur sources such as hydrogen sulfide or elemental sulfur, phosphorus sources such as phosphate and nitrogen sources such as ammonium, nitrogen gas or nitrate. Exemplary sources include NaCl, NaHCO3, KCl, MgCl2, MgSO4, CaCl2, ferrous sulfate, Na2HPO4, NaH2PO4 H2O, H2S, Na2S, NH4OH, N2, and NaO3. In some embodiments, the culture medium further comprises one or more trace elements selected from the group consisting of ions of barium, bromium, boron, cobalt, iodine, manganese, chromium, copper, nickel, selenium, vanadium, titanium, germanium, molybdenum, silicon, iron, fluorine, silver, rubidium, tin, zirconium, cadmium, zinc, tungsten and aluminum. These ions may be provided, for example, in trace element salts, such as H3BO3, Ba(C2H3O2)2, KBr, CoCl2-6H2O, KI, MnCl2-2H2O, Cr(SO4)3-15H2O, CuSO4-5H2O, NiSO4-6H2O, H2SeO3, NaVO3, TiCL, GeO2, (NH4)6Mo7O24-4H2O, Na2SiO3-9H2O, FeSO4-7H2O, NaF, AgNO3, RbCl, SnCl2, ZrOCl2-8H2O, CdSO4-8H2O, ZnSO4-7H2O, Fe(NO3)3-9H2ONa2WO4, AlCl3-6H2O.
In some embodiments, the medium comprises one or more minerals selected from the group consisting of nickel, cobalt, sodium, magnesium, iron, copper, manganese, zinc, boron, phosphorus, sulfur, nitrogen, selenium, tungsten, aluminum and potassium including any suitable non-toxic salts thereof. Thus, in some embodiments, the minerals in the medium are provided as mineral salts. Any suitable salts or hydrates may be used to make the medium. For example, and in some embodiments, the media comprises one or more of the following mineral salts: Na3nitrilotriacetate, nitrilotriacetic acid, NiCl2-6H2O, CoCl2-6H2O, Na2MoO4—H2O, MgCl2-6H2O, FeSO4—H2O, Na2SeO3, Na2WO4, KH2PO4, and NaCl. In some embodiments, L-cysteine may be added as a redox buffer to support early phases of growth of a low-density culture. In some embodiments, the medium comprises nickel, optionally NiCl2-6H2O in an amount of about 0.001 mM to about 0.01 mM, e.g. 0.002 mM, 0.003 mM, 0.004 mM, 0.005 mM, 0.006 mM, 0.007 mM, 0.008 mM, 0.009 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises a nitrogen source, e.g., ammonium hydroxide or ammonium chloride in an amount of about 1 mM to about 10 mM, e.g. 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises cobalt, e.g. CoCl2-6H2O, in an amount of about 0.001 mM to about 0.01 mM, e.g., 0.002 mM, 0.003 mM, 0.004 mM, 0.005 mM, 0.006 mM, 0.007 mM, 0.008 mM, 0.009 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises molybdenum, a molybdenum source or molybdate, e.g. Na2MoO4—H2O, in an amount of about 0.005 mM to about 0.05 mM, e.g., 0.006 mM, 0.007 mM, 0.008 mM, 0.009 mM, 0.01 mM, 0.02 mM, 0.03 mM, 0.04 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises magnesium, e.g. MgCl2-6H2O, in an amount of about 0.5 mM to about 1.5 mM, e.g., 0.6 mM, 0.7 mM, 0.8 mM, 0.9 mM, 1.0 mM, 1.1 mM, 1.2 mM, 1.3 mM, 1.4 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises iron, e.g. FeSO4—H2O, in an amount of about 0.05 mM to about 0.5 mM, e.g., 0.06 mM, 0.07 mM, 0.08 mM, 0.09 mM, 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises a sulfur source or sulfate in an amount of about 0.05 mM to about 0.5 mM, e.g., 0.06 mM, 0.07 mM, 0.08 mM, 0.09 mM, 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises selenium, a selenium source or selenate, e.g. Na2SeO3, in an amount of about 0.005 mM to about 0.05 mM, e.g., 0.006 mM, 0.007 mM, 0.008 mM, 0.009 mM, 0.01 mM, 0.02 mM, 0.03 mM, 0.04 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises tungsten, a tungsten source or tungstate, e.g. Na2WO4, in an amount of about 0.005 mM to about 0.05 mM, e.g., 0.006 mM, 0.007 mM, 0.008 mM, 0.009 mM, 0.01 mM, 0.02 mM, 0.03 mM, 0.04 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises potassium, e.g. KH2PO4, in an amount of about 5 mM to about 15 mM, e.g., 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 mM, 12 mM, 13 mM, 14 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises phosphorus, a phosphorus source, or phosphate, e.g. KH2PO4, in an amount of about 5 mM to about 15 mM, e.g., 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 mM, 12 mM, 13 mM, 14 mM, or any combination of the foregoing range endpoints. In some embodiments, the media comprises NaCl in an amount of about 5 mM to about 15 mM, e.g., 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 mM, 12 mM, 13 mM, 14 mM, or any combination of the foregoing range endpoints.
In some embodiments, the microorganism is adapted to prefer high salt conditions, e.g. about 1.5M to about 5.5 M NaCl, or about 3 M to about 4 M NaCl. In some embodiments, the microorganism is adapted to growth in higher salt conditions than their normal environment.
In some embodiments, the culture medium serves more than one purpose. Accordingly, in some aspects, the culture medium supports the growth and/or survival of the microorganisms of the culture and serves as the cathode electrolytic medium within the reactor. An electrolyte is a substance that, when dissolved in water, permits current to flow through the solution. The conductivity (or specific conductance) of an electrolytic medium is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m), and unless otherwise qualified, it is measured at a standard temperature of 25° C. Deionized water may have a conductivity of about 5.5 μS/m, while sea water has a conductivity of about 5 S/m (i.e., sea water's conductivity is one million times higher than that of deionized water).
Conductivity is traditionally determined by measuring the AC resistance of the solution between two electrodes or by torroidal inductance meters.
Limiting ion conductivity in water at 298 K for exemplary ions:
In some embodiments, the culture medium comprises a high salt concentration for purposes of increasing the conductivity of the culture medium/reactor cathode electrolyte. Conductivity is readily adjusted, for example, by adding NaCl until the desired conductivity is achieved. In exemplary embodiments, the conductivity of the medium/electrolyte is in the range of about 5 mS/cm to about 100 mS/cm. This conductivity is readily achieved within the range of salt concentrations that are compatible with living methanogenic Archaea. In some embodiments, the conductivity of the medium/electrolyte is in the range of about 100 mS/cm to about 250 mS/cm, which is exemplary of a high conductivity medium.
In some embodiments, vitamins are substantially absent from the culture medium, to reduce contamination by non-methanogens and/or to decrease the cost of the culture medium, and thus, the overall cost of the biological reactor. However, it is possible to operate the biological reactor using media supplemented with one or more vitamins selected from the group consisting of ascorbic acid, biotin, choline chloride; D-Ca++ pantothenate, folic acid, i-inositol, menadione, niacinamide, nicotinic acid, paraminobenzoic acid (PABA), pyridoxal, pyridoxine, riboflavin, thiamine-HCl, vitamin A acetate, vitamin B12 and vitamin D2. In some embodiments, the medium is supplemented with a vitamin that is essential to survival of the methanogenic microorganism, but other vitamins are substantially absent.
The culture medium in some embodiments comprises materials other than inorganic compounds and salts. For example, the culture medium in some embodiments, comprises a chelating agent. Suitable chelating agents are known in the art and include but not limited to nitrilotriacetic acid and/or salts thereof. Also, in some aspects, the culture medium comprises a redox buffer, e.g., cystine, to support an early active growth phase in a low-density culture.
In some aspects, the culture medium comprises a carbon source, e.g., carbon dioxide, formic acid, or carbon monoxide. In some embodiments, the culture medium comprises a plurality of these carbon sources in combination. Preferably, organic carbon sources are substantially absent, to reduce contamination by non-methanogens.
In some embodiments, the culture medium comprises a nitrogen source, e.g., ammonium, anhydrous ammonia, ammonium salts and the like. In some embodiments, the culture medium may comprise nitrate or nitrite salts as a nitrogen source, although chemically reduced nitrogen compounds are preferable. In some aspects, the culture medium substantially lacks an organic nitrogen source, e.g., urea, corn steep liquor, casein, peptone yeast extract, and meat extract. In some embodiments diatomic nitrogen (N2) may serve as a nitrogen source, either alone or in combination with other nitrogen sources.
Methanogens that are primarily anaerobic may still be capable of surviving prolonged periods of oxygen stress, e.g. exposure to ambient air for at least 6, 12, 18, or 24 hours, or 2 days, 3 days, 4 days, 5 days, 6 days, 1 week or more. Ideally, exposure to air is for 4 days or less, or 3 days or less, or 2 days or less, or 24 hours or less. Methane production may continue in the presence of oxygen concentrations as high as 2-3% of the gas phase for extended periods (at least days). However, anaerobic organisms will grow optimally in conditions of low oxygen. In some embodiments, the biological reactor substantially excludes oxygen to promote high levels of methane production.
In some embodiments, the system comprises various methods and/or features that reduce the presence of oxygen in the CO2 stream that is fed into the biological reactor. When obligate anaerobic methanogenic microorganisms are used to catalyze methane formation, the presence of oxygen may be detrimental to the performance of the process and contaminates the product gas. Therefore, reduction of the presence of oxygen in the CO2 stream is helpful for improving the process. In one embodiment, the oxygen is removed by pre-treatment of the gas stream in a biological reactor. In this embodiment, the reductant may be provided either by provision of a source of organic material (e.g. glucose, starch, cellulose, fermentation residue from an ethanol plant, whey residue, etc.) that can serve as substrate for an oxidative fermentation. The microbial biological catalyst is chosen to oxidatively ferment the chosen organic source, yielding CO2 from the contaminant oxygen. In another embodiment, oxygen removal is accomplished in the main fermentation vessel via a mixed culture of microbes that includes one capable of oxidative fermentation of an added organic source in addition to the autotrophic methanogen necessary for methane production. An example of a suitable mixed culture was originally isolated as “Methanobacillus omelianskii” and is readily obtained from environmental sources (Bryant et al. Archiv Microbiol 59:20-31 (1967) “Methanobacillus omelianskii, a symbiotic association of two species of bacteria.”, which is incorporated by reference herein in its entirety). In another embodiment, carbon dioxide in the input gas stream is purified away from contaminating gases, including oxygen, buy selective absorption or by membrane separation. Methods for preparing carbon dioxide sufficiently free of oxygen are well known in the art.
In some embodiments, the culture medium comprises the following components: Na3nitrilotriacetate, nitrilotriacetic acid, NiCl2-6H2O, CoCl2-6H2O, Na2MoO4—H2O, MgCl2-6H2O, FeSO4—H2O, Na2SeO3, Na2WO4, KH2PO4, and NaCl. In some embodiments, L-cysteine may be added as a redox buffer to support early phases of growth of a low-density culture. In some embodiments, the media comprises Na3nitrilotriacetate (0.81 mM), nitrilotriacetic acid (0.4 mM), NiCl2-6H2O (0.005 mM), CoCl2-6H2O (0.0025 mM), Na2MoO4—H2O (0.0025 mM), MgCl2-6H2O (1.0 mM), FeSO4—H2O (0.2 mM), Na2SeO3 (0.001 mM), Na2WO4 (0.01 mM), KH2PO4 (10 mM), and NaCl (10 mM). L-cysteine (0.2 mM) may be included.
In some embodiments, the culture medium comprises the following components: KH2PO4, NH4Cl, NaCl, Na3nitrilotriacetate, NiCl2-6H2O, CoCl2—H2O, Na2MoO4-2H2O, FeSO4-7H2O, MgCl2-6H2O, Na2SeO3, Na2WO4, Na2S-9H2O. A culture medium comprising these components may be referred to herein as Medium 1, which is capable of supporting survival and/or growth of methanogenic microorganisms originally derived from a terrestrial environment, e.g., a Methanothermobacter species. Thus, in some embodiments, the biological reactor comprises a culture of Methanothermobacter and a culture medium of Medium 1. In some aspects, the culture medium is adjusted with NH4OH to a pH between about 6.8 and about 7.3. In some embodiments, the culture medium not only supports growth of and/or survival of and/or methane production by the methanogenic microorganisms but also serves as the cathode electrolytic medium suitable for conducting electricity within the reactor. Accordingly, in some aspects, the conductivity of the culture medium is in the range of about 5 mS/cm to about 100 mS/cm or about 100 mS/cm to about 250 mS/cm.
In some embodiments, the KH2PO4 is present in the medium at a concentration within the range of about 1 mM to about 100 mM, e.g., about 2 mM, about 50 mM, about 5 mM to about 20 mM.
In some embodiments, the NH4Cl is present in the culture medium at a concentration within the range of about 10 mM to about 1500 mM, e.g., about 20 mM to about 600 mM, about 60 mM to about 250 mM.
In some embodiments, the NaCl is present in the culture medium within the range of about 1 mM to about 100 mM, e.g., about 2 mM, about 50 mM, about 5 mM to about 20 mM.
In some embodiments, the Na3nitrilotriacetate is present in the culture medium within the range of about 0.1 mM to about 10 mM, e.g., 0.20 mM to about 6 mM, about 0.5 to about 2.5 mM.
In some embodiments, the NiCl2-6H2O is present in the culture medium within the range of about 0.00025 to about 0.025 mM, e.g., about 0.005 mM to about 0.0125 mM, about 0.0005 mM to about 0.005 mM.
In some embodiments, the CoCl2—H2O is present in the culture medium within the range of about 0.0005 mM to about 0.05 mM, e.g., about 0.001 mM to about 0.025 mM, about 0.0025 mM to about 0.01 mM.
In some embodiments, the Na2MoO4-2H2O is present in the culture medium within the range of about 0.00025 mM to about 0.025 mM, e.g., about 0.0005 mM to about 0.0125 mM, about 0.00125 mM to about 0.005 mM.
In some embodiments, the FeSO4-7H2O is present in the culture medium within the range of about 0.02 mM to about 2 mM, e.g., about 0.04 mM to about 1 mM, about 0.1 mM to about 0.4 mM.
In some embodiments, the MgCl2-6H2O is present in the culture medium within the range of about 0.1 mM to about 10 mM, e.g., about 0.2 mM to about 5 mM, about 0.5 mM to about 2 mM.
In some embodiments, the Na2SeO3 is present in the culture medium within the range of about 0.0001 mM to about 0.01 mM, e.g., about 0.0002 mM to about 0.005 mM, about 0.0005 mM to about 0.002 mM.
In some embodiments, the Na2WO4 is present in the culture medium within the range of about 0.001 mM to about 0.1 mM, e.g., about 0.05 mM to about 0.05 mM, about 0.005 mM to about 0.02 mM.
In some embodiments, Medium 1 is supplemented with components, such as sulfide, that support the active growth phase or relatively rapid multiplication of the microorganism. Accordingly, in some aspects, the culture medium comprises a higher sulfide concentration, e.g. 0.1 mM to about 10 mM (e.g., about 0.2 mM to about 5 mM, about 0.5 mM to about 2 mM), about 0.5 to 5 mM, or about 1 mM Na2S-9H2O, and preferably greater than 0.01 mM Na2S-9H2O, optionally with a pH between about 6.8 and about 7.0. In other embodiments, Medium 1 supports the inactive or stationary or nearly-stationary growth phase of the microorganism and the medium comprises a lower sulfide concentration. Accordingly, in some aspects, the culture comprises about 0.01 mM or less Na2S-9H2O, and not 1 mM Na2S-9H2O. optionally with a pH between about 7.2 and about 7.4.
In some embodiments, the culture medium comprises the following components: KH2PO4, NaCl, NH4Cl, Na2CO3, CaCl2×2H2O, MgCl2×6H2O, FeCl2×4H2O, NiCl2×6H2O, Na2SeO3×5H2O, Na2WO4×H2O, MnCl2×4H2O, ZnCl2, H3BO3, CoCl2×6H2O, CuCl2×2H2O, Na2MoO4×2H2O, Nitrilotriacetic acid, Na3nitrilotriacetic acid, KAl(SO4)2×12 H2O, Na2S×9H2O. A culture medium comprising these components may be referred to herein as Medium 2, which is capable of supporting survival and/or growth of methanogenic microorganisms originally derived from a marine environment, e.g., a Methanocaldooccus species, Methanotorris species, Methanopyrus species, or Methanothermococcus species. In some aspects, the culture medium is adjusted with NH4OH to a pH between about 6.3 and about 6.8 (e.g., about 6.4 to about 6.6). In some embodiments, the culture medium not only supports growth of and/or survival of and/or methane production by the methanogenic microorganisms but also serves as the cathode electrolytic medium suitable for conducting electricity within the reactor. Accordingly, in some aspects, the conductivity of the culture medium is in the range of about 5 mS/cm to about 100 mS/cm or about 100 mS/cm to about 250 mS/cm.
In some embodiments, the KH2PO4 is present in the culture medium at a concentration within the range of about 0.35 mM to about 37 mM, e.g., about 0.7 mM to about 0.75 mM, about 1.75 mM to about 7.5 mM.
In some embodiments, the NaCl is present in the culture medium at a concentration within the range of about 17 mM to about 1750 mM, e.g., about 30 mM to about 860 mM, about 80 mM to about 350 mM.
In some embodiments, the NH4Cl is present in the culture medium at a concentration within the range of about 0.7 mM to about 750 mM, e.g., about 1.5 mM to about 40 mM, about 3.75 mM to about 15 mM.
In some embodiments, the Na2CO3 is present in the culture medium at a concentration within the range of about 5 mM to about 600 mM, e.g., 10 mM to about 300 mM, about 30 mM to about 150 mM.
In some embodiments, the CaCl2×2H2O is present in the culture medium at a concentration within the range of about 0.05 to about 50 mM, e.g., 0.2 mM to about 5 mM, about 0.5 mM to about 2 mM.
In some embodiments, the MgCl2×6H2O is present in the culture medium at a concentration within the range of about 3 mM to about 350 mM, e.g., about 6.5 mM to about 175 mM, about 15 mM to about 70 mM.
In some embodiments, the FeCl2×4H2O is present in the culture medium at a concentration within the range of about 0.003 mM to about 0.3 mM, e.g., about 0.006 mM to about 0.15 mM, about 0.015 mM to about 0.06 mM.
In some embodiments, the NiCl2×6H2O is present in the culture medium at a concentration within the range of about 0.0005 mM to about 0.007 mM, e.g., 0.0012 mM to about 0.03 mM, about 0.003 mM to about 0.012 mM.
In some embodiments, the Na2SeO3×5H2O is present in the culture medium at a concentration within the range of about 0.0001 mM to about 0.01 mM, e.g., about 0.00025 mM to about 0.01 mM, about 0.001 mM to about 0.005 mM.
In some embodiments, the Na2WO4×H2O is present in the culture medium at a concentration within the range of about 0.0005 mM to about 0.007 mM, e.g., 0.0012 mM to about 0.03 mM, about 0.003 mM to about 0.012 mM.
In some embodiments, the MnCl2×4H2O is present in the culture medium at a concentration within the range of about 0.003 mM to about 0.4 mM, e.g., about 0.08 mM to about 2 mM, about 0.02 mM to about 0.08 mM.
In some embodiments, the ZnCl2 is present in the culture medium at a concentration within the range of about 0.0005 mM to about 0.007 mM, e.g., 0.0012 mM to about 0.03 mM, about 0.003 mM to about 0.012 mM.
In some embodiments, the H3BO3 is present in the culture medium at a concentration within the range of about 0.0001 mM to about 0.01 mM, e.g., about 0.00025 mM to about 0.01 mM, about 0.001 mM to about 0.005 mM.
In some embodiments, the CoC12×6H2O is present in the culture medium at a concentration within the range of about 0.0005 mM to about 0.007 mM, e.g., 0.0012 mM to about 0.03 mM, about 0.003 mM to about 0.012 mM.
In some embodiments, the CuCl2×2H2O is present in the culture medium at a concentration within the range of about 0.00004 mM to about 0.004 mM, e.g., 0.00008 mM to about 0.002 mM, about 0.0002 mM to about 0.0008 mM.
In some embodiments, the Na2MoO4×2H2O is present in the culture medium at a concentration within the range of about 0.00004 mM to about 0.004 mM, e.g., 0.00008 mM to about 0.002 mM, about 0.0002 mM to about 0.0008 mM.
In some embodiments, the Nitrilotriacetic acid is present in the culture medium at a concentration within the range of about 0.003 mM to about 0.7 mM, e.g., about 0.12 mM to about 0.3 mM, about 0.03 mM to about 0.12 mM.
In some embodiments, the Na3nitrilotriacetic acid is present in the culture medium at a concentration within the range of about 0.002 mM to about 0.2 mM, e.g., about 0.004 mM to about 0.1 mM, about 0.01 mM to about 0.04 mM.
In some embodiments, the KAl(SO4)2×12 H2O is present in the culture medium at a concentration within the range of about 0.00004 mM to about 0.004 mM, e.g., 0.00008 mM to about 0.002 mM, about 0.0002 mM to about 0.0008 mM.
In some embodiments, the salt concentration in Medium 2 is adjusted upward to the range of 400 to 800 mM for formulation of the electrolyte in the reactor. Additionally, the sulfide concentration of relatively stationary cultures is adjusted downward to the range of <0.01 mM (<1 ppm sulfide in the exit gas stream).
In some examples, the media is sparged with a H2:CO2 gas mixture in a 4:1 ratio. The gas mixture can, in some embodiments, be generated with mass flow controllers at a total flow of 250 ml/minute. In some embodiments, the medium should be replenished at a rate suitable to maintain a useful concentration of essential minerals and to eliminate any metabolic products that may inhibit methanogenesis. Dilution rates below 0.1 culture volume per hour are suitable, since they yield high volumetric concentrations of active methane generation capacity.
The microorganisms may be cultured under any set of conditions suitable for the survival and/or methane production. Suitable conditions include those described below.
In some embodiments, the temperature of the culture is maintained near the optimum temperature for growth of the organism used in the culture (e.g. about 35° C. to about 37° C. for mesophilic organisms such as Methanosarcinia barkeri and Methanococcus maripaludis or about 60° C. to about 65° C. for thermophiles such as Methanothermobacter thermoautotrophicus and Methanothermobacter marburgensis, and about 85° C. to about 90° C. for organisms such as Methanocaldococcus jannaschii, Methanocaldococcus fervens, Methanocaldococcus indicus, Methanocaldococcus infernus, and Methanocaldococcus vulcanius). However, it is envisioned that temperatures above or below the temperatures for optimal growth may be used. In fact, higher conversion rates of methane may be obtained at temperatures above the optimal growth rate temperature. Temperatures of about 50° C. or higher are contemplated, e.g., about 51° C. or higher, about 52° C. or higher, about 53° C. or higher, about 54° C. or higher, about 55° C. or higher, about 56° C. or higher, about 57° C. or higher, about 58° C. or higher, about 59° C. or higher, about 60° C. to about 150° C., about 60° C. to about 120° C., about 60° C. to about 100° C., about 60° C. to about 80° C. Temperatures of about 40° C. or higher, or about 50° C. or higher are contemplated, e.g. about 40° C. to about 150° C., about 50° C. to about 150° C., about 40° C. to about 120° C., about 50° C. to about 120° C., about 40° C. to about 100° C., or about 50° C. to about 100° C.
In view of the foregoing, the temperature at which the culture is maintained may be considered as a description of the methanogenic microorganisms contemplated herein. For example, when the temperature of the culture is maintained at a temperature between 55° C. and 120° C., the methanogenic microorganism is considered as one that can be cultured at this temperature. Accordingly, the methanogenic microorganism in some embodiments is a thermophile or a hyperthermophile. In some aspects, the culture of the biological reactor comprises an autotrophic thermophilic methanogenic microorganism or an autotrophic hyperthermophilic methanogenic microorganism. In some aspects, the culture of the biological reactor comprises an autotrophic thermophilic methanogenic microorganism or an autotrophic hyperthermophilic methanogenic microorganism, either of which is tolerant to high conductivity culture medium (e.g., about 100 mS/cm to about 250 mS/cm), as described herein, e.g., a halophile.
Archaea may be capable of surviving extended periods at suboptimal temperatures. In some embodiments, a culture of archaea can naturally survive or are adapted to survive at room temperature (e.g. 22-28° C.) for a period of at least 3 weeks to 1, 2, 3, 4, 5 or 6 months.
In some embodiments, the organisms in the culture are not mesophilic. In some embodiments, the culture is not maintained at a temperature below or about 37° C. With respect to thermophilic or hyperthermophilic organisms (including, but not limited to, Methanothermobacter thermoautotrophicus, Methanothermobacter marburgensis, Methanocaldococcus jannaschii, Methanocaldococcus fervens, Methanocaldococcus indicus, Methanocaldococcus infernus, and Methanocaldococcus vulcanius), in some embodiments, the temperature of the culture is e.g. about 60° C. to about 150° C., about 60° C. to about 120° C., about 60° C. to about 100° C., or about 60° C. to about 80° C.
pH
Archaea can also survive under a wide range of pH conditions. In some embodiments, the pH of the culture comprising methanogenic microorganisms is between about 3.5 and about 10.0, although for growth conditions, the pH may be between about 6.5 and about 7.5. For example, the pH of the culture may be about 3.5, about 3.6., about 3.7, about 3.8, about 3.9, about 4.0, about 4.5, about 5.0, about 5.5, about 6.0, about 6.5, about 7.0, about 7.5, about 8.0, about 8.5, about 9.0, about 9.5, about 10.0. In some embodiments, the pH of the media is acidic, e.g. about 0.1 to about 5.5, about 0.1 to about 4, about 0.1 to about 3, about 1 to about 3, or about 2 to about 3. In some embodiments, the pH of the media is close to neutral, e.g. about 6 to about 8. In some embodiments, the pH of the media is alkaline, e.g. about 8.5 to about 11, or about 8 to about 10. The pH of the media can be altered by means known in the art. For example, the pH can be controlled by sparging CO2 and/or by adding acid (e.g., HCL) or base (e.g., NaOH or NH4OH) as needed.
In some embodiments, suitably pressures within the biological reactor range from about 0.5 atmospheres to about 500 atmospheres. The biological reactor can also contain a source of intermittent agitation of the culture. Also in one embodiment, the methane gas removed from the biological reactor suitably comprises less than about 450 ppm hydrogen sulfide, or alternatively less than about 400 ppm, 300 ppm, 200 ppm, 150 ppm, 100 ppm, 50 ppm or 20 ppm of hydrogen sulfide. Total gas delivery rates (CO2) in the range of 0.2 to 4 volume of gas (STP) per volume of culture per minute are suitable, since they both maintain and exploit high volumetric concentrations of active methane generation capacity. Phrased in different terms, the carbon dioxide concentration of the electrolytic medium at the entrance to the passage is maintained at 0.1 mM or higher according to certain embodiments, and at 1.0 nM or higher according to other embodiments; in either case, according to certain embodiments, the carbon dioxide concentration of the electrolytic medium at the entrance to the passage is maintained at not more than 70 mM (although it will be understood that this limit is dependent upon temperature and pressure). In one embodiment, the redox potential is maintained below −100 mV or lower during methanogenesis. The method of the present invention encompasses conditions in which the redox potential is transiently increased to above −100 MV, as for example when air is added to the system.
A biological reactor, also known as a fermentor vessel, bioreactor, or simply reactor, as set forth herein may be any suitable vessel in which methanogenesis can take place. Suitable biological reactors to be used in the present invention should be sized relative to the volume of the CO2 source. Typical streams of 2,200,000 lb CO2/day from a 100,000,000 gal/yr ethanol plant would require a CO2 recovery/methane production fermentor of about 750,000 gal total capacity. Fermentor vessels similar to the 750,000 gal individual fermentor units installed in such an ethanol plant would be suitable.
The concentration of living cells in the culture medium (culture density) is in some embodiments maintained above 1 g dry weight/L. In certain embodiments, the density may be 30 g dry weight/L or higher. The volume of the culture is based upon the pore volume within the porous cathode structure within the reactor, plus any volume needed to fill any ancillary components of the reactor system, such as pumps and liquid/gas separators.
The term “non-methanogen” as used herein refers to any microorganism that is not a methanogen or is not a host cell expressing genes that permit methanogenesis. For example, in some embodiments, the archaea are cultured under conditions wherein the temperature, pH, salinity, sulfide concentration, carbon source, hydrogen concentration or electric source is altered such that growth of non-methanogens is significantly retarded under such conditions. For example, in some embodiments, the methanogens are cultured at a temperature that is higher than 37° C. In some aspects, the methanogenic microorganisms are cultured at a temperature of at least 50° C. or higher, as discussed herein, e.g., 100° C. or more, to avoid contamination by mesophilic non-methanogens. In other embodiments, the methanogens are cultured under conditions of high salinity (e.g., >75%) to avoid contamination by non-methanogens that are not capable of growing under high salt conditions. In still other embodiments, the methanogens are cultured under conditions in which the pH of the culture media is altered to be more acidic or more basic in order to reduce or eliminate contamination by non-methanogens that are not capable of growing under such conditions.
Contamination by non-methanogens can also be accomplished by minimizing amounts of organic carbon nutrients (e.g., sugars, fatty acids, oils, etc.) in the media. For example, in some embodiments, organic nutrients are substantially absent from the medium.
In some embodiments, components required for the growth of non-methanogenic organisms are substantially absent from the media. Such components include, but are not limited to, one or more organic carbon sources, and/or one or more organic nitrogen sources, and/or one or more vitamins. In some embodiments, formate, acetate, ethanol, methanol, methylamine, and any other metabolically available organic materials are substantially absent from the media.
In some embodiments, high salt conditions that permit survival of methanogens can retard growth of contaminating organisms.
In some embodiments, high temperatures that permit survival of methanogens can retard growth of contaminating organisms.
The term “substantially lacks” or “substantially absent” or “substantially excludes” as used herein refers to the qualitative condition of lacking an amount of a particular component significant enough to contribute to the desired function (e.g. growth of microorganisms, production of methane). In some embodiments, the term “substantially lacks” when applied to a given component of the media means that the media contains less than 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1% or less of that component. In some embodiments, the media does not contain detectable amounts of a given component.
The present disclosures provide microorganisms that produce methane from carbon dioxide via a process called methanogenesis. Accordingly, the microorganisms of the present disclosures are methanogenic microorganisms, also known as methanogens. As used herein, the term “methanogenic” refers to microorganisms that produce methane as a metabolic byproduct. In exemplary aspects, the microorganism produces methane from carbon dioxide, electricity, and water, via a process called electrobiological methanogenesis. In exemplary aspects, the microorganism utilizes hydrogen in the production of methane via a process called hydrogenotrophic methanogenesis. Accordingly, in exemplary aspects, the presently disclosed microorganism is a hydrogenotrophic methanogenic microorganism. In exemplary aspects, the microorganism of the present disclosures has the capacity to produce methane via electrobiological methanogenesis or via hydrogenotrophic methanogenesis. In exemplary aspects, the Methanothermobacter microorganism produces methane at a pH within a range of about 6.5 to about 7.5, at a temperature within a range of about 55° C. to about 69° C., and/or in a medium having a conductivity within a range of about 5 mS/cm to about 100 mS/cm.
In exemplary aspects, the presently disclosed microorganism belong to the genus Methanothermobacter. The characteristics of this genus are known in the art. See, e.g., Reeve et al., J Bacteriol 179: 5975-5986 (1997) and Wasserfallen et al., Internatl J Systematic Evol Biol 50: 43-53 (2000). Accordingly, in exemplary aspects, the microorganism expresses a 16S rRNA which has at least 90% (e.g., at least 95%, at least 98%, at least 99%) sequence identity to the full length of the sequence of 16S rRNA of M. thermautotrophicum Delta H, which is publicly available from the under European Molecular Biology Laboratory (EMBL) sequence database as Accession No. X68720, and which is set forth herein as SEQ ID NO: 1. In exemplary aspects, the Methanothermobacter microorganism is a microorganism of the species thermautotrophicus which is also known as thermoautotrophicus. In exemplary aspects, the Methanothermobacter microorganism is a microorganism of the species marburgensis.
In exemplary aspects, the Methanothermobacter microorganism of the present disclosures exhibits the phenotypic characteristics described herein. In exemplary aspects, the Methanothermobacter microorganism is (1) autotrophic and either thermophilic or hyperthermophilic; and (2) capable of returning to at least 80% (e.g., 90%, 95%, 98%) of the methane productivity level in the operating state within 20 minutes, after an exposure of at least 10 minutes to oxygen (e.g. oxygen in ambient air) or carbon monoxide; and any one or more of the following:
In any of the exemplary embodiments described herein, the microorganism may be isolated. As used herein, the term “isolated” means having been removed from its natural environment, not naturally-occurring, and/or substantially purified from contaminants that are naturally associated with the microorganism.
In exemplary embodiments, the Methanothermobacter microorganism of the present disclosures is a microorganism of strain UC120910, deposited on Dec. 22, 2010, with the American Type Culture Collection (ATCC) under Accession No. PTA-11561.
In alternative exemplary embodiments, the isolated Methanothermobacter microorganism of the present disclosures is a progeny of the microorganism of strain UC120910, which progeny retains the phenotypic characteristics of a microorganism of strain UC120910, as further described herein.
Accordingly, the present disclosures also provide an isolated progeny of a Methanothermobacter microorganism of strain UC120910, deposited on Dec. 22, 2010, with the American Type Culture Collection (ATCC) under Accession No. PTA-11561, that retains the phenotypic characteristics of said strain.
As used herein, the term “progeny” refers to any microorganism resulting from the reproduction or multiplication of a microorganism of strain UC120910. In this regard, “progeny” means any descendant of a microorganism of strain UC120910. In exemplary embodiments, the progeny are genetically identical to a microorganism of strain UC120910, and, as such, the progeny may be considered as a “clone” of the microorganism of strain UC120910. In alternative exemplary embodiments, the progeny are substantially genetically identical to a microorganism of strain UC120910, such that the sequences of the genome of the progeny are different from the genome of the microorganism of strain UC120910, but the phenotype of the progeny are substantially the same as the phenotype of a microorganism of strain UC120910. In exemplary embodiments, the progeny are progeny as a result of culturing the microorganisms of strain UC120910 under the conditions set forth herein, e.g., Example 1 or 2.
In exemplary embodiments, the isolated Methanothermobacter microorganism of the present disclosures is a variant of a microorganism of strain UC120910, which variant retains the phenotypic characteristics of the microorganism of strain UC120910, as further described herein.
Accordingly, the present disclosures also provide an isolated variant of a Methanothermobacter microorganism of strain UC120910, deposited on Dec. 22, 2010, with the American Type Culture Collection (ATCC) under Accession No. PTA-11561, that retains the phenotypic characteristics of said strain.
As used herein, the term “variant” refers to any microorganism resulting from modification of a microorganism of strain UC120910. In exemplary aspects, the variant is a microorganism resulting from adapting in culture a microorganism of strain UC120910, as described herein. In alternative aspects, the variant is a microorganism resulting from genetically modifying a microorganism of strain UC120910, as described herein.
In exemplary embodiments, the variant is a microorganism of strain UC120910 modified to exhibit or comprise certain characteristics or features, which, optionally, may be specific to a given growth phase (active growth phase, stationary growth phase, nearly stationary growth phase) or state (e.g., dormant state, operating state). For example, in some embodiments, the microorganism of strain UC120910 has been modified to survive and/or grow in a desired culture condition which is different from a prior culture condition in which the methanogenic microorganism of strain UC120910 survived and/or grew. The desired culture conditions may differ from the prior environment in temperature, pH, pressure, cell density, volume, humidity, salt content, conductivity, carbon content, nitrogen content, vitamin-content, amino acid content, mineral-content, or a combination thereof. In some embodiments, the methanogenic microorganism, before adaptation in culture or genetic modification, is one that is not a halophile but, through adaptation in culture or genetic modification, has become a halophile. As used herein, “halophile” or “halophilic” refers to a microorganism that survives and grows in a medium comprising a salt concentration higher than 100 g/L. Also, for example, in some embodiments, the methanogenic microorganism before genetic modification is one which does not express a protein, but through genetic modification has become a methanogenic microorganism which expresses the protein. Further, for example, in some embodiments, the methanogenic microorganism before adaptation in culture or genetic modification, is one which survives and/or grows in the presence of a particular carbon source, nitrogen source, amino acid, mineral, salt, vitamin, or combination thereof but through adaptation in culture or genetic modification, has become a methanogenic microorganism which survives and/or grows in the substantial absence thereof. Alternatively or additionally, in some embodiments, the methanogenic microorganism before adaptation in culture or genetic modification, is one which survives and/or grows in the presence of a particular amount or concentration of carbon source, nitrogen source, amino acid, mineral, salt, vitamin, but through adaptation in culture or genetic modification, has become a methanogenic microorganism which survives and/or grows in a different amount or concentration thereof.
In some embodiments, the methanogenic microorganisms are adapted to a particular growth phase or state. Furthermore, for example, the methanogenic microorganism in some embodiments is one which, before adaptation in culture or genetic modification, is one which survives and/or grows in a given pH range, but through adaptation in culture becomes a methanogenic microorganism that survives and/or grows in different pH range. In some embodiments, the methanogenic microorganisms are adapted in culture to a nearly stationary growth phase in a pH range of about 3.5 to about 10 (e.g., about 5.0 to about 8.0, about 6.0 to about 7.5). Accordingly, in some aspects, the methanogenic microorganisms are adapted in culture to a nearly stationary growth phase at a pH of about 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, or 10.0. In some embodiments, the methanogenic microorganisms are adapted in culture to an active growth phase in a pH range of about 6.5 to about 7.5 (e.g., about 6.8 to about 7.3). Accordingly, in some aspects, the methanogenic microorganisms are adapted in culture to a nearly stationary growth phase at a pH of about 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, or 7.5.
As used herein, the term “adaptation in culture” refers to a process in which microorganisms are cultured under a set of desired culture conditions (e.g., high salinity, high temperature, substantial absence of any carbon source, low pH, etc.), which differs from prior culture conditions. The culturing under the desired conditions occurs for a period of time which is sufficient to yield modified microorganisms (progeny of the parental line (i.e. the unadapted microorganisms)) which survive and/or grow (and/or produce methane) under the desired condition(s). The period of time of adaptation in some aspects is 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks 4 weeks, 5 weeks, 6 weeks, 1 month, 2 months, 3 months, 4 months, 5 months 6 months, 7 months, 8 months, 9 months, 10 months, 12 months, 1 year, 2 years. The process of adapting in culture selects for microorganisms that can survive and/or grow and/or produce methane in the desired culture conditions; these selected microorganisms remain in the culture, whereas the other microorganisms that cannot survive and/or grow and/or produce methane in the desired culture conditions eventually die in the culture. In some embodiments, as a result of the adaptation in culture, the methanogenic microorganisms produce methane at a higher efficiency, e.g., at a ratio of the number of carbon dioxide molecules converted to methane to the number of carbon dioxide molecules converted to cellular materials which is higher than N:1, wherein N is a number greater than 20, as further described herein.
For purposes of the present invention, in some embodiments, the methanogenic microorganism (e.g., of strain UC120910) has been adapted in culture to survive and/or grow in a high salt and/or high conductivity culture medium. For example, the methanogenic microorganism which has been adapted in culture to survive and/or grow in a culture medium having a conductivity of about 5 mS/cm to about 100 mS/cm.
In alternative or additional embodiments, the methanogenic microorganism (e.g., of strain UC120910) has been adapted in culture to survive and/or grow at higher temperature (e.g., a temperature which is between about 1 and about 15 degrees C. greater than the temperature that the microorganisms survives and/or grows before adaptation). In exemplary embodiments, the methanogenic microorganisms are adapted to survive and/or grow in a temperature which is greater than 50° C., e.g., greater than 55° C., greater than 60° C., greater than 65° C., greater than 70° C., greater than 75° C., greater than 80° C., greater than 85° C., greater than 90° C., greater than 95° C., greater than 100° C., greater than 105° C., greater than 110° C., greater than 115° C., greater than 120° C.
In some embodiments, the presently disclosed methanogenic microorganism (e.g., of strain UC120910) has been adapted in culture to grow and/or survive in conditions which are low in or substantially absent of any vitamins. In some aspects, the methanogenic microorganism (e.g., of strain UC120910) has been adapted in culture to grow and/or survive in conditions which are low in or substantially absent of any organic carbon source. In some embodiments, the methanogenic microorganism has been adapted in culture to grow and/or survive in conditions with substantially reduced amounts of carbon dioxide. In these embodiments, the methanogenic microorganisms may be adapted to exhibit an increased methanogenesis efficiency, producing the same amount of methane (as compared to the unadapted microorganism) with a reduced amount of carbon dioxide. In some embodiments, the methanogenic microorganism has been adapted in culture to survive in conditions which substantially lacks carbon dioxide. In these embodiments, the methanogenic microorganisms may be in a dormant phase in which the microorganisms survive but do not produce detectable levels of methane. In some embodiments, the methanogenic microorganisms have been adapted to grow and/or survive in conditions which are low in or substantially absent of any hydrogen. In some embodiments, the methanogenic microorganisms have been adapted to grow and/or survive in conditions which are low in or substantially absent of any external source of water, e.g., the conditions depend only upon water produced by the metabolism of the organisms and do not comprise a step involving dilution with externally added water.
In exemplary embodiments, the methanogens are adapted in culture to a nearly stationary growth phase. Such methanogens favor methane production over cell growth as measured, e.g., by the ratio of the number of CO2 molecules converted to methane to the number of CO2 molecules converted to cellular materials. This ratio is increased as compared to unadapted methanogens (which may exhibit, e.g., a ratio ranging from about 8:1 to about 20:1). In exemplary embodiments, the methanogens are adapted in culture to a nearly stationary growth phase by being deprived of one or more nutrients otherwise required for optimal growth for a prolonged period of time (e.g., 1 week, 2 week, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 2 years, 3 years, 4 years, 5 years or more). In exemplary embodiments, the methanogens are deprived of inorganic nutrients (e.g., hydrogen or electrons) necessary for optimum growth. In exemplary embodiments, depriving the methanogens of hydrogen or electrons is achieved by sparging the media with an insert gas mixture such as Ar:CO2 at a flow rate of 250 mL/min for several hours until neither hydrogen nor methane appear in the effluent gas stream. In exemplary embodiments, the methanogenic microorganisms have been adapted to a nearly stationary growth phase in conditions which are low in or substantially absent of any external source of water, e.g., the adaptation conditions do not comprise a dilution step.
In exemplary aspects, the methanogenic microorganism has been adapted in culture to grow and/or survive in the culture medium set forth herein as Medium 1 and/or Medium 2 or a medium which is substantially similar to Medium 1 or Medium 2.
In exemplary embodiments, the variant expresses an 16S rRNA which has at least or about 90% (e.g., at least or about 95%, at least or about 98%, at least or about 99%) sequence identity to the 16S rRNA of the parent microorganism (e.g., a microorganism of strain UC120910). In exemplary embodiments, the variant expresses an 16S rRNA which has at least or about 90% (e.g., at least or about 95%, at least or about 98%, at least or about 99%) sequence identity to the 16S rRNA of a Delta H M. thermautotrophicus, which sequence is set forth herein as SEQ ID NO: 1. In exemplary embodiments, the variant expresses an 16S rRNA which has at least or about 90% (e.g., at least or about 95%, at least or about 98%, at least or about 99%) sequence identity to the 16S rRNA of the microorganism of strain UC120910 and which has at least or about 90% (e.g., at least or about 95%, at least or about 98%, at least or about 99%) sequence identity to SEQ ID NO: 1.
In exemplary embodiments, the methanogenic microorganisms have been purposefully or intentionally genetically modified to become suitable, e.g., more suitable, for the purposes of the present disclosures. Suitable microorganisms may also be obtained by genetic modification of non-methanogenic organisms in which genes essential for supporting autotrophic methanogenesis are transferred from a methanogenic microbe or from a combination of microbes that may or may not be methanogenic on their own. Suitable genetic modification may also be obtained by enzymatic or chemical synthesis of the necessary genes.
In exemplary embodiments, a host cell that is not naturally methanogenic is intentionally genetically modified to express one or more genes that are known to be important for methanogenesis. For example, the host cell in some aspects is intentionally genetically modified to express one or more coenzymes or cofactors involved in methanogenesis. In some specific aspects, the coenzymes or cofactors are selected from the group consisting of F420, coenzyme B, coenzyme M, methanofuran, and methanopterin, the structures of which are known in the art. In exemplary aspects, the organisms are modified to express the enzymes, well known in the art, that employ these cofactors in methanogenesis.
In exemplary embodiments, the host cells that are intentionally modified are extreme halophiles. In exemplary embodiments, the host cells that are intentionally modified are thermophiles or hyperthermophiles. In exemplary embodiments, the host cells that are intentionally modified are non-autotrophic methanogens. In some aspects, the host cells that are intentionally modified are methanogens that are not autotrophic. In some aspects, the host cells that are intentionally modified are cells which are neither methanogenic nor autotrophic. In other embodiments, the host cells that are intentionally modified are host cells comprising synthetic genomes. In some aspects, the host cells that are intentionally modified are host cells which comprise a genome which is not native to the host cell.
In some embodiments, the methanogenic microorganisms have been purposefully or intentionally genetically modified to express pili or altered pili, e.g., altered pili that promote cell adhesion to the cathode or other components of the electrobiological methanogenesis reactor or pili altered to become electrically conductive. Pili are thin filamentous protein complexes that form flexible filaments that are made of proteins called pilins. Pili traverse the outer membrane of microbial cells and can extend from the cell surface to attach to a variety of other surfaces. Pili formation facilitates such disparate and important functions as surface adhesion, cell-cell interactions that mediate processes such as aggregation, conjugation, and twitching motility. Recent in silico analyses of more than twenty archaeal genomes have identified a large number of archaeal genes that encode putative proteins resembling type IV pilins (Szabo et al. 2007, which is incorporated by reference herein in its entirety). The expression of several archaeal pilin-like proteins has since been confirmed in vivo (Wang et al. 2008; Zolghadr et al. 2007; Frols et al. 2007, 2008, which are incorporated by reference herein in their entirety). The sequence divergence of these proteins as well as the differential expression of the operons encoding these proteins suggests they play a variety of roles in distinct biological processes.
Certain microorganisms such as Geobacter and Rhodoferax species, have highly conductive pili that can function as biologically produced nanowires as described in U.S. Publication No. 2006/0257985, which is incorporated by reference herein in its entirety. Many methanogenic organisms, including most of the Methanocaldococcus species and the Methanotorris species, have native pili and in some cases these pili are used for attachment. None of these organisms are known to have natively electrically conductive pili.
In exemplary embodiments of the present disclosures, the pili of a methanogenic organism and/or surfaces in contact with pili of a methanogenic organism or other biological components are altered in order to promote cell adhesion to the cathode or other components of the electrobiological methanogenesis reactor. Pili of a methanogenic organism can be further engineered to optimize their electrical conductivity. Pilin proteins can be engineered to bind to various complexes. For example, pilin proteins can be engineered to bind iron, mimicking the pili of Geobacter species or alternatively, they can be engineered to bind a low potential ferredoxin-like iron-sulfur cluster that occurs naturally in many hyperthermophilic methanogens. The desired complex for a particular application will be governed by the midpoint potential of the redox reaction.
The microorganisms may be genetically modified, e.g., using recombinant DNA technology. For example, cell or strain variants or mutants may be prepared by introducing appropriate nucleotide changes into the organism's DNA. The changes may include, for example, deletions, insertions, or substitutions of, nucleotides within a nucleic acid sequence of interest. The changes may also include introduction of a DNA sequence that is not naturally found in the strain or cell type. One of ordinary skill in the art will readily be able to select an appropriate method depending upon the particular cell type being modified. Methods for introducing such changes are well known in the art and include, for example, oligonucleotide-mediated mutagenesis, transposon mutagenesis, phage transduction, transformation, random mutagenesis (which may be induced by exposure to mutagenic compounds, radiation such as X-rays, UV light, etc.), PCR-mediated mutagenesis, DNA transfection, electroporation, etc.
The ability of the pili of the methanogenic organisms to adhere to the cathode coupled with an increased ability to conduct electrons, enable the organisms to receive directly electrons passing through the cathode from the negative electrode of the power source. The use of methanogenic organisms with genetically engineered pili attached to the cathode will greatly increase the efficiency of conversion of electric power to methane.
As used herein, “phenotypic characteristics” of a methanogen or Methanobactermicroorganism refers to:
In exemplary aspects, the Methanothermobacter microorganism is (1) autotrophic and either thermophilic or hyperthermophilic; and (2) capable of returning to at least 80% (e.g., 90%, 95%, 98%) of the methane productivity level in the operating state within 20 minutes, after an exposure of at least 10 minutes to oxygen (e.g. oxygen in ambient air) or carbon monoxide; and any one or more of the following:
Autotrophic. In exemplary aspects, the microorganisms of the present disclosures are autotrophic. As used herein, the term “autotrophic” refers to a microorganism capable of using carbon dioxide, formic acid, and/or carbon monoxide, and a source of reducing power to provide all carbon and energy necessary for growth and maintenance of the cell (e.g., microorganism). Suitable sources of reducing power may include but are not limited to hydrogen, hydrogen sulfide, sulfur, formic acid, carbon monoxide, reduced metals, sugars (e.g., glucose, fructose), acetate, photons, or cathodic electrodes or a combination thereof. In exemplary aspects, the autotrophic microorganisms of the present disclosures obtain reducing power from a cathode or hydrogen.
Thermophilic or Hyperthermophilic. In exemplary aspects, the microorganisms of the present disclosures are thermophilic or hyperthermophilic. As used herein, the term “thermophilic” refers to an organism which has an optimum growth temperature of about 50° C. or more, e.g., within a range of about 50° C. to about 80° C., about 55° C. to about 75° C., or about 60° C. to about 70° C. (e.g., about 60° C. to about 65° C., about 65° C. to about 70° C.). As used herein, the term “hyperthermophilic” refers to organism which has an optimum growth temperature of about 80° C. or more, e.g., within a range of about 80° C. to about 105° C.
Resilience to Oxygen or Carbon Monoxide. Methanogenic organisms are regarded as extremely strict anaerobes. Oxygen is known as an inhibitor of the enzyme catalysts of both hydrogen uptake and methanogenesis. A low oxidation-reduction potential (ORP) in the growth medium is regarded as important to methanogenesis. In exemplary embodiments, the Methanothermobacter microorganism of the present disclosures is substantially resilient to oxygen exposure, inasmuch as the microorganism returns to a methane productivity level which is substantially the same as the methane productivity level exhibited before oxygen exposure within a relatively short period of time. In exemplary embodiments, the microorganism of the present disclosures is capable of returning to a level of methane productivity level which is at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity level in the operating state (e.g., before oxygen exposure) within 20 minutes after an exposure of at least 10 minutes to oxygen (e.g. oxygen in ambient air). In exemplary embodiments, the microorganism of the present disclosures is capable of returning to a level of methane productivity level which is at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity level in the operating state (e.g., before oxygen exposure) within 10 minutes after an exposure of at least 10 minutes to oxygen (e.g. oxygen in ambient air). In exemplary embodiments, the microorganism of the present disclosures capable of returning to a level of methane productivity level which is at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity level in the operating state (e.g., before oxygen exposure) within 5 minutes or within 2 minutes after an exposure of at least 10 minutes to oxygen (e.g. oxygen in ambient air). In exemplary aspects, the exposure to oxygen is at least 30 minutes, at least 60 minutes, at least 90 minutes, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, 15 hours, 24 hours, 48 hours, 72 hours, or more. In exemplary embodiments, the methane productivity level in the operating state is within a range of about 300 VVD to about 500 VVD. Resilience to oxygen exposure may be tested in accordance with methods known in the art or as described in Example 4.
Carbon monoxide (CO) is another known inhibitor of enzymes involved in both hydrogen uptake and methanogenesis. In exemplary embodiments, the Methanothermobacter microorganism of the present disclosures is substantially resilient to CO exposure, inasmuch as the microorganism returns to a methane productivity level which is substantially the same as the methane productivity level exhibited before CO exposure within a relatively short period of time. In exemplary embodiments, the microorganism of the present disclosures is capable of returning to a level of methane productivity level which is at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity level in the operating state (e.g., before CO exposure) within 20 minutes after an exposure of at least 10 minutes to CO. In exemplary embodiments, the microorganism of the present disclosures is capable of returning to a level of methane productivity level which is at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity level in the operating state (e.g., before CO exposure) within 10 minutes after an exposure of at least 10 minutes to CO. In exemplary embodiments, the microorganism of the present disclosures is capable of returning to a level of methane productivity level which is at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity level in the operating state (e.g., before CO exposure) in within 5 minutes or within 2 minutes after an exposure of at least 10 minutes to CO. In exemplary aspects, the exposure to CO is at least 30 minutes, at least 60 minutes, at least 90 minutes, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, 15 hours, 24 hours, 48 hours, 72 hours, or more. In exemplary embodiments, the methane productivity level in the operating state is within a range of about 300 VVD to about 500 VVD. Resilience to CO exposure may be tested in accordance with methods known in the art or as described in Example 4.
Methane Production Efficiency. It has been reported that naturally-occurring methanogenic microorganisms in the active growth phase produce methane at a ratio of about 8 CO2 molecules converted to methane per molecule of CO2 converted to cellular material, ranging up to a ratio of about 20 CO2 molecules converted to methane per molecule of CO2 converted to cellular material. In exemplary embodiments, the presently disclosed microorganisms demonstrate an increased efficiency, particularly when adapted in culture to stationary phase growth conditions. Accordingly, in exemplary aspects, the ratio of the number of CO2 molecules converted to methane to the number of CO2 molecules converted to cellular material of the presently disclosed microorganisms is higher than the ratio of naturally-occurring methanogenic microorganisms in the active growth phase. In exemplary embodiments, the ratio of the number of CO2 molecules converted to methane to the number of CO2 molecules converted to cellular material of the microorganisms of the present disclosures is N:1, wherein N is a number greater than 20, e.g. about 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or higher. In some aspects, N is less than 500, less than 400, less than 300, or less than 200. In some aspects, N ranges from about 40 to about 150. In exemplary embodiments, the microorganism exhibits a methane production efficiency per molecule of carbon dioxide (CO2) that is at least or about 25 CO2 molecules converted to methane per CO2 molecule converted to cellular material (e.g., at least or about 40, 50, 60, or 70 CO2 molecules converted to methane per CO2 molecule converted to cellular material). In exemplary embodiments, the microorganism exhibits a methane production efficiency per molecule of carbon dioxide (CO2) that is at least or about 25 CO2 molecules converted to methane per CO2 molecule converted to cellular material (e.g., at least or about 40, 50, 60, or 70 CO2 molecules converted to methane per CO2 molecule converted to cellular material) while exhibiting a doubling time of at least or about 72 hours (e.g., a doubling time of at least or about 80, 90, or 100 hours). Methods of determining the number of carbon dioxide molecules converted to methane per carbon dioxide molecule converted to cellular material are known in the art and include the method described in Example 3.
In exemplary embodiments, the microorganism of the present disclosures is capable of continuously maintaining for at least 30 days (e.g., for at least or about 6 months, at least or about 12 months) a methane production efficiency per molecule of carbon dioxide (CO2) that is at least or about 25 CO2 molecules converted to methane per CO2 molecule converted to cellular material (e.g., at least or about 40 CO2 molecules converted to methane per CO2 molecule converted to cellular material, at least or about 70 CO2 molecules converted to methane per CO2 molecule converted to cellular material). In exemplary embodiments, the microorganism of the present disclosures is capable of continuously maintaining for at least or about 12 months a methane production efficiency per molecule of carbon dioxide (CO2) that is at least or about 70 CO2 molecules converted to methane per CO2 molecule converted to cellular material. In exemplary embodiments, the microorganisms of the present disclosures are capable of continuously maintaining such a methane production efficiency, while in a stationary phase or a nearly stationary phase having a doubling time of at least or about 36, 72 hours (e.g., a doubling time of at least or about 80, 90, 100, 240 hours).
Operating States. The microorganisms of the present disclosures may exist at any point in time in a dormant state or an operating state. As used herein, the term “dormant state” refers to a state in which the presently disclosed microorganisms are not producing methane (e.g., not producing methane at a detectable level). In exemplary aspects, the dormant state is induced by interrupting or ceasing hydrogen supply or electricity to the microorganism. As used herein, the term “operating state” refers to a state in which the presently disclosed microorganisms are producing methane (e.g., producing methane at a detectable level). In exemplary aspects, the operating state is induced by supplying (e.g., re-supplying) a hydrogen supply or electricity to the microorganism.
In exemplary aspects, the microorganisms of the present disclosures transition or cycle between an operating state and a dormant state. In exemplary aspects, the microorganisms of the present disclosures transition or cycle between an operating state and a dormant state without decreasing its methane productivity level. In exemplary aspects, the microorganisms of the present disclosures substantially maintain the methane productivity level of the operating state after transitioning out of a dormant state. As used herein, the term “substantially maintains the methane productivity level” refers to a methane productivity level which does not differ by more than 20% (e.g., within about 10% higher or lower) than a first methane productivity level. Accordingly, in exemplary aspects, the microorganisms of the present disclosures are substantially resilient to being placed in a dormant state for a relatively long period of time, inasmuch as the microorganisms return to the methane productivity level exhibited before being placed in the dormant state within a relatively short period of time.
In exemplary aspects, after being in a dormant state for at least 2 hours as induced by interrupting or ceasing hydrogen supply or electricity, the microorganism of the present disclosures is capable of returning to at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity in the operating state within 20 minutes of re-supplying hydrogen or electricity. In exemplary aspects, after being in a dormant state for at least 2 hours as induced by interrupting or ceasing hydrogen supply or electricity, the microorganism of the present disclosures is capable of returning to at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity in the operating state within 10 minutes of re-supplying hydrogen or electricity. In exemplary aspects, after being in a dormant state for at least 2 hours as induced by interrupting or ceasing hydrogen supply or electricity, the microorganism of the present disclosures is capable of returning to at least 80% (e.g., at least 85%, at least 90%, at least 95%, at least 98%, 100%) of the methane productivity in the operating state within 5 minutes or within 2 minutes of re-supplying hydrogen or electricity. In exemplary aspects, the microorganism is in a dormant state for at least 2 hours (e.g., at least 4 hours, 6 hours, 8 hours, 10 hours, 15 hours, 24 hours, 48 hours, 72 hours, or more) as induced by interrupting or ceasing hydrogen supply or electricity. In exemplary aspects, the microorganism is exposed to a condition in which the hydrogen supply or electricity is interrupted or ceased for a period of at least 2 hours (e.g., at least 4 hours, 6 hours, 8 hours, 10 hours, 15 hours, 24 hours, 48 hours, 72 hours, or more). In exemplary embodiments, the methane productivity level in the operating state is within a range of about 300 VVD to about 500 VVD.
Growth phases. When the microorganisms are in an operating state, the methanogenic microorganisms may be in one of a variety of growth phases, which differ with regard to the growth rate of the microorganisms (which can be expressed, e.g., as doubling time of microorganism number or cell mass). The phases of growth typically observed include a lag phase, an active growth phase (also known as exponential or logarithmic phase when microorganisms multiply rapidly), a stationary phase, and a death phase (exponential or logarithmic decline in cell numbers). In some aspects, the microorganisms of the present disclosures are in a lag phase, an active growth phase, a stationary phase, or a nearly stationary phase.
In some embodiments, the methanogenic microorganisms are in an active growth phase in which the methanogenic microorganisms are actively multiplying at a rapid rate. In some aspects, the doubling time of the microorganisms may be rapid or similar to that observed during the growth phase in its natural environment or in a nutrient-rich environment. For example, the doubling time of the methanogenic microorganisms in the active growth phase is about 15 minutes, about 20 minutes, about 30 minutes, about 45 minutes, about 60 minutes, about 75 minutes, about 80 minutes, about 90 minutes, or about 2 hours.
Stationary phase represents a growth phase in which, after the logarithmic or active growth phase, the rate of cell division and the rate of cell death are in equilibrium or near equilibrium, and thus a relatively constant concentration of microorganisms is maintained in the reactor. (See, Eugene W. Nester, Denise G. Anderson, C. Evans Roberts Jr., Nancy N. Pearsall, Martha T. Nester; Microbiology: A Human Perspective, 2004, Fourth Edition, Chapter 4, which is incorporated by reference herein in its entirety).
In exemplary embodiments, the methanogenic microorganisms are in an stationary growth phase or nearly stationary growth phase in which the methanogenic microorganisms are not rapidly growing or have a substantially reduced growth rate. In some aspects, the doubling time of the methanogenic microorganisms is about 1 day or greater, including about 30 hours, 36 hours, 48 hours, 72 hours, 80 hours, 90 hours, 100 hours, 110 hours, 120 hours, 200 hours, 240 hours, 2, 3, 4, 5, 6, days or greater or about 1, 2, 3, 4 weeks or greater, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months or greater.
In exemplary embodiments, the methanogenic microorganisms are capable of surviving in a stationary phase or a nearly stationary phase having a doubling time of at least or about 72 hours (e.g., a doubling time of at least or about 80, 90, or 100 hours) for a period of time which is at least 30 days (e.g., for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 months).
In exemplary embodiments, the microorganism of the present disclosures, while in a stationary phase or a nearly stationary phase having a doubling time of at least or about 36, 72 hours (e.g., a doubling time of at least or about 80, 90, 100, 240 hours), is capable of continuously maintaining for at least 30 days (e.g., for at least or about 6 months, at least or about 12 months) a methane production efficiency per molecule of carbon dioxide (CO2) that is at least or about 25 CO2 molecules converted to methane per CO2 molecule converted to cellular material (e.g., at least or about 40 CO2 molecules converted to methane per CO2 molecule converted to cellular material, at least or about 70 CO2 molecules converted to methane per CO2 molecule converted to cellular material). In exemplary embodiments, the microorganism of the present disclosures, while in a stationary phase or a nearly stationary phase having a doubling time of at least or about 100 hours, is capable of continuously maintaining for at least 12 months a methane production efficiency per molecule of carbon dioxide (CO2) that is at least or about 70 CO2 molecules converted to methane per CO2 molecule converted to cellular material.
In exemplary embodiments, the methanogenic microorganisms are initially in an active growth phase and subsequently in a stationary or nearly stationary phase. In exemplary embodiments, when in an operating state, the methanogenic microorganisms cycle between an active growth phase and a stationary or nearly stationary phase. In exemplary aspects, the microorganisms of the present disclosures transition or cycle between an active growth phase and a stationary or nearly stationary phase without decreasing its methane production efficiency, as described above.
Combinations of Phenotypic Characteristic. With regard to the above listing of phenotypic characteristics, (1) and (2) may be considered as required features of the microorganisms of the present disclosures, while (3), (4), (5), and (6) may be considered as optional features of the microorganisms of the present disclosures. In exemplary embodiments, the microorganisms of the present disclosures exhibit (1), (2), (3), (4), (5), and (6). In exemplary aspects, the microorganism of the present disclosures exhibits, in addition to (1) and (2), a combination of phenotypic characteristics selected from the group consisting of: [(3), (4), and (5)], [(3) and (4)], [(3)], [(3) and (5)], [(3) and (6)], [(4), (5), and (6)], [(4) and (5)], [(4)], [(4) and (6)], [(5) and (6)], [(5)], and [(6)]. All combinations and sub-combinations thereof are contemplated herein.
Additional phenotypic characteristics. In exemplary embodiments, the microorganisms of the present disclosures exhibit additional phenotypic characteristics (in addition to the phenotypic characteristics set forth above as (1) to (6)).
In exemplary aspects, the microorganism is (i) capable of producing methane via hydrogenotrophic methanogenesis under the maximal hydrogen supply conditions and in a fermenter as described in Example 2 at (a volume of methane at standard temperature and pressure produced per day) divided by the liquid volume of the culture (VVD) of at least about 300 VVD; (ii) capable of producing methane via electrobiological methanogenesis under the conditions and in a cell as described in Example 2 at a VVD of at least about 300 VVD; or a both of (i) and (ii). In exemplary embodiments, the microorganisms of the present disclosures are capable of producing methane from carbon dioxide and hydrogen via hydrogenotrophic methanogenesis. In exemplary embodiments, the microorganism is capable of producing methane via hydrogenotrophic methanogenesis under the maximal hydrogen supply conditions and in a fermenter as described in Example 2 at a VVD of at least about 300 VVD (e.g., at least or about 500 VVD, at least or about 1000 VVD, at least or about 2000 VVD, at least or about 3000 VVD, at least or about 5000 VVD, at least or about 10,000 VVD. In exemplary aspects, the microorganism is capable of producing no more than 100,000 VVD under such conditions. In exemplary embodiments, the microorganisms of the present disclosures are capable of producing methane from carbon dioxide, electricity, and water, via a process known as electrobiological methanogenesis. In exemplary embodiments, the microorganism is capable of producing methane via electrobiological methanogenesis under the conditions and in a cell as described in Example 2 at a VVD of at least about 300 VVD (e.g., at least or about 500 VVD, at least or about 1000 VVD, at least or about 2000 VVD, at least or about 3000 VVD, at least or about 5000 VVD, at least or about 10,000 VVD. In exemplary aspects, the microorganism is capable of producing no more than 100,000 VVD under such conditions. Methods of determining methane productivity in units of VVD are set forth herein. See Example 2.
The specific catalytic activity of methanogenic microorganisms can be expressed as the ratio of moles of methane formed per hour to moles of carbon in the microbial biomass. Under some conditions, one of the necessary substrates may be limiting the reaction, in which case the specific catalytic capacity may exceed the measured specific catalytic activity. Thus, an increase in the limiting substrate would lead to an increase in the observed specific catalytic activity. Under other conditions, the observed specific catalytic activity may be saturated with substrate, in which case an increase in substrate concentration would not yield an increase in specific catalytic activity. Under substrate saturating conditions, the observed specific catalytic activity would equal the specific catalytic capacity. Methods of determining specific catalytic activity for methane production are described herein. See Example 5.
In exemplary embodiments, the microorganisms of the present disclosures growing under steady state conditions (e.g., conditions as described in Example 1) are capable of exhibiting a specific catalytic capacity that is in excess of the specific catalytic activity that supports its growth. In exemplary embodiments, the specific catalytic activity of the microorganisms of the present disclosures is at least 10 fold greater than observed during steady-state growth with doubling times in the range of 100 hours. In exemplary embodiments, the microorganism of the present disclosures is capable of producing methane at a rate or an amount which is consistent with the increase in hydrogen or electricity supplied to the microorganisms. For example, in exemplary aspects, the microorganisms are capable of producing an X-fold increase in methane production in response to an X-fold increase in the supply of hydrogen or electricity, wherein X is any number greater than 1, e.g., 2, 5, 10. In exemplary embodiments, when supplied with a 2-fold increase in hydrogen supply (e.g., from 0.2 L/min to 0.4 L/min), the microorganisms of the present disclosures are capable of exhibiting a 2-fold increase in methane productivity.
In exemplary aspects, the microorganism of the present disclosures exhibits additional resilience or resistance to exposure to contaminants other than oxygen or carbon monoxide, such as, for example, ethanol, sulfur oxides, and nitrogen oxides. In exemplary aspects, the microorganisms of the present disclosures are capable of substantially returning to the methane productivity level after exposure to a contaminant selected from the group consisting of: ethanol, sulfur oxides, and nitrogen oxides. In exemplary aspects, the microorganisms of the present disclosures are capable of returning to a methane productivity level which is at least 80% of the methane productivity level observed in the operating state within 20 minutes (e.g., within 10 minutes, within 5 minutes, within 2 minutes) after an exposure of at least 10 minutes to the contaminant.
Additionally, the microorganisms in exemplary embodiments exhibit phenotypic characteristics other than those described herein as (1) to (6) and (i) and (ii).
The present invention further provides kits comprising any one or a combination of: a culture comprising methanogenic microorganisms, a reactor, and a culture medium. The culture of the kit may be in accordance with any of the teachings on cultures described herein. In exemplary embodiments, the kit comprises a culture comprising an adapted strain of methanogenic microorganisms that are capable of growth and/or survival under high temperature conditions (e.g., above about 50° C., as further described herein), high salt or high conductivity conditions (as further described herein). In some embodiments, the kit comprises only the methanogenic microorganisms. The culture medium of the kits may be in accordance with any of the teachings on culture medium described herein. In some embodiments, the kit comprises a culture medium comprising the components of Medium 1 or comprising the components of Medium 2, as described herein. In some embodiments, the kit comprises only the culture medium. In certain of these aspects, the kit may comprise the reactor comprising an anode and cathode. The reactor may be in accordance with any of the teachings of reactors described herein.
The biological reactor according to any of the embodiments discussed above may be used in a variety of implementations or applications, such as are illustrated in
For example, a biological reactor may be used as part of a stand-alone system 500, as illustrated in
The system 500 may include a biological reactor 502 coupled to one or more electricity sources, for example a carbon-based power plant (e.g., coal-fired power plant, natural gas-fired power plant, or biomass-fired power plant) 504, a wind-powered turbine 506, water-powered turbine 508, a fuel cell 510, solar thermal system 512 or photovoltaic system 514, or a nuclear power plant 516. It will be recognized that other sources of electricity (e.g., a geothermal power source, or a capacitor or super capacitor used for energy storage) may be used in addition to or in substitution for those illustrated. According to one embodiment, the biological reactor 502 may be coupled directly to carbon-based power plant 504, nuclear power plant 516, or other power plant that may not be able to ramp power production up or down without significant costs and/or delays, and in such a system the biological reactor 502 uses surplus electricity to convert carbon dioxide into methane that can be used in a generator to produce sufficient electricity to meet additional demands. According to another embodiment, the biological reactor 502 may use surplus electricity (electricity that is not needed for other purposes) generated by one or more of the sources 506, 508, 510, 512, 514 to convert carbon dioxide into methane to be used in a generator to produce electricity when wind, water, solar or other conditions are unfavorable to produce electricity or to produce sufficient electricity to meet demands.
As is also illustrated in
Where a significant point source of emissions is used as the carbon dioxide source (e.g., sources 520, 522, 524, 526, 528), the carbon dioxide emissions may be diverted into the biological reactor 502 to produce methane when electric power is available at prices below a pre-determined threshold. When electric power is above the pre-determined threshold, the carbon dioxide emissions may instead be emitted to the atmosphere, or it may be stored (as represented by the source 532) for later utilization in the biological reactor 502.
According to certain embodiments, the carbon dioxide from a point emission source may be commingled with other gases, including carbon monoxide, hydrogen, hydrogen sulfide, nitrogen, or oxygen or other gases common to industrial processes, or it may be substantially pure. The mixture of gases can be delivered directly to the biological reactor 502, or the carbon dioxide may be separated from the gaseous mixture before delivery to the biological reactor 502. Such sources of mixed gases include landfills, trash-to-energy facilities, municipal or industrial solid waste facilities, anaerobic digesters, concentrated animal feeding operations, natural gas wells, and facilities for purifying natural gas, which sources may be considered along side the illustrated sources 520, 522, 524, 526, 528, 530, 532.
In operation, electricity and carbon dioxide may be delivered to the biological reactor 502 continuously to maintain a desired output of methane. Alternatively, the delivery rate of the electrical current, the carbon dioxide, or water to the biological reactor 502 may be varied which may cause the rate of methane production to vary. The variations in electrical current, carbon dioxide, and water may vary according to design (to modulate the rate of methane production in response to greater or lesser demand) or as the availability of these inputs varies.
As is also illustrated in
It will be recognized that while the discussion has focused on methane as the primary product of the reactor 502, the reactor 502 also will produce oxygen, which may be referred to as a secondary product or as a byproduct. Oxygen may be stored or transported in the same fashion as methane, and as such a parallel storage site and/or distribution system may be established for the oxygen generated as well. As one such example, the oxygen may be used locally, for example to enhance the efficiency of combustion and/or fuel cell energy conversion.
In the alternative to a stand-alone implementation, an integrated system 600 may be provided wherein a reactor 602 is coupled to an electrical power distribution grid 604, or power grid for short, as illustrated in
As noted above, certain of these power plants, such as those combusting the carbon-based fuels, operate most efficiently at steady state (i.e., ramping power production up or down causes significant costs and/or delays). The power grid may also be connected to power plants that have a variable output, such as the wind-powered and water-powered turbines and the solar-thermal and photovoltaic systems. Additionally, power users have variable demand. As such, the electricity that power producers with the lowest marginal operating expenses desire to supply to the grid 604 can, and typically does, exceed demand during extended periods (so called off-peak periods). During those periods, the excess capacity can be used by one or more biological reactors 602 according to the present disclosure to produce methane.
As also noted above, the biological reactor 602 may be coupled to one or more carbon dioxide sources 620, for example including carbon-based power plants (e.g., coal-fired power plant, natural gas-fired power plant, biomass-fired power plant, or carbon-based fuel cells). Alternatively, the system 600 may be disposed near an industrial plant that provides carbon dioxide as a byproduct or a waste product, or may use atmospheric sources of carbon dioxide or stored carbon dioxide. In fact, while it may be possible to have a readily available source of carbon dioxide for conversion into methane when off-peak electricity is also available, it might also be necessary to store carbon dioxide during non-off-peak (or peak) periods for later conversion when the electricity is available. For example, an industrial source of carbon dioxide may typically generate most of its carbon dioxide during daylight hours, which may coincide with the typical peak demand period for electricity, causing some manner of storage to be required so that sufficient carbon dioxide is available to be used in conjunction with off-peak electricity production. Simple and inexpensive, gas impermeable tanks may be sufficient for such storage for short periods of time, such as part of a day or for several days. As to such storage issues for longer periods or for larger volumes, considerable effort is presently being devoted to sequestration of carbon dioxide in underground storage sites, and it may be possible to utilize the sequestered carbon dioxide stored in such sites as the source 620 of carbon dioxide for use in the biological reactors 602 according to the present disclosure.
As was the case with the system 500, the system 600 may include optional post-processing equipment 630 that is used to separate or treat the methane produced in the reactor 602 as required. The methane may be directed from the biological reactor 602 (with or without post-processing) into one or more containment vessels 640. In fact, the methane may be stored in aboveground storage tanks, or transported via local or interstate natural gas pipelines to underground storage locations, or reservoirs, such as depleted gas reservoirs, aquifers, and salt caverns. Additionally, the methane may be liquefied for even more compact storage, in particular where the biological reactors 602 are located where a connection to a power grid and a source of carbon dioxide are readily available, but the connection to a natural gas pipeline is uneconomical.
It will be further noted from
It will also be recognized that a biological reactor for producing methane may be useful in a closed atmospheric environment containing carbon dioxide or in which carbon dioxide is released by respiration, or other biological processes or by chemical reactions such as combustion or by a fuel cell. According to such an embodiment, the biological reactor may be operating as a stand-alone implementation (as in
While the foregoing examples have discussed the potential uses for methane produced by the biological reactor in meeting industrial, commercial, transportation, or residential needs (e.g., conversion into electricity through combustion in a carbon-based fuel generator or other uses, such as heating or cooking, non-combustion based conversion of methane into electricity such as via fuel cells, or chemical conversion into other compounds such as via halogenation, or reaction with other reactive species), it is also possible to appreciate the use of the biological reactor according to the present disclosure, either in a stand-alone system or as connected to a power grid, as a mechanism for carbon capture. That is, separate and apart from its uses to provide an alternative energy resource, the biological reactors according to the present disclosure may be used to remove carbon dioxide from the atmosphere, where the carbon dioxide is produced by living microorganisms, by chemical oxidation of organic material or from combustion of carbon-based fossil fuels, in particular where the carbon dioxide may be produced by large point sources such as fossil fuel power plants, cement kilns or fermentation facilities. The conversion of carbon dioxide into methane thus may produce not only methane, which has multiple other uses, but the conversion of carbon dioxide according to the present disclosure may generate or earn carbon credits for the source of the carbon dioxide, in that the carbon dioxide production of the source is decreased. These carbon credits may then be used within a regulatory scheme to offset other activities undertaken by the carbon dioxide producer, or in the life cycle of the products used or sold by the carbon dioxide producer, such as for renewable fuels derived from biomass, or gasoline refined from crude petroleum or may be used within a trading scheme to produce a separate source of revenue. Credits or offsets may be sold or conveyed in association with the methane, or oxygen, or other secondary products generated by the biological reactor or through the use of the biological reactor, or the credits may be traded independently such as on an exchange or sold directly to customers. In cases where the biological reactor functions within a business, or as part of a business contract with an entity, that uses oxygen, natural gas or methane from fossil or geologic sources, the methane produced by the biological reactor can be delivered to, or sold into a natural gas distribution system at times or in locations different from the use of natural gas and the business may retain any credits or offsets associated with the oxygen or methane produced with the biological reactor and apply such credit or offsets to natural gas or oxygen purchased from other sources and not produced directly by the biological reactor.
According to one embodiment, a method of converting carbon dioxide to methane comprises a) preparing a culture of hydrogenotrophic methanogenic archaea, b) placing the culture of hydrogenotrophic methanogenic archaea in a cathode chamber of an electrolysis chamber, the electrolysis chamber having an anode and a cathode, the cathode situated in the cathode chamber, and the cathode and anode chambers separated by a selectively permeable barrier; c) supplying carbon dioxide to the cathode chamber of the electrolysis chamber; d) supplying water to the electrolysis chamber, and e) wherein the hydrogenotrophic methanogenic archaea utilize the electrons released by the cathode and convert the carbon dioxide to methane. Additionally, step e) of such a method may only result in the production of methane gas by the hydrogenotrophic methanogenic archaea and a separate stream of oxygen gas by the anode.
According to another embodiment, a method of converting carbon dioxide to methane comprises a) preparing a culture of hydrogenotrophic methanogenic archaea; b) placing the culture of hydrogenotrophic methanogenic archaea in a cathode chamber of an electrolysis chamber, the electrolysis chamber having an anode chamber and a cathode chamber wherein the anode chamber has an anode and the cathode chamber has a cathode; c) supplying carbon dioxide to the electrolysis chamber; d) supplying water to the electrolysis chamber; e) wherein an electric potential difference is maintained between the cathode and the anode; and f) wherein the hydrogenotrophic methanogenic archaea utilize the electric potential difference between the cathode and the anode to convert the carbon dioxide to methane. According to such a method, the anode chamber and the cathode chamber may be separated by a selectively permeable barrier.
This example describes an exemplary method of maintaining a Methanothermobacter microorganism of the present disclosures and an exemplary method of cryopreserving the microorganism.
The microorganisms of strain UC120910 are maintained in Medium 1, disclosed herein, at 60° C. under anaerobic conditions comprising 80% hydrogen, 20% carbon dioxide in a New Brunswick BioFlo 110 Fermenter with a 1.3 L nominal total volume glass vessel. The culture vessel contains four full-height baffles, extending 6 mm from the wall. Double bladed, 6-blade Rushton Impellers (52 mm diameter) are placed inside the culture vessel and are maintained at a typical stirring speed of about 1000 RPM. The hydrogen sparger is a perforated tube (10 perforations ˜0.5 mm diameter) placed in a circle just below the bottom impeller. The primary bubbles released from the sparger are relatively large and are substantially broken up by the action of the impeller.
The culture vessel is maintained at a constant 60° C. and at a liquid volume within a range of about 0.3 L to about 1 L (e.g., 0.7 L). Because water is a by-product of methanogensis, liquid is constantly being removed from the reactor. The microorganisms are maintained in the culture vessel within a measured biomass range of about 0.005 to about 0.011 g dry solid/mL water (0.5-1% dry mass per unit volume).
Alternatively, the microorganisms of strain UC120910 are maintained in culture tubes or bottles comprising either Medium 1 or ATCC medium 2133:0 SU967 at 60° C. under anaerobic conditions comprising a gas phase of 80% hydrogen, 20% carbon dioxide. As a further alternative, the microorganisms of strain UC120910 are maintained on the surface of solidified Medium 1 or ATCC medium 2133:0 SU967 at 60° C. under anaerobic conditions comprising a gas phase of 80% hydrogen, 20% carbon dioxide.
The microorganisms are cryopreserved by suspending microorganisms in a liquid growth medium containing 10% glycerol. The microorganism suspension is then placed into a −80° C. freezer. The cryopreserved organisms are returned to growth by inoculation into fresh liquid medium or onto solidified medium and incubation under anaerobic conditions at 60° C. as described above.
This example describes two exemplary methods of using the microorganisms of the present disclosures for producing methane.
Hydrogenotrophic methanogensis
Microorganisms of strain UC120910 are cultured in a New Brunswick BioFlo 110 Fermenter in Medium 1 as essentially described in Example 1. Methane and hydrogen outflow rates from the batch culture are calculated as a function of the hydrogen and methane mass spectrometry signals (corrected for ionization probability) and the hydrogen inflow rate. The calculation assumes that all hydrogen that enters the batch culture is either converted to methane at a ratio of 4 H2:1 CH4 or exits the culture as unreacted hydrogen. Under steady state conditions with doubling times of 50 hours or greater, the small proportion of hydrogen that is consumed in the growth of the organisms is neglected in the calculation.
Calculation of VVD methane productivity. The volumetric flow of hydrogen entering the culture is controlled by a gas mass-flow controller and provides a primary reference for determination of the rate of methane production. The ratio of masses detected by the mass spectrometer at mass 15 to that at mass 2 is determined for a range of methane to hydrogen ratios in standard gas mixtures generated by gas mass-flow controllers to obtain correction constants. The ratio of mass 15 to mass 2 in experimental gas streams is then multiplied by the correction constant to obtain the ratio of methane to hydrogen gas in the fermenter/reactor exit gas stream. By assuming that hydrogen in the input gas stream is converted to methane at a 4:1 molar ratio, the absolute rate of methane and hydrogen flow out of the reactor is calculated from the input hydrogen flow rate and the observed gas ratio in the exit flow. Methane productivity in units of VVD are calculated as the volume of methane in the exit flow per day divided by the liquid volume of the fermenter/reactor.
In an exemplary method, microorganisms of strain UC120910 are cultured in a New Brunswick BioFlo 110 Fermenter in Medium 1 as essentially described in Example 1. Specifically, the Fermenter is maintained with impellers stiffing at 1000 RPM and a culture volume of 400 mL and at a temperature of 60° C. Hydrogen gas is delivered to the system at a gas flow rate of 10 L/min H2 and carbon dioxide is delivered at a gas flow rate of 2.5 L/min.
Electrobiological methanogensis
An electrochemical cell was fabricated as shown in
The geometry of the electrochemical cell was cylindrical with catholyte solution inserted into the middle of the cathode and flowing radially to a fluid collection channel near the outer edge of the cathode. The catholyte solution comprised Medium 1 or Medium 1 with added NaCl to increase conductivity. No reduced carbon feedstocks are provided by the medium, thereby demonstrating the autotrophic nature of the microorganisms of strain UC120910 when reducing power is provided by an electrode. The catholyte flow rate was approximately 1 ml/min and the active volume of the cathode was approximately 0.25 ml. Water supply to the anode is via diffusion across the membrane from the cathode and oxygen produced on the anode diffuses out of the cell through channels open to the air.
The electrochemical cell and a culture of microorganisms of strain UC120910 were held at a fixed temperature within a glass convection oven, while various electrical potentials were held across the cell as shown in
This example provides an exemplary comparative study of doubling time and carbon dioxide utilization efficiency among a microorganism of the present disclosures and an unadapted precursor microorganism.
At the time of deposit of strain UC120910, the dilution rate (reciprocal of the doubling time) of the continuous culture in the fermenter was determined by measuring the rate of culture fluid removal from the fermenter by the system that maintains a constant liquid volume in the chamber. The results of this analysis demonstrated that the culture had a doubling time of 110.8 hours. Samples from this culture were also used directly as catholyte (plus living methanogenesis catalyst) in the experiments presented in
The sample of the continuous culture in the fermenter described above was also analyzed to determine carbon dioxide utilization efficiency as expressed by the ratio of (the number of carbon dioxide molecules converted to methane) to (the number of carbon dioxide molecules converted to cellular materials). Specifically, the dry mass of cells in a given volume was determined by drying pelleted cells to constant weight and found to be 8.4 g/L of culture. Based upon the determined doubling time, the biomass increases at a rate of 0.076 g/L/hour to maintain this steady-state biomass concentration. This molar content of carbon in the biomass was estimated using the empirical formula for cell composition provided by Schill et al., Biotech Bioeng 51(6): 645-658 (1996): CH1.68O0.39N0.24, to obtain the moles of biomass carbon produced per unit time. The moles of methane produced in the same time was determined as described in Example 2. Following these procedures, it was determined that the yield of methane per molecule of carbon gained in biomass, YP/X, was 66.9 molecules of methane produced for every one molecule of carbon dioxide converted to cellular material. This result is also expressed as 98.5% of the fixed carbon being converted to methane and only 1.5% of the fixed carbon being diverted to biomass.
The microorganism of strain UC120910 is an adapted strain of DMSZ 3590, which is described in Schill et al., (1996), supra. According to Schill et al., the unadapted strain of DMSZ 3590 exhibited methane production rates as high as ˜270 volumes of methane at standard temperature and pressure per volume of culture per day (VVD). At each of the tested rates, the doubling times were shown to be between 3 and 10 hours. This active growth phase is useful when biomass is the desired product. For the purposes of producing methane, any production of additional biomass is an unwanted byproduct. The highest YP/X documented by Schill et al. (see Table IV) was 19.6, or about 5% of fixed carbon being diverted to biomass.
Based on the data reported in Schill et al. and the data reported herein, the efficiency of carbon dioxide conversion to methane of the microorganisms of strain UC120910 are superior to those of DSMZ 3590, since only 1.5% of the carbon dioxide is converted into cellular material or maintenance of the culture, in contrast to the ˜5% of the supplied carbon dioxide converted into biomass and cellular maintenance by the microorganisms of Schill et al. Without being bound to a particular theory, the superior methane productivity of UC120910 may be due to the fact that the microorganisms of this strain exhibit a remarkably low doubling time.
This example describes an exemplary method of testing resilience to contaminants.
Recovery from Oxygen Exposure
Methanogenic organisms are regarded as extremely strict anaerobes. Oxygen is known as an inhibitor of the enzyme catalysts of both hydrogen uptake and methanogenesis. A low oxidation-reduction potential (ORP) in the growth medium is regarded as important to methanogenesis.
In some embodiments, the Methanothermobacter microorganism of the present disclosures is resilient to oxygen exposure, as the microorganism demonstrates a methane productivity level after oxygen exposure which is substantially the same as the methane productivity level exhibited before oxygen exposure.
Resilience to oxygen exposure may be analyzed by measuring the methane productivity before, during, and after oxygen exposure for various time periods. Specifically, resilience may be measured by maintaining the microorganism as essentially set forth in Example 1 and measuring the methane productivity level as essentially described in Example 2.
The culture vessel is exposed to 100% air for 10 minutes, 90 minutes, or 15 hours at a flow rate of 500 cc/min. Ambient air comprises approximately (by molar content/volume) 78% nitrogen, 21% oxygen, 1% argon, 0.04% carbon dioxide, trace amounts of other gases, and a variable amount (average around 1%) of water vapor.
During exposure to 100% air, methanogenesis is believed to be stopped and the ORP of the culture medium rises. The air used in the experiment also displaces CO2 dissolved in the medium, causing the pH to rise. Following the 10 minute exposure to 100% air, gas flows of H2 and CO2 were restored (100 cc/min H2, 25 cc/min CO2).
In a first experiment, 1.5 ml of a 2.5% solution of sulfide (Na2SH2O) is added within 4 minutes of terminating air feed and restoring the H2/CO2 gas feed. Sulfide is widely used to control the ORP of the cultures, control that is regarded as essential. In another experiment, no sulfide was added.
The presence of the hydrogen in the gas phase is sufficient to reduce the ORP of the culture to enable methanogenesis, no additional control of the ORP of the culture is required. The lack of necessity of sulfide is of note in that methanogenic cultures are typically maintained at 10,000 ppm hydrogen sulfide in the gas phase. Such high levels of sulfide are not tolerated in certain industrial process, for instance, natural gas pipeline tariffs in the United States set maximum levels of hydrogen sulfide content of natural gas ranging from 4-16 ppm, depending upon the pipeline system.
Recovery from Carbon Monoxide Exposure
Carbon monoxide (CO) is another known inhibitor of enzymes involved in both hydrogen uptake and methanogenesis. CO is a potential contaminant of CO2 and hydrogen streams derived from gasification of coal or biomass resources. The effect CO on methane formation by methanogen cultures is examined. Resilience to CO exposure may be analyzed by measuring the methane productivity before, during, and after oxygen exposure for various time periods. Specifically, resilience to carbon monoxide may be measured by maintaining the microorganism as essentially set forth in Example 1 and measuring the methane productivity level as essentially described in Example 2.
The pH of the culture is maintained constant by keeping CO2 at 20% of the gas mix and changing only the composition of the other 80% of the gas. The culture is exposed to a mixture of 8% CO and 72% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min for a period of 1.7 hours. Then the culture is restored to a flow of 80% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min.
The culture is optionally subsequently exposed to a mixture of 16% CO and 64% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min for a period of 1 hour. The culture is then restored to a flow of 80% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min.
The culture is optionally exposed to a mixture of 40% CO and 40% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min for a period of 20 minutes. The culture is then restored to a flow of 80% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min.
The culture is optionally exposed to a mixture of 60% CO and 20% hydrogen at a flow rate of 100 cc/min and CO2 at 25 cc/min.
During each exposure, methane production is measured as essentially described in Example 2.
This example demonstrates that the Methanothermobacter microorganism of the present disclosures demonstrates an excess of specific catalytic capacity when grown under steady-state, nearly stationary conditions in a continuous culture fermentor.
The specific catalytic activity of methanogenic microorganisms can be expressed as the ratio of moles of methane formed per hour to moles of carbon in the microbial biomass. Under some conditions, one of the necessary substrates may be limiting the reaction, in which case the specific catalytic capacity may exceed the measured specific catalytic activity. Thus, an increase in the limiting substrate would lead to an increase in the observed specific catalytic activity. Under other conditions, the observed specific catalytic activity may be saturated with substrate, in which case an increase in substrate concentration would not yield an increase in specific catalytic activity. Under substrate saturating conditions, the observed specific catalytic activity would equal the specific catalytic capacity.
For strain UC120910 growing at steady state as described in Example 1 with a hydrogen feed rate of 0.2 L/min, the specific catalytic activity for methane production, qP, was observed to be 0.37 moles methane produced per mole biomass carbon per hour. When the hydrogen feed rate was doubled to 0.4 L/min, qP doubled as well to 0.72 moles methane produced per mole biomass carbon per hour. Thus, the steady-state culture of UC120910 contains specific catalytic capacity that is in excess of the specific catalytic activity that supports its growth. In other experiments with hydrogen feed rates of up to 5 L/min, specific catalytic activity of up to 4 moles methane per mole biomass carbon have been observed without signs of saturation of the rate. Thus, the specific catalytic activity of the strain is at least 10 fold greater than observed during steady-state growth with doubling times in the range of 100 hours.
Vertical electrolysis chamber/cell configuration. A cylindrical electrolysis cell, 1.2 cm in internal diameter, was constructed from polusulfone plastic and arranged with an air-exposed anode on the bottom, covered by a Nafion 117 PEM and the closed cathode chamber on the top (
Preparation of the cell suspension. Initial Culture Growth. Cells were Grown in a continuously stirred tank fermenter, BioFlo 110, with a total internal volume of 1.3 L and a typical liquid volume of 0.6 L. An initial inoculum of the autotrophic hydrogenotrophic thermophilic methanogen, Methanothermobacter thermautotrophicus, DSMZ 3590, was grown at 60° C. as a batch culture in a medium containing the following components: Na3nitrilotriacetate, 0.81 mM; nitrilotriacetic acid, 0.4 mM; NiCl2-6H2O, 0.005 mM; CoCl2-6H2O, 0.0025 mM; Na2MoO4-2H2O, 0.0025 mM; MgCl2-6H2O, 1.0 mM; FeSO4-7H2O, 0.2 mM; Na2SeO3, 0.001 mM; Na2WO4, 0.01 mM; KH2PO4, 10 mM; NaCl, 10 mM; L-cysteine, 0.2 mM. This medium was sparged with a 4:1 H2:CO2 gas mixture generated with mass flow controllers at a total flow of 250 standard ml/minute. The pH of the medium was initially maintained at 6.85 via a pH stat that used 2M ammonium hydroxide to make adjustments. During the early growth phase of the culture when methane production was limited by cell concentration and increased at an exponential rate, a 0.5M sodium sulfide solution was added as needed to maintain the redox potential below −300 mV. Once the culture was grown and methane production reached a steady-state, the culture maintained the redox potential below −450 mV on its own, using hydrogen as the reducing agent. Sulfide addition was slowed to a minimal rate (<1 ppm of H25 in the outflow gas, as determined by mass spectrometry) needed for maintaining steady methane productivity with this strain of methanogen. Under these conditions, steady state methane production corresponds to 96-98% conversion of the input hydrogen.
Selection of a strain adapted to nearly stationary growth conditions. After steady state conditions had been established, the culture was maintained for several weeks without the addition of fresh medium. Instead, the increased volume of the culture generated by water production during methanogenesis was continually removed. The inorganic nutrients removed along with the removed medium and microorganisms were replaced from a 100× concentrated stock formulated as follows: Na3nitrilotriacetate, 81 mM; nitrilotriacetic acid, 40 mM; NiCl2-6H2O, 0.5 mM; CoCl2-6H2O, 0.25 mM; Na2MoO4-2H2O, 0.25 mM; MgCl2-6H2O, 100 mM; FeSO4-7H2O, 20 mM; Na2SeO3, 0.1 mM; Na2WO4, 1.0 mM; KH2PO4, 1.0 M; NaCl, 1.0 M; L-cysteine, 20 mM. The goal of maintaining this extended culture under nearly stationary growth conditions was to select for a strain that could perform well and survive under conditions similar to those that are encountered in the electrolysis chamber.
Performance under electrolysis conditions. The adapted culture, at a cell concentration of 5-7 g dry weight/L, was starved for energy by sparging at 250 ml/min with a 4:1 gas mixture of Ar:CO2 for several hours until neither hydrogen nor methane appeared in the effluent gas stream. The cells in a sample from the culture were then concentrated three-fold by centrifugation under anaerobic conditions and resuspended at a final concentration of 15-21 g dry weight/L. One and one half milliliters of this concentrated suspension was placed into the chamber and impregnated into the carbon foam cathode (
Various alternative improvements. Many modifications of this setup are anticipated and intended to be within the scope of this disclosure. Expanded graphite foam or particulate graphite or other high surface to volume electrically conductive materials may be suitable as cathode electrodes. A circulating cathode solution may allow for more rapid and complete gas exchange with the outside of the electrolysis chamber. Alternative temperatures may allow for more efficient charge transfer across the membrane separating the cathode and anode chamber. Alternative materials, including composite Nafion/PTFE, may be suitable for use as the selectively permeable membrane separating the cathode and anode chambers. Alternative geometries of the chambers may improve the charge and gas transport to and from the microbes. Alternative strains of methanogenic microbes may be more tolerant of the various mechanical strains, electrical demands, and metabolite exposure present in this invention.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range and each endpoint, unless otherwise indicated herein, and each separate value and endpoint is incorporated into the specification as if it were individually recited herein.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Archaeoglobus
fulgidus
Archaeoglobus
infectus
Archaeoglobus
lithotrophicus
Archaeoglobus
profundus
Archaeoglobus
veneficus
Archaeoglobus
Archaeoglobus
Archaeoglobus
Archaeoglobus
Archaeoglobus
Archaeoglobus
Archaeoglobus
Archaeoglobus
Ferroglobus
placidus
Ferroglobus
Geoglobus
ahangari
Geoglobus
Geoglobus
Geoglobus
Geoglobus
Geoglobus
Geoglobus
Haladaptatus
cibarius
Haladaptatus
litoreus
Haladaptatus
paucihalophilus
Halalkalicoccus
jeotgali
Halalkalicoccus
tibetensis
Halalkalicoccus
Halalkalicoccus
Halarchaeum
acidiphilum
Halarchaeum
Haloalcalophilium
atacamensis
Haloalcalophilium
Haloarcula
aidinensis
Haloarcula
algeriensis
Haloarcula
amylolytica
Haloarcula
argentinensis
Haloarcula
californiae
Haloarcula
hispanica
Haloarcula
japonica
Haloarcula
marismortui
Haloarcula
quadrata
Haloarcula
siamensis
Haloarcula
sinaiiensis
Haloarcula
vallismortis
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Haloarcula
Halobacterium
jilantaiense
Halobacterium
noricense
Halobacterium
piscisalsi
Halobacterium
salinarum
Halobacterium
salinarum
Halobacterium
salinarum
Halobacterium
salinarum R1
Halobacterium
salinarum sp. NRC-1
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobacterium
Halobaculum
gomorrense
Halobiforma
haloterrestris
Halobiforma
lacisalsi
Halobiforma
nitratireducens
Halobiforma
Halococcus
dombroskii
Halococcus
hamelinensis
Halococcus
morrhuae
Halococcus
qingdaonensis
Halococcus
saccharolyticus
Halococcus
salifodinae
Halococcus
thailandensis
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Halococcus
Haloferax
alexandrines
Haloferax
antrum
Haloferax
berberensis
Haloferax
denitrificans
Haloferax
elongans
Haloferax
gibbonsii
Haloferax
larsenii
Haloferax
lucentense
Haloferax
mediterranei
Haloferax
mucosum
Haloferax
opilio
Haloferax
prahovense
Haloferax
rutilus
Haloferax
sulfurifontis
Haloferax
viridis
Haloferax
volcanii
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Haloferax
Halogeometricum
borinquense
Halogeometricum
Halogeometricum
Halogeometricum
Halogeometricum
Halogeometricum
Halogeometricum
Halogranum
rubrum
Halomicrobium
katesii
Halomicrobium
mukohataei
Halomicrobium
Halomicrobium
Halomicrobium
Halopiger
xanaduensis
Haloplanus
natans
Haloplanus
Haloplanus
Haloquadratum
walsbyi - C23
Haloquadratum
walsbyi - DSM 16790
Haloquadratum
Halorhabdus
tiamatea
Halorhabdus
utahensis
Halorhabdus
Halorubrum
africanae
Halorubrum
aidingense
Halorubrum
alkaliphilum
Halorubrum
arcis
Halorubrum
californiense
Halorubrum
cibarium
Halorubrum
cibi
Halorubrum
constantinense
Halorubrum
coriense
Halorubrum
distributum
Halorubrum
ejinorense
Halorubrum
ezzemoulense
Halorubrum
halophilum
Halorubrum
jeotgali
Halorubrum
lacusprofundi
Halorubrum
lipolyticum
Halorubrum
litoreum
Halorubrum
luteum
Halorubrum
orientale
Halorubrum
saccharovorum
Halorubrum
sodomense
Halorubrum
tebenquichense
Halorubrum
terrestre
Halorubrum
tibetense
Halorubrum
trapanicum
Halorubrum
vacuolatum
Halorubrum
xinjiangense
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
Halorubrum
archaeon DEEP-1
Halorubrum
archaeon ORGANIC1_A
Halorubrum
Halosarcina
pallida
Halosarcina
Halosarcina
Halosimplex
carlsbadense
Halosimplex
Halostagnicola
larsenii
Haloterrigena
daqingensis
Haloterrigena
hispanica
Haloterrigena
jeotgali
Haloterrigena
limicola
Haloterrigena
longa
Haloterrigena
saccharevitans
Haloterrigena
salina
Haloterrigena
thermotolerans
Haloterrigena
turkmenica
Haloterrigena
turpansis
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Haloterrigena
Halovivax
asiaticus
Halovivax
ruber
Halovivax
Halovivax
Halovivax
Halovivax
Natrialba
aegyptia
Natrialba
aibiensis
Natrialba
asiatica
Natrialba
chahannaoensis
Natrialba
hulunbeirensis
Natrialba
magadii
Natrialba
taiwanensis
Natrialba
wudunaoensis
Natrialba
Natrialba
Natrialba
Natrialba
Natrialba
Natrialba
Natrialba
Natrialba
Natrinema
aidingensis
Natrinema
altunense
Natrinema
ejinorense
Natrinema
gari
Natrinema
pallidum
Natrinema
pellirubrum
Natrinema
versiforme
Natrinema
xinjiang
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natrinema
Natronobacterium
gregoryi
Natrionobacterium
innermongoliae
Natronobacterium
Natronobacterium
Natrionobacterium
Natronobacterium
Natronobacterium
Natrionobacterium
Natronobacterium
Natronobacterium
Natrionobacterium
Natronobacterium
Natronobacterium
Natrionobacterium
Natronobacterium
Natronobacterium
Natrionobacterium
Natronobacterium
Natronobacterium
Natrionobacterium
Natronobacterium
Natronobacterium
Natrionobacterium
Natronococcus
aibiensis
Natronococcus
amylolyticus
Natronococcus
jeotgali
Natronococcus
occultus
Natronococcus
occultus SP4
Natronococcus
xinjiangense
Natronococcus
yunnanense
Natronococcus
zabuyensis
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronococcus
Natronolimnobius
baerhuensis
Natronolimnobius
innermongolicus
Natronolimnobius
Natronomonas
pharaonis
Natronomonas
Natronomonas
Natronorubum
aibiense
Natronorubum
bangense
Natronorubum
sulfidifaciens
Natronorubum
thiooxidans
Natronorubum
tibetense
Natronorubum
Natronorubum
Natronorubum
Natronorubum
Natronorubum
Natronorubum
Natronorubum
Natronorubum
haloarchaeon 10AH
haloarchaeon 14AHG
haloarchaeon 30AH
haloarchaeon 82M4
haloarchaeon 86M4
haloarchaeon 89M4
haloarchaeon 8AHG
haloarchaeon 93dLM4
haloarchaeon 93lLM4
haloarchaeon 98NT4
haloarchaeon 9AH
haloarchaeon B13-RDX
haloarchaeon CSW1.15.5
haloarchaeon CSW2.24.4
haloarchaeon CSW2.25.5
haloarchaeon CSW2.27.5
haloarchaeon CSW4.03.5
haloarchaeon CSW4.05.5
haloarchaeon CSW4.11.5
haloarchaeon CSW4.22.4
haloarchaeon CSW5.28.5
haloarchaeon CSW6.14.5
haloarchaeon CSW8.8.11
haloarchaeon HA15
haloarchaeon HA25
haloarchaeon S8a
haloarchaeon SC4
haloarchaeon SC7
haloarchaeon SC8
haloarchaeon SC9
haloarchaeon sech10
haloarchaeon sech14
haloarchaeon sech4
haloarchaeon sech6
haloarchaeon sech7a
haloarchaeon sech8
haloarchaeon sech9
haloarchaeon W1
haloarchaeon YNPASCul
archaeon 309
archaeon GLYP1
archaeon GX1
archaeon GX10
archaeon GX21
archaeon GX26
archaeon GX3
archaeon GX31
archaeon GX48
archaeon GX60
archaeon GX7
archaeon GX71
archaeon GX74
archaeon HO2-1
archaeon IMCC2586B
archaeon IMCC8204
archaeon KeC-11
archaeon L1
archaeon RO1-6
archaeon RO3-11
archaeon RO5-14
archaeon RO5-2
archaeon Ston11
archaeon Ston12
archaeon Ston16
archaeon Ston2
archaeon Ston28
archaeon Ston3
archaeon Ston5
archaeon Ston6
archaeon TBN12
archaeon TBN19
archaeon TBN21
archaeon TBN37
archaeon TBN4
archaeon TBN49
archaeon TBN5
archaeon TBN51
archaeon TBN53
archaeon TNN10
archaeon TNN18
archaeon TNN28
archaeon TNN44
archaeon TNN50
archaeon TNN58
Halobacterium sp. NCIMB 763
Methanobacterium
aarhusense
Methanobacterium
alcaliphilum
Methanobacterium
beijingense
Methanobacterium
bryantii
Methanobacterium
congolense
Methanobacterium
curvum
Methanobacterium
espanolae
Methanobacterium
formicicum
Methanobacterium
ivanovii
Methanobacterium
oryzae
Methanobacterium
palustre
Methanobacterium
subterraneum
Methanobacterium
thermaggregans
Methanobacterium
uliginosum
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobacterium
Methanobrevibacter
acididurans
Methanobrevibacter
arboriphilus
Methanobrevibacter
curvatus
Methanobrevibacter
cuticularis
Methanobrevibacter
filiformis
Methanobrevibacter
gottschalkii
Methanobrevibacter
millerae
Methanobrevibacter
olleyae
Methanobrevibacter
oralis
Methanobrevibacter
ruminantium
Methanobrevibacter
smithii ATCC 35061
Methanobrevibacter
smithii DSM 11975
Methanobrevibacter
smithii DSM 2374
Methanobrevibacter
smithii DSM 2375
Methanobrevibacter
thaueri
Methanobrevibacter
woesei
Methanobrevibacter
wolinii
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
compressum
Methanobrevibacter
Nyctotherus cordiformis
Methanobrevibacter
Nyctotherus ovalis
Methanobrevibacter
Nyctotherus velox
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanobrevibacter
Methanosphaera
Stadtmanae
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanosphaera
Methanothermobacter
defluvii
Methanothermobacter
marburgensis
Methanothermobacter
thermautotrophicus str. Delta H
Methanothermobacter
thermautotrophicus str. Winter
Methanothermobacter
thermoflexus
Methanothermobacter
thermophilus
Methanothermobacter
wolfeii
Methanothermobacter
Methanothermobacter
Methanothermobacter
Methanothermobacter
Methanothermobacter
Methanothermobacter
Methanothermobacter
archaeon A2.95.53
archaeon A8.96.15
archaeon A9.96.64
archaeon 12aF
archaeon 14aZ
archaeon 15aZ
archaeon 1aR
archaeon 1aZ
archaeon 25aG
archaeon 26aM
archaeon 2aG
archaeon 36aR
archaeon 37aM
archaeon 3aG
archaeon 40aM
archaeon 55aZ
archaeon 58aZ
archaeon 77aZ
archaeon RMAS
Isotricha prostoma
Isotricha prostoma
multivesiculatum
multivesiculatum
multivesiculatum
archaeon
Methanothermus
fervidus
Methanothermus
sociabilis
archaeon
Methanocaldococcus
fervens
Methanocaldococcus
indicus
Methanocaldococcus
infernus
Methanocaldococcus
jannaschii
Methanocaldococcus
vulcanius
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanocaldococcus
Methanotorris
formicicus
Methanotorris
igneus
Methanotorris
Methanotorris
Methanotorris
Methanococcus
aeolicus
Methanococcus
maripaludis
Methanococcus
vannielii
Methanococcus
voltae
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanococcus
Methanothermococcus
okinawensis
Methanothermococcus
thermolithotrophicus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanothermococcus
Methanocella
paludicola
Methanocorpusculum
aggregans
Methanocorpusculum
bavaricum
Methanocorpusculum
labreanum
Methanocorpusculum
parvum
Methanocorpusculum
sinense
Methanocorpusculum
Methanocorpusculum
Methanocorpusculum
Methanocorpusculum
Metopus contortus archaeal
Methanocorpusculum
Metopus palaeformis
Methanocorpusculum
Trimyema sp. archaeal symbiont
Methanocorpusculum
Methanocorpusculum
Methanoculleus
bourgensis
Methanoculleus
chikugoensis
Methanoculleus
marisnigri
Methanoculleus
marisnigri JR1
Methanoculleus
palmolei
Methanoculleus
receptaculi
Methanoculleus
submarinus
Methanoculleus
thermophilus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanoculleus
Methanofollis
aquaemaris
Methanofollis
ethanolicus
Methanofollis
formosanus
Methanofollis
liminatans
Methanofollis
tationis
Methanofollis
Methanofollis
Methanofollis
Methanofollis
Methanogenium
boonei
Methanogenium
cariaci
Methanogenium
frigidum
Methanogenium
marinum
Methanogenium
organophilum
Methanogenium
Methanogenium
archaeon ACE1_A
Methanogenium
archaeon SCALE-14
Methanogenium
Methanoplanus
endosymbiosus
Methanoplanus
limicola
Methanoplanus
petrolearius
Methanoplanus
Methanoplanus
archaeon 11aR
archaeon 22aZ
archaeon 29aM
archaeon 34aM
archaeon 56aR
archaeon 66aM
archaeon 6aM
Nasutitermes takasagoensis
Nasutitermes takasagoensis
Pericapritermes nitobei symbiont
Plagiopyla nasuta symbiont
Brachonella sp.
Caenomorpha sp.
Caenomorpha sp. 10
Caenomorpha sp. 2
Caenomorpha-like sp. 1
Caenomorpha-like sp. 4
Caenomorpha-like sp. 8
archaeon
Methanospirillum
hungatei
Methanospirillum
Methanospirillum
Methanospirillum
Methanospirillum
Methanospirillum
Methanospirillum
Methanospirillum
Methanospirillum
Methanomicrobium
Methanomicrobium mobile
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanobacterium sp. enrichment
Methanomicrobium
Methanomicrobium sp.
Methanomicrobium
Methanolacinia
Methanolacinia paynteri
archaeon
Palaeococcus
ferrophilus
Palaeococcus
Helgesonii
Palaeococcus
Pyrococcus
abyssi
Pyrococcus
Furiosus
Pyrococcus
Glycovorans
Pyrococcus
Horikoshii
Pyrococcus
Pyrococcus woesei
Pyrococcus sp.
Pyrococcus sp. 12/1
Pyrococcus sp. 121
Pyrococcus sp. 303
Pyrococcus sp. 304
Pyrococcus sp. 312
Pyrococcus sp. 32-4
Pyrococcus sp. 321
Pyrococcus sp. 322
Pyrococcus sp. 323
Pyrococcus sp. 324
Pyrococcus sp. 95-12-1
Pyrococcus sp. AV5
Pyrococcus sp. Ax99-7
Pyrococcus sp. C2
Pyrococcus sp. CH1
Pyrococcus sp. ES4
Pyrococcus sp. EX2
Pyrococcus sp. Fla95-Pc
Pyrococcus sp. GB-3A
Pyrococcus sp. GB-D
Pyrococcus sp. GBD
Pyrococcus sp. GI-H
Pyrococcus sp. GI-J
Pyrococcus sp. GIL
Pyrococcus sp. HT3
Pyrococcus sp. JT1
Pyrococcus sp. MA2.31
Pyrococcus sp. MA2.32
Pyrococcus sp. MA2.34
Pyrococcus sp. MV1019
Pyrococcus sp. MV4
Pyrococcus sp. MV7
Pyrococcus sp. MZ14
Pyrococcus sp. MZ4
Pyrococcus sp. NA2
Pyrococcus sp. NS102-T
Pyrococcus sp. Pikanate 5017
Pyrococcus sp. ST700
Pyrococcus sp. Tc-2-70
Pyrococcus sp. Tc95-7C-I
Pyrococcus sp. TC95-7C-S
Pyrococcus sp. Tc95_6
Pyrococcus sp. V211
Pyrococcus sp. V212
Pyrococcus sp. V221
Pyrococcus sp. V222
Pyrococcus sp. V231
Pyrococcus sp. V232
Pyrococcus sp. V61
Pyrococcus sp. V62
Pyrococcus sp. V63
Pyrococcus sp. V72
Pyrococcus sp. V73
Pyrococcus sp. VB112
Pyrococcus sp. VB113
Pyrococcus sp. VB81
Pyrococcus sp. VB82
Pyrococcus sp. VB83
Pyrococcus sp. VB85
Pyrococcus sp. VB86
Pyrococcus sp. VB93
Thermococcus
Thermococcus acidaminovorans
Thermococcus aegaeus
Thermococcus aggregans
Thermococcus alcaliphilus
Thermococcus atlanticus
Thermococcus barophilus
Thermococcus barophilus MP
Thermococcus barossii
Thermococcus celer
Thermococcus celericrescens
Thermococcus chitonophagus
Thermococcus coalescens
Thermococcus fumicolans
Thermococcus gammatolerans
Thermococcus gammatolerans
Thermococcus gorgonarius
Thermococcus guaymasensis
Thermococcus hydrothermalis
Thermococcus kodakarensis
Thermococcus kodakarensis
Thermococcus litoralis
Thermococcus litoralis DSM 5473
Thermococcus marinus
Thermococcus mexicalis
Thermococcus nautilus
Thermococcus onnurineus
Thermococcus onnurineus NA1
Thermococcus pacificus
Thermococcus peptonophilus
Thermococcus peptonophilus
Thermococcus profundus
Thermococcus radiotolerans
Thermococcus sibiricus
Thermococcus sibiricus MM 739
Thermococcus siculi
Thermococcus stetteri
Thermococcus thioreducens
Thermococcus waimanguensis
Thermococcus waiotapuensis
Thermococcus zilligii
Thermococcus sp.
Thermococcus sp. ‘AEPII 1a’
Thermococcus sp. ‘Bio pl
Thermococcus sp. 11N.A5
Thermococcus sp. 12-4
Thermococcus sp. 13-2
Thermococcus sp. 13-3
Thermococcus sp. 1519
Thermococcus sp. 21-1
Thermococcus sp. 23-1
Thermococcus sp. 23-2
Thermococcus sp. 26-2
Thermococcus sp. 26-3
Thermococcus sp. 26/2
Thermococcus sp. 28-1
Thermococcus sp. 29-1
Thermococcus sp. 300-Tc
Thermococcus sp. 31-1
Thermococcus sp. 31-3
Thermococcus sp. 5-1
Thermococcus sp. 70-4-2
Thermococcus sp. 83-5-2
Thermococcus sp. 9N2
Thermococcus sp. 9N2.20
Thermococcus sp. 9N2.21
Thermococcus sp. 9N3
Thermococcus sp. 9oN-7
Thermococcus sp. A4
Thermococcus sp. AF1T14.13
Thermococcus sp. AF1T1423
Thermococcus sp. AF1T20.11
Thermococcus sp. AF1T6.10
Thermococcus sp. AF1T6.12
Thermococcus sp. AF1T6.63
Thermococcus sp. AF2T511
Thermococcus sp. Ag85-vw
Thermococcus sp. AM4
Thermococcus sp. AMT11
Thermococcus sp. Anhete70-I78
Thermococcus sp. Anhete70-SCI
Thermococcus sp. Anhete85-I78
Thermococcus sp. Anhete85-SCI
Thermococcus sp. AT1273
Thermococcus sp. Ax00-17
Thermococcus sp. Ax00-27
Thermococcus sp. Ax00-39
Thermococcus sp. Ax00-45
Thermococcus sp. Ax01-2
Thermococcus sp. Ax01-3
Thermococcus sp. Ax01-37
Thermococcus sp. Ax01-39
Thermococcus sp. Ax01-61
Thermococcus sp. Ax01-62
Thermococcus sp. Ax01-65
Thermococcus sp. Ax98-43
Thermococcus sp. Ax98-46
Thermococcus sp. Ax98-48
Thermococcus sp. Ax99-47
Thermococcus sp. Ax99-57
Thermococcus sp. Ax99-67
Thermococcus sp. B1
Thermococcus sp. B1001
Thermococcus sp. B4
Thermococcus sp. BHI60a21
Thermococcus sp. BHI80a28
Thermococcus sp. BHI80a40
Thermococcus sp. CAR-80
Thermococcus sp. CKU-1
Thermococcus sp. CKU-199
Thermococcus sp. CL1
Thermococcus sp. CL2
Thermococcus sp. CMI
Thermococcus sp. CNR-5
Thermococcus sp. CX1
Thermococcus sp. CX2
Thermococcus sp. CX3
Thermococcus sp. CX4
Thermococcus sp. CYA
Thermococcus sp. Dex80a71
Thermococcus sp. Dex80a75
Thermococcus sp. ES1
Thermococcus sp. Fe85_1_2
Thermococcus sp. GB18
Thermococcus sp. GB20
Thermococcus sp. GE8
Thermococcus sp. Gorda2
Thermococcus sp. Gorda3
Thermococcus sp. Gorda4
Thermococcus sp. Gorda5
Thermococcus sp. Gorda6
Thermococcus sp. GT
Thermococcus sp. GU5L5
Thermococcus sp. HJ21
Thermococcus sp. JDF-3
Thermococcus sp. KI
Thermococcus sp. KS-1
Thermococcus sp. KS-8
Thermococcus sp. MA2.27
Thermococcus sp. MA2.28
Thermococcus sp. MA2.29
Thermococcus sp. MA2.33
Thermococcus sp. MV1031
Thermococcus sp. MV1049
Thermococcus sp. MV1083
Thermococcus sp. MV1092
Thermococcus sp. MV1099
Thermococcus sp. MZ1
Thermococcus sp. MZ10
Thermococcus sp. MZ11
Thermococcus sp. MZ12
Thermococcus sp. MZ13
Thermococcus sp. MZ2
Thermococcus sp. MZ3
Thermococcus sp. MZ5
Thermococcus sp. MZ6
Thermococcus sp. MZ8
Thermococcus sp. MZ9
Thermococcus sp. NS85-T
Thermococcus sp. P6
Thermococcus sp. Pd70
Thermococcus sp. Pd85
Thermococcus sp. Rt3
Thermococcus sp. SB611
Thermococcus sp. SN531
Thermococcus sp. SRB55_1
Thermococcus sp. SRB70_1
Thermococcus sp. SRB70_10
Thermococcus sp. Tc-1-70
Thermococcus sp. Tc-1-85
Thermococcus sp. Tc-1-95
Thermococcus sp. Tc-2-85
Thermococcus sp. Tc-2-95
Thermococcus sp. Tc-365-70
Thermococcus sp. Tc-365-85
Thermococcus sp. Tc-365-95
Thermococcus sp. Tc-4-70
Thermococcus sp. Tc-4-85
Thermococcus sp. Tc-I-70
Thermococcus sp. Tc-I-85
Thermococcus sp. Tc-S-70
Thermococcus sp. Tc-S-85
Thermococcus sp. Tc55_1
Thermococcus sp. Tc55_12
Thermococcus sp. Tc70-4C-I
Thermococcus sp. Tc70-4C-S
Thermococcus sp. Tc70-7C-I
Thermococcus sp. Tc70-7C-S
Thermococcus sp. Tc70-CRC-I
Thermococcus sp. Tc70-CRC-S
Thermococcus sp. Tc70-MC-S
Thermococcus sp. Tc70-SC-I
Thermococcus sp. Tc70-SC-S
Thermococcus sp. Tc70-vw
Thermococcus sp. Tc70_1
Thermococcus sp. Tc70_10
Thermococcus sp. Tc70_11
Thermococcus sp. Tc70_12
Thermococcus sp. Tc70_20
Thermococcus sp. Tc70_6
Thermococcus sp. Tc70_9
Thermococcus sp. Tc85-0 age SC
Thermococcus sp. Tc85-4C-I
Thermococcus sp. Tc85-4C-S
Thermococcus sp. Tc85-7C-S
Thermococcus sp. Tc85-CRC-I
Thermococcus sp. Tc85-CRC-S
Thermococcus sp. Tc85-MC-I
Thermococcus sp. Tc85-MC-S
Thermococcus sp. Tc85-SC-I
Thermococcus sp. Tc85-SC-ISCS
Thermococcus sp. Tc85-SC-S
Thermococcus sp. Tc85_1
Thermococcus sp. Tc85_10
Thermococcus sp. Tc85_11
Thermococcus sp. Tc85_12
Thermococcus sp. Tc85_13
Thermococcus sp. Tc85_19
Thermococcus sp. Tc85_2
Thermococcus sp. Tc85_20
Thermococcus sp. Tc85_9
Thermococcus sp. Tc95-CRC-I
Thermococcus sp. Tc95-CRC-S
Thermococcus sp. Tc95-MC-I
Thermococcus sp. Tc95-MC-S
Thermococcus sp. Tc95-SC-S
Thermococcus sp. TK1
Thermococcus sp. TM1
Thermococcus sp. TS3
Thermococcus sp. vp197
Thermococcus sp. enrichment
Acidiplasma
aeolicum
Ferroplasma
acidarmanus
Ferroplasma
acidiphilum
Ferroplasma
Cupricumulans
Ferroplasma
Thermophilum
Ferroplasma
Ferroplasma
Ferroplasma
Ferroplasma
Picrophilus
Oshimae
Picrophilus
torridus
Thermoplasmataceae
Acidophilum
Thermoplasmataceae
Volcanium
Thermoplasmataceae
Thermoplasmataceae
Thermoplasmataceae
Thermoplasmataceae
Thermoplasmataceae
Thermoplasmataceae
Thermoplasmataceae
Thermoplasmataceae
Thermogymnomonas
acidicola
Caldisphaera
draconis
Caldisphaera
lagunensis
Caldisphaera
Acidilobus
aceticus
Acidilobus
saccharovorans
Acidilobus
sulfurireducens
Acidilobus
Acidilobus
Acidilobus
Acidilobus
Fervidicoccus
fontis
Acidianus
ambivalens
Acidianus
brierleyi
Acidianus
convivator
Acidianus
hospitalis
Acidianus
infernus
Acidianus
manzaensis
Acidianus
pozzuoliensis
Acidianus
sulfidivorans
Acidianus
tengchongensis
Acidianus
Acidianus
Acidianus
Acidianus
Acidianus
Acidianus
Acidianus
Thermofilum
librum
Thermofilum
pendens
Thermofilum
Thermofilum
Candidatus
yellowstonii
Nitrosocaldus
Candidatus
Nitrosocaldus
Candidatus
gargensis
Nitrososphaera
Candidatus
Nitrososphaera
Axinella damicornis
Axinella verrucosa
Axinella sp.
442118)
550548)
550549)
550550)
550551)
550552)
550553)
550554)
550555)
550556)
550557)
550558)
550559)
550560)
550561)
550562)
550563)
550564)
550565)
550566)
550567)
550568)
550569)
550570)
550572)
550573)
550575)
550576)
550578)
550579)
550581)
550584)
550585)
550587)
550588)
550590)
550591)
550593)
550594)
550596)
550597)
550599)
550600)
550601)
550602)
550603)
550604)
550606)
550607)
550609)
550610)
550612)
550613)
550615)
550616)
550618)
550619)
550621)
550622)
550624)
550625)
550627)
550628)
550630)
550631)
550633)
550634)
550636)
550637)
550639)
This application is a continuation-in-part of International Application No. PCT/US10/40944, filed on Jul. 2, 2010, which itself claims the benefit of U.S. Application No. 61/222,621, filed Jul. 2, 2009, and claims the benefit of U.S. Application No. 61/430,071, filed Jan. 5, 2011, all of which are hereby incorporated by reference in their entirety in the present application.
Number | Date | Country | |
---|---|---|---|
61222621 | Jul 2009 | US | |
61430071 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US10/40944 | Jul 2010 | US |
Child | 13049775 | US |