The present teachings are directed toward an improved high speed cooking system capable of thoroughly cooking and searing common foods. In particular, the disclosure relates to a high speed cooking system utilizing radiative heat along with another food cooking system to evenly and quickly cook a food product. In a preferred embodiment, the radiative heat is used with microwave ovens.
A need has been recognized in the food industry for food cooking systems that can quickly and thoroughly heat a food product to produce a seared food product. Traditional cooking methods such as stove top, ovens, steaming, etc., take long times to cook. One method of quickly cooking food uses microwave ovens. Microwave ovens are widely used for cooking foods in a relatively short amount of time. Microwave technology provides an efficient method for cooking food by providing a resonant cavity that heats food through dielectric heating. As microwave radiation passes through the food, the polar water molecules inside the food continuously oscillate as they attempt to align themselves with the alternating electric field of the microwaves. The substance's molecular vibrations are observed as heat. This is described in great detail in U.S. Pat. No. 2,147,689 and Chemistry Society Rev., 1997. Issue 3, pages 233-238.
Although microwave ovens provide an effective system for directly heating foods and liquids such as soup, broccoli, and asparagus, they are not effective with searing and/or grilling foods such as meats, breads, or fried foods. This is primarily because the water fails to reach temperatures greater than 220° Fahrenheit (F), far below the 300° F. required to achieve grilling. Additionally, some foods do not cook evenly or well in a microwave. For example, fully cooking meats such as chicken or beef in a microwave often changes the texture and mouth feel of the meat, resulting in “rubbery” or “leathery” meat.
In some cases, foods can be delivered in a microwave with a package that has a special susceptor material that absorbs the microwave radiation and heats up beyond 220° F., providing the ability to create some charring or high temperature oil heating (as with popcorn packaging). Yet, this packaging fails to provide similar conditions to a grill or oven where high temperatures release flavors in further combination with smoke and oils. Thus, these systems cook fast, but do not produce a grilled or seared product.
Radiative heat is another way to cook food relatively quickly. For example, U.S. Application Publication No. 2010/0166397 Al describes a cooking system that is able to cook foods in under a minute using a highly concentrated infrared radiation oven using a wire mesh. This oven operates at a power level of over 10 Kilowatts (kW) is able to cook thin food products in under a minute including pizza, bread, and bacon. The system is also very effective at very quickly heating foods such as meats, breads, vegetables, cheeses, and other starches. U.S. Application Publication No. 2010/0169196 Al describes a similar oven that can further be combined into a vending system and is capable of delivering foods such as thin pizzas in under a minute of cooking.
Although the ovens described in U.S. Application Publications Nos. 2010/0166397 A1 and 2010/0169196 A1 are very effective as a radiation system, the infrared radiation is not effective at deeply penetrating the foods. For example, a 25 millimeter (mm) thick hamburger cooked solely using the system described in U.S. Application Publication No. 2010/0166397 Al will only have a cooked surface at a depth of about 2-5 mm. Attempts at cycling or allowing the heat to migrate through the meat create longer than desired cycle times and thus, obviate the reasons for using the fast cooking systems. Thus, these systems cook fast, but not through thick food products.
Additionally, neither microwaves nor radiative heat systems optimize their cooking characteristics based on the intrinsic molecular make-up of the foods cooked by the system. For example, a microwave oven can heat water to 220° F. effectively, but is less effective at heating lipids quickly. Conversely, radiative ovens can heat some lipids effectively, but are less effective at heating water quickly. Additionally, radiative ovens using traditional bulb technology do not heat some lipids effectively, and the high heat causes lipids to splatter. As a result, the heated lipids land on the heating element, and actually break the bulbs.
The prior art does not, however, exemplify high speed cooking systems that produce evenly cooked, yet seared food with a satisfying taste, texture and mouth feel.
As used herein, “accelerated time” or “short duration” refers to the length of time to produce a fully cooked, seared food product by a first and/or second heat source. In some embodiments, that accelerated time refers to less than about 5 minutes. In some embodiments, the accelerated time refers to less than about 4 minutes. In some embodiments, the accelerated time refers to less than about 3 minutes, less than about 2 minutes, or less than about 1 minute.
As used herein, “food product” refers to a consumable product exposed to heat from a first and/or second heat source. The food product can be a pre-packaged product, or subjected to manufacturing processing before exposure to heat. The food product can be an un-packaged product. In some embodiments, the food product is a consumable product that includes whole fruits or vegetables. In some embodiments, the food product includes asparagus, broccoli, cauliflower, squash, zucchini, potatoes, sweet potatoes, eggplant, carrots, tomatoes, onions, or combinations thereof. In some embodiments, the food product is derived from animal protein, and includes steaks, chops, roasts or ground meat. In some embodiments, the animal protein can include beef, pork, lamb, goat, venison, buffalo, bison, chicken, turkey, pheasant, fish, shellfish, or combinations thereof. In some embodiments, the food product can be a combination of a fruit or vegetable and an animal protein. In some embodiments, the food product can be a battered food product, such as a breaded chicken cutlet, or tempura vegetables.
As used herein, “grilled,” “seared,” or “charred” refers to a caramelized crust formed on the surface of a food product as the result of exposure to high heat. In some embodiments, the crust is formed when the surface of the food exceeds 150° C. (300° F.). In some embodiments, the seared crust results in a coloration change of all or a portion of the food product. In some embodiments, the seared crust results in a changed or enhanced flavor of the food product when compared to a food product not exposed to high heat. In some embodiments, a browning, color change or flavor change can be the result of the Maillard Reaction.
When cooking food products, there are two non-enzymatic browning processes governing the release of flavors and aromas that are named Caramelization and the Maillard Reaction. However, the Maillard Reaction is the primary contributor to the flavor and aroma of cooked foods. The rate of these reactions vary, increasing with temperature and decreasing with moisture content. The Maillard Reaction is not favored in microwave cooking due to the high moisture content of the food and its surrounding air. The high moisture content of the food surface inhibits the browning effect of the Maillard Reaction, resulting in a product that is under flavored and is perceived as undercooked (See, Jennifer M. Ames, Control of the Maillard reaction in food systems, Trends in Food Science & Technology, Volume 1, July 1990, Pages 150-154).
Pyrolyisis is the process that is specifically responsible for the browning at the outermost layer of a cooked food product. Pyrolysis of carbohydrates and proteins requires temperatures substantially higher than 100° C. (212° F.), so pyrolysis does not occur as long as free water is present, e.g., in boiling food not even in a pressure cooker. When heated in the presence of water, carbohydrates and proteins suffer gradual hydrolysis rather than pyrolysis. Indeed, for most foods, pyrolysis is usually confined to the outer layers of food, and begins only after those layers have dried out.
According to one embodiment, a method of cooking a food product comprising providing a radiative oven comprising a heating element and a stored energy element to power the heating element, selectively heating primarily an interior of a food product, and searing an exterior of the food product using the radiative oven is described.
In some embodiments, the heating element operates at greater than 800° Fahrenheit and reaches the operating temperature from an ambient temperature in a duration that is less than 30 seconds. In some embodiments, the radiative oven operates at greater than 1100° Fahrenheit and reaches the operating temperature from an ambient temperature in a duration that is less than 5 seconds.
In some embodiments, the method further comprises providing a vending machine including the radiative oven, dispensing the food product into the radiative oven, and dispensing to the consumer. In some embodiments, the vending machine further comprises a microwave oven for the selectively heating of primarily the interior of the food product. In some embodiments, the method further comprises packaging the food product in a plastic pouch prior to cooking. In some embodiments, the dispensing of the food product into the radiative oven is by a user. In some embodiments, the dispensing of the food product into the radiative oven is by an automated dispenser. In some embodiments, the method further comprises removing the food product from a pouch prior to dispensing the food product into the radiative oven.
In some embodiments, the method further comprises dispensing bread in the radiative oven along with the food product. In some embodiments, the searing comprises heating an exterior of the food product to char an exterior surface of the food product. In some embodiments, the selectively heating partially cooks the food product. In some embodiments, the method further comprises breading the food product after the selectively heating of the food product. In some embodiments, the selectively heating of the food product is done at a food preparation center and the searing is done at a location remote to the food preparation center.
In some embodiments, the food product is a ground hamburger patty, a salmon filet, a chicken filet, a French fry, or a vegetable. In some embodiments, the food product is a ground hamburger patty, a microwave oven selectively heats primarily the interior of the ground hamburger patty for 60 seconds; and a radiative oven sears the exterior portion of the hamburger patty for 60 seconds. In some embodiment, the food product is a salmon fillet, a microwave oven selectively heats primarily the interior of the salmon filet for 40 seconds; and a radiative oven sears the exterior portion of the salmon filet for 45 seconds. In some embodiments, the food product is a chicken breast, a microwave oven selectively heats primarily the interior of the chicken breast for 140 seconds; and a radiative oven sears the exterior portion of the chicken breast for 80 seconds. In some embodiments, the food product is an asparagus spear, a microwave oven selectively heats primarily the interior of the asparagus spear for 40 seconds; and a radiative oven sears the exterior portion of the asparagus spear for 12 seconds.
In some embodiments, the heating element comprises a wire mesh element. In some embodiments, the heating element comprises a lamp.
The same reference number represents the same element on all drawings. It should be noted that the drawings are not necessarily to scale. The foregoing and other objects, aspects, and advantages are better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
In some embodiments, a system and process for cooking a food product comprising selectively heating primarily the interior of a food product, and searing the exterior of the food product using a radiative oven, wherein the radiative oven operates at greater than 1100° Fahrenheit and reaches the operating temperature from an ambient temperature in a duration that is less than 5 seconds is described.
As shown in
Once the interior portion of food product 120 is sufficiently heated, the partially heated food product 120 is transferred to a second heat source where the exterior portion of food product 120 is seared 130. The time and temperature that the exterior portion of food product 120 is seared will vary depending upon the type of food product 110 and the heat source. Non-limiting examples of sources to sear the exterior portion of food product 120 include radiation ovens, grills, broilers, etc. In some examples, the searing heat source requires direct contact with food product 120.In some examples, the searing heat source requires indirect contact with food product 120. In one example, food product 120 is placed within a 10 kW (or more) radiative oven and heated via radiation.
Importantly, the ability to sear the exterior portion of food product 120 must occur quickly. Thus, a source of heat to sear or char food product 120 must be able to reach charring temperature from ambient temperature in short duration. In some embodiments, the source of heat can reach about 900° F., about 1000° F., about 1100° or about 1200° F. in less than about 30 seconds. In some embodiments the source of heat can reach about 900° F., about 1000° F., 1100° or about 1200° F. in less than about 20 seconds. In some embodiments, the source of heat can reach about 900° F., about 1000° F., 1100° or about 1200° F. in less than about 10 seconds from ambient temperature. In some embodiments, the source of heat can reach about 900° F., about 1000° F., 1100° or about 1200° F. in less than about 5 seconds from ambient temperature.
The exterior portion of food product 120 must occur quickly, or in short duration without burning food product 120, and allowing the interior portion of food product 120 to finish cooking. In some embodiments, the charring of exterior portion of food product 120 must occur in less than 120 seconds. In some embodiments, the charring of the exterior portion of food product 120 must occur in less than about 110, about 100, about 90, about 80, about 70, about 60, about 50, about 40, about 30, about 20, about 10 or about 5 seconds, or any interval therebetween.
In some embodiments, the charring of the exterior portion of food product 120 can occur from a single exposure to a searing heat source. In some embodiments, the charring of the exterior portion of food product 120 can occur from multiple exposures to a searing heat source. For example, food product 120 that has already had an interior portion partially heated can be exposed to a searing heat source for 20 seconds, when the searing heat source sears both a top portion and a bottom portion of food product 120 concurrently. In another example, food product 120 that has already had an interior portion partially heated can be exposed to a searing heat source for a total of 30 seconds, with a first exposure of 15 seconds to a top portion of food product 120, and a second exposure of 15 seconds to a bottom portion of food product 120. Of course, other protocols for exposing food product 120 that has already had an interior portion partially heated are contemplated.
In a preferred embodiment, food product 110 is heated using a microwave oven until the interior portion of food product 120 is sufficiently heated. Food product 120 is then transferred to a 13-14 kW (or more) radiative oven capable of reaching about 1100° F. in less than 5 seconds from an ambient temperature. The external portion of food product 120 is then exposed to radiant heat from the 13-14 kW (or more) radiative oven for a time sufficient to sear the external portion of food product 120.
The process of heating primarily an interior portion of food product 120 and searing an exterior portion of food product 130 advantageously not only cooks and sears food very quickly, but produces a fully cooked seared food product 140 with superior taste, consistency and mouth feel when compared to traditional cooking processes which take much longer to produce. In part, such results are due to considerations such as molecular make-up, thickness, and solidity of the food product.
In some embodiments of vending machine 200, both a microwave and a radiative oven can be housed in the same machine. In some embodiments, vending machine 200 may only house a radiative oven, and the heat source which heats primarily the interior portion of food product 240 is located nearby. For example, the vending machine may house the radiative oven, but the microwave may be across a room, or located in another room in a commercial setting. In an example where vending machine 200 houses both a microwave oven and a 10 kW, 11 kW, 12, kW, 13 kW or 14 kW oven, these heat sources may share a single power source such as energy from a standard 110 V wall outlet. In some embodiments where vending machine 200 houses both a microwave oven and a 10 kW, 11 kW, 12, kW, 13 kW or 14 kW radiative oven, these heat sources may have different power sources. For example, the microwave oven may include a standard plug for a 110 Volt outlet, and the microwave oven may be powered by a stored energy device.
In some embodiments, a food product can be distributed as a fully cooked, but refrigerated or frozen product that required heating. Such packaging would allow the food product to have an adequate shelf life to not degrade or spoil until ready to be consumed. In some embodiments, the food product can be distributed as wholly uncooked products, and will be fully cooked by exposure to the first and second heat sources.
Food product may contain a single food product, or may contain several distinct portions. For example, the food product may be a single chicken breast. In another example, the food product may be a hamburger patty, French fries and hamburger bun. In some examples, the food product is purchased by the end user separately for use of the cooking system. In some embodiments, the food product is purchased with use of the cooking system at the time of cooking.
In embodiments wherein the food product is purchased at the time the system is used to cook the food product, the packaging may individually package each food item. In other embodiments, a food product made of multiple components may be packaged together.
As discussed above, the present process optimizes the heating of the food product based on the intrinsic molecular make-up of the foods cooked by the system. Foods have different heat permeability characteristics depending upon type, density, size, and weight. For example, a 1″×1″×1″ beef steak has a lower heat permeability than a 1″×1″×1″ cubed potato, which has a lower heat permeability to 1″×1″×1″ hamburger patty of ground beef. A skilled artisan would readily understand how to adjust the cooking parameters in order to cook partially the interior portion of the food product only enough to allow the exterior portion to be seared sufficiently while allowing the interior portion to finish cooking. Thus, a skilled artisan would be able to adjust the cooking parameter to sear a 1″ thick beef steak to a rare, medium rare, medium or well interior temperature.
For example, a skilled artisan would know how to adjust cooking beef or lamb to the following internal temperatures shown in Table 1:
A study of the heating and absorption characteristics of water and various lipids was performed using a microwave oven or a 14-15 kW radiative oven was performed. In a first study, the time for 50 grams (g) of water or 100% olive oil to reach 200 degrees was measured. In a second study, the time for 75 grams of water or 100% olive oil to reach 300 degrees was measured. A Panasonic brand microwave model SD997 operating at 1250 W was used in the microwave portion of the study. A radiative oven operating at about 14-15K watts, similar to those described in U.S. Application Publications Nos. 2010/0166397 Al and 2010/0169196 A1 was used in the radiative portion of the study. The results of the study are presented in Table 2:
As seen from the table, the microwave is able to raise the temperature of the water, but is not as effective with respect to raising the temperature of the olive oil. In fact, the maximum temperature of the water reached was 212° F. degrees. Searing of food occurs at 300° F. As such, a microwave oven cannot easily produce charred food. In contrast, the high radiation oven is able to raise the temperature of the fat and water, but is not able to do so as effectively for the water as a microwave.
The optimized accelerated cooking protocols of various food products were performed using a microwave oven and a 14-15 kW radiative oven. Specifically, asparagus, french fries (raw and frozen), chicken breast, salmon filets or hamburger patties were cooked using microwaves and a radiative oven. A Panasonic brand microwave model SD997 operating at 1250 W was used in the microwave portion of the study. A radiative oven operating at 14-15 kW watts, similar to those described in U.S. Application Publications Nos. 2010/0166397 A1 and 2010/0169196 A1 was used. The specific cooking times and protocols are presented in Table 3:
As seen from the table and
These examples demonstrate the versatility of the system described herein, cooking fresh and frozen food products, as well as both ground beef patties and solid animal protein food products such as chicken breasts and salmon filets. The process can be implemented according to any of the embodiments in order to obtain several advantages, if desired. An effective and fast process of searing a food product with superior taste, texture and mouth feel can be provided. Advantageously, the food product is produced faster and with higher quality than with any process currently available.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Those skilled in the art will readily recognize the various modifications and changes which may be made to the present invention without strictly following the exemplary embodiments illustrated and described herein, and without departing from the true spirit and scope of the present invention, which are set forth in the following claims.
U.S. Patent Application Publication No. 2010/0169196 Al (U.S. patent application Ser. No. 12/345,899) filed Dec. 30, 2008, and U.S. Patent Application Publication No. 2010/0166397 Al (U.S. patent application Ser. No. 12/345,939) filed Dec. 30, 2008 are incorporated herein in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13284426 | Oct 2011 | US |
Child | 15863957 | US |