The present invention relates to copy protection of data content that is displayed by a computer on a display device, including inter alia content displayed by a web browser.
Information in the form of text and imagery is commonly transmitted among computers within files such as Microsoft Word documents, Microsoft Excel spreadsheets, Microsoft PowerPoint slides, HTML web pages, XML documents and many other types of files that include text and imagery. Typically, a user viewing such files on a display device can freely copy portions of displayed text and imagery by several well-known means. For example, a user can select a portion of text with an input device such as a mouse or keyboard, copy the selected portion of text and paste it into another document, such as the body of an e-mail. For another example, a user can capture the contents of a screen into a clipboard by performing a screen capture, and then insert the contents from the clipboard into another document.
Text within web pages is particularly susceptible to copying. Web browsers displaying HTML pages typically enable a user to view source files for HTML pages being displayed. For example, in the Microsoft Windows operating system running Microsoft Internet Explorer or Netscape Communicator web browsers, a user merely clicks on a right mouse button when the mouse is positioned over an HTML page, and selects “View Source.” The source file for the HTML page is then typically displayed in its entirety within a new window. A user can then readily select any portion of text from the source file, copy it and paste it into another document.
Some applications, such as Adobe's PDF Acrobat, can create non-editable files that can only be viewed within an application that disables the ability to copy selections of text, such as Adobe's PDF Reader. However, a user can capture any portion of a PDF file displayed on a screen by performing a simple screen capture.
Many information services earn their revenues by providing valuable information to clients. Examples of such services include financial services, marketing services, news services and legal services. Moreover, such information is often provided electronically. Using today's technology, a subscriber who receives such electronic information can easily copy it and e-mail it to others, thereby obviating the need for others to subscribe to the service and pay additional subscription fees.
There is thus a pressing need to find a way to prevent text and imagery that is displayed on a computer from being copied without authorization.
U.S. Pat. No. 5,905,505 of Lesk describes an image-based method and system for protecting text displayed on a screen. Lesk operates on a bit-mapped image of the text. Lesk creates two perturbed images, by adding random bits to the bit-mapped image of the text, and rapidly interlaces the two perturbed images. In this way, a user sees the desired image of the text by averaging both perturbed images, but at any given moment only one of the two perturbed images is displayed on the screen. Thus someone copying data from the screen only captures a perturbed image, which is difficult to decipher.
Lesk is difficult to implement in practice, since (1) the random bits have to be generated in such a way that the average of the two perturbed images appears “clean” and legible, whereas each of the individual perturbed images appears “dirty,”, (2) Lesk has to be practiced at the level of a video display buffer, (3) for Internet applications, Lesk has to be practiced for each portion of an HTML page being viewed, and (4) it may not be comfortable for a user to view a monitor that is constantly flickering alternating displays. Moreover, it is possible to overcome Lesk by capturing two screens containing both perturbed images, and then averaging them together digitally.
There is thus a need to find a simpler and more practical way to prevent text and imagery displayed on a computer screen from being copied without authorization.
The present invention provides a method and system for copy protection of displayed content, including text and imagery within a document page, such as an HTML page, that is displayed by a computer on a display device. In a preferred embodiment, the present invention encrypts content designated as protected, and only decrypts the content when a page containing the content is being rendered into a graphics device for display. This serves to protect the designated content while it is off-screen. Specifically, when the present invention is employed to protect text content, an application viewing a source listing of the document page, or capturing the document page, is only able to capture encrypted text, which typically appears as gibberish.
To supplement the off-screen protection, the present invention preferably incorporates the invention described in assignee's application U.S. Ser. No. 09/397,331, now U.S. Pat. No. 6,298,446, filed on Sep. 14, 1999, entitled “Method and System for Copyright Protection of Digital Images Transmitted over Networks.” The invention described in U.S. Ser. No. 09/397,331 protects data while it is on-screen. Thus, the present invention, when combined with the invention described in U.S. Ser. No. 09/397,331 protects designated content both while it is on-screen and while it is off-screen.
In a preferred embodiment of the present invention, protected text and imagery in HTML pages or other documents is encrypted, and only decrypted when being rendered into a graphics device by system text rendering functions such as Microsoft Windows' TextOut( ) function or Macintosh's DrawText( ) function.
In a general context the present invention provides a methodology to protect content that is rendered and formatted using patchable system calls. The present invention applies not only to protection of text and imagery, but also to protection of audio data, video data and other data content.
The present invention is useful for protection of content within HTML pages and e-mail and, more generally, for protection of enterprise data.
Although a user viewing content is able to see protected content, at every other level of the system except for a display buffer within a video card, the content is encrypted. In distinction to the present invention, conventional encryption technologies, such as PGP, decrypt encrypted content to a temporary file, from which a user views protected content. The present invention, however, does not decrypt encrypted content at the application level—only at the display level.
There is thus provided in accordance with a preferred embodiment of the present invention a method for altering text displayed in a formatted page, including locating a buffer of memory locations containing contents of a formatted page, locating a text string between two markers within the buffer, replacing the text string with an alternate text string, and inserting special fill characters in unfilled memory locations between the markers.
There is further provided in accordance with a preferred embodiment of the present invention a system for altering text displayed in a formatted page, including a buffer of memory locations containing contents of a formatted page, a search processor locating a text string between two markers within the buffer, and a text processor replacing the text string with an alternate text string and inserting special fill characters in unfilled memory locations between the markers.
The present invention will be more fully understood and appreciated from the following detailed description, taken in conjunction with the drawings in which:
The present invention provides a method and system for copy protection of displayed content, including text and imagery within a document page, such as an HTML page, that is displayed by a computer on a display device. In a preferred embodiment, the present invention encrypts content designated as protected, and only decrypts the content when a page containing the content is being rendered into a graphics device for display. This serves to protect the designated content while it is off-screen. Specifically, when the present invention is employed to protect text content, an application viewing a source listing of a document page, or capturing a document page, is only able to capture encrypted text, which typically appears as gibberish.
To supplement the off-screen protection, the present invention preferably incorporates the invention described in assignee's application U.S. Ser. No. 09/397,331, now U.S. Pat. No. 6,298,446, filed on Sep. 14, 1999, entitled “Method and System for Copyright Protection of Digital Images Transmitted over Networks,” the contents of which are hereby incorporated by reference. The invention described in U.S. Ser. No. 09/397,331 protects data while it is on-screen. Thus, the present invention, when combined with the invention described in U.S. Ser. No. 09/397,331 protects designated content both while it is on-screen and while it is off-screen.
In general terms the present invention preferably operates by encrypting protected content at its source, such as on a server computer, and only decrypting the content when writing it into a display buffer for video display. Thus an application handling the content is in fact handling encrypted content, and any attempt to copy content from the application, such as by copying a file or by attaching content to an e-mail, can only expose encrypted content.
Protected content is exposed when being written into a display buffer for display and, while in the display buffer, it is protected using applicant's invention as described in U.S. Ser. No. 09/397,331.
Reference is now made to
Also shown in
As shown in
Reference is now made to
The encrypted content is then passed to rendering functions 240, in order to determine a layout for displaying the web page. However, in order for rendering functions 240 to determine a layout appropriate for decrypted content, the content is preferably passed in and out of decoder 250 prior to being processed by rendering functions 240. Rendering functions 240 return to web browser 230 layout information for a display page containing decrypted content, although web browser 230 continues to hold encrypted content. The layout information returned by rendering functions 240 may be different than the layout information within the web page served by web server 220, as explained in detail hereinbelow.
Web browser 230 uses the layout information to prepare a display page for display buffer 260. However, on the way to display buffer 260, decoder 250 preferably intercepts the display page data and decodes the content included therein, so that in fact display buffer 260 contains a display page with decrypted content. Finally, display buffer 260 writes its data to a display device 270, which displays decrypted content.
To describe the role of rendering functions 240 in more detail, consider a case in which the protected content is text. The layout of text within a page depends on the size of a view window containing the page, the placement of other objects within the page, and fonts of characters within the text, and other parameters. The same text string, for example, generally has different layouts within view windows of different sizes, as illustrated hereinbelow in
Rendering functions 240 are preferably used to determine inter alia the breakup of text into lines and the placement of words within a display page. For protected text, web browser 230 passes encrypted text to rendering functions 240. Typically, encrypted text would have a different layout within a display page than decrypted text. As such, were rendering functions 240 to process the encrypted text, they would return incompatible layout information to web browser 230. In turn, this would result in a display page with incorrect text layout for the decrypted text. In order to avoid this problem, decoder 250 decrypts the text on its way from web browser 230 to rendering functions 240.
Reference is now made to
At step 340 the web browser, in order to display the web page with the included content, invokes rendering functions to determine a page layout for display. At step 350 the client computer intercepts the web page data on its way from the web browser to the rendering functions, and decodes the encrypted content. At step 360 the web browser renders the web page into a display page for writing to a display buffer. At step 370 the client computer intercepts the web page data before it is rendered into a display page, and decodes the encrypted content. Finally, at step 380 the client computer displays the display page written in the display buffer, which now contains decrypted content.
It is apparent to those skilled in the art that many variations of the method and system described in
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Netscape Communicator determines how words of text are distributed into lines by means of a system function call GetTextExtent. As used in the present specification, the name “GetTextExtent” is a generic name used to denote one of several system functions to determine text layout, including inter alia the functions GetTextExtentPoint, GetTextExtentExPoint and GetTextExtentPoint32. The function GetTextExtent accepts a text string as input and determines its width, so that Communicator can decide how many words fit into a current line. For example, referring to
If the text strings passed to GetTextExtent( ) had been encrypted text, then typically the wrong break up of words into lines would be determined; namely, a break up corresponding to encrypted text instead of decrypted text. In turn, the display page rendered by Netscape with decrypted text would have display errors. Typically, incorrectly decrypted text results in a white gap appearing on the right side of the browser window, since encrypted text is typically wider than decrypted text.
Reference is now made to
Client computer 620 includes a receiver 630 that receives the page and transfers it to a formatter 640 for determining a page layout, as described hereinbelow. After formatter 640 determines a page layout, a renderer 650 renders the page into a graphics device 660. By way of example, renderer 650 may be a web browser, which renders HTML pages. Also, by way of example, graphics device 660 may be a memory device, a screen device or a graphics port. Within the Microsoft Windows operating system, Netscape Communicator renders HTML pages directly into a screen device, and Microsoft Internet Explorer renders HTML pages into a memory device. Within the Macintosh operating system, both Netscape Communicator and Microsoft Internet Explorer render HTML pages into a graphics port.
Finally, a portion of data in graphics device 660, or all of the data in graphics device 660, is displayed on a display device 670 connected to client computer 620.
The operation of formatter 640 will now be described. Formatter 640 determines a page layout for a given page. Typically, formatter 640 determines how many words to place within lines of the given page, based on the font type and font size currently selected. To determine widths of words, formatter 640 sends character strings to a string size module 680. String module 680 accepts a character string as input, and returns the width of the string, based on the font type and font size currently selected. Formatter 640 repeatedly sends individual words to string module 680, or strings with multiple words therein, in order to identify widths of text and thereby determine how many words to fit within lines of the page. Formatter 640 passes a page layout to renderer 650. String module 680 is typically an operating system function, such as the Microsoft Windows GetTextExtent( ) function.
The operation of renderer 650 will now be described. Renderer 650 sends content such as text to a content output module 690. Content output module accepts content as input and converts the content to rendered content, such as raster output, for writing to graphics device 660. Content output module 690 is typically one or more operating system functions, such as the Microsoft Windows TextOut( ) function and the Macintosh DrawText( ) function.
Reference is now made to
At step 730 the client computer receives the page. At step 740 the client computer formats the page to determine a page layout. At step 750 the client computer renders the page into a graphics device, based on the page layout. At step 760 the client computer displays a portion or all of the contents in the buffer on a display device connected to the client computer.
Reference is now made to
A parser 810 parses a page and identifies original content that is designated as protected. Such identified original content is transferred to an encoder 820 that encrypts the original content into encrypted content. The encrypted content and the page are transferred to an editor 830 that replaces the identified original content with the encrypted content, within the page. Transmitter 610 then transmits the page with the encrypted content to client computer 620 over the Internet.
Receiver 630 within client computer 620 receives the page with the encrypted content and transfers it to renderer 650 for rendering the page into a graphics device 660. In a preferred embodiment of the present invention, renderer 650 identifies the encrypted content and transfers it to a decoder 840 that decodes the encrypted content prior to the content being passed to content output module 690. Content output module 690 converts the decrypted content to rendered content, which is written into graphics device 660. Finally, a portion of data in graphics device 660, or all of the data in graphics device 660, is displayed on display device 670 connected to client computer 620.
An important aspect of the present invention is that without the intervention of decoder 840, the page being rendered into graphics device 660 would contain encrypted content. Any other application that captures data from the page will only capture the encrypted content, which typically appears as gibberish. Thus the original content designated as protected is not exposed to other applications.
Reference is now made to
At step 730 the client computer receives the page with the encrypted portion of content. At step 750 the client computer renders the page with the encrypted portion of content into a graphics device. While rendering the page, at step 940 the client computer decodes the encrypted portions of content prior to the content being rendered into the graphics device. At step 760 the client computer displays a portion or all of the contents in the graphics device on a display device connected to the client computer.
Although a user of the present invention viewing content sees decrypted content, at every other level of the system except for a display buffer within a video card, the content is encrypted. In distinction to the present invention, conventional encryption technologies, such as PGP, decrypt encrypted content to a temporary file, from which a user views protected content. The present invention, however, does not decrypt encrypted content at the application level—only at the display level.
Although the present invention is described in
Additionally, the present invention can be embodied in separate computers, not necessarily within a client server environment, whereby one computer is used for creating a document with protected text, and another computer is used for viewing the document. The computer creating the document preferably includes parser 810, encoder 820 and editor 830, and the computer viewing the document preferably includes renderer 650, decoder 840 and graphics device 660. Similarly, steps 710, 910, 920 and 930 are preferably performed by the computer creating the document, and steps 750, 940 and 760 are preferably performed by the computer viewing the document.
Additionally, a page with encrypted content may already be stored within client computer 620, in which case the use of server computer 600 to encrypt and transmit the page is unnecessary.
The present invention may alternatively employ a filter, rather than server computer 600, in order to encrypt protected content. Such a filter can be embodied in the form of a COM object or a Java bean that can interface with enterprise applications such as Microsoft Exchange. Thus it may be appreciated that the present invention can be adapted to protect content within HTML and e-mail and, more generally, to protect enterprise data.
The formatting of text within a document page can be pre-determined based on formatting parameters and control characters pre-set by a user creating the document, or dynamically at the time of rendering based on dimensions of a display window. The former setup is typical for highly structured documents, such as Microsoft Word documents. When creating such documents, a user can pre-set font sizes, character, line and paragraph spacings, and left, right, top and bottom margins, and insert white space characters, indentation characters, and carriage return/line feed characters within text. In this scenario, the user creating the document has substantial control over the way text within the document is formatted.
The latter setup is typical for less structured documents, such as HTML web pages. As can be seen in a source listing for an HTML page, text within HTML is typically strung out as a long stream of characters, without carriage return/line feeds markings. A web browser typically dictates the format of text within an HTML page dynamically at the time of rendering, based on computer display settings, relative font sizes for different levels of headings and body text, and the layout of other objects within the HTML page such as images and hyper links. Thus, for example, the text within the HTML page illustrated in
Typically dynamic formatting is performed by measuring widths of words or elements on a page. From this information, a layout of the page can be determined. With text, for example, the layout is determined based on how many words can be fit within one line before starting a new line. Once a layout has been determined, text and other elements are rendered to a screen in correct locations.
Many applications use functions similar to the Windows Device Context API function
For example, the following program instructions illustrate a typical device context setup.
Since the present invention operates by replacing protected original text with encrypted text, it is important to address the issue that characters and words of the encrypted text may not have the same sizes and widths as those of the original text. For applications with dynamic text layout, formatter 640 (
One approach to this issue is to ensure that the characters and words of the encrypted text have the same sizes and lengths as those of the original text, by using character-by-character encryption. However, character-by-character encryption has a drawback of being too simplistic an encoding—one that can easily be cracked. Moreover, the server may not know what fonts are available on the client.
In a preferred embodiment, the present invention operates by employing more complex encryption than character-by-character encryption, and “fooling” formatter 640 into believing that the encrypted text does indeed have the same character and word sizes as the original text, when in fact it does not.
As mentioned hereinabove, formatter 640 typically determines a page layout based on widths of words in text, and it typically identifies such widths by invoking functions such as Microsoft Windows' GetTextExtent( ). In a preferred embodiment, the present invention patches such functions so as to return lengths of words in the decrypted text, instead of lengths of words in the encrypted text within the page. Specifically, the patched portion of GetTextExtent( ) decrypts the input string and passes the decrypted string to the conventional GetTextExtent( ) function. Formatter 640 then determines a layout based upon the decrypted text, rather than upon the encrypted text.
Typically formatters do not simply call GetTextExtent( ) with individual words in order to determine how many words fill up a line. Rather, they call GetTextExtent( ) with larger units, such as a complete sentence or even a complete paragraph. Based on the size returned by GetTextExtent( ), the formatter then iteratively sends a shorter string or longer string, depending on whether the previous string size was in excess or in deficiency of a full line, respectively. In any event, the present invention, by decrypting whatever string is input to GetTextExtent( ) ensures that the size returned by GetTextExtent( ) corresponds to decrypted text rather than to encrypted text.
Typically, the steps involved in rendering a page having text and possibly other objects are:
Thus it may be appreciated that the present invention can employ complex encryption algorithms, based on words rather than individual characters, without suffering from improper text layouts. The present invention can employ encryption algorithms that encrypt each word, and that add leading and trailing characters to flag text as being encrypted. The present invention can also pad encrypted text so that identical words have distinct encrypted representations, thereby preventing users from thwarting the present invention by building up dictionaries of encrypted and matching decrypted words.
Reference is now made to
Reference is now made to
Implementation Details
Unlike Netscape's Communicator web browser, Microsoft's Internet Explorer web browser does not use a GetTextExtent function to determine layout of text within a display page. Instead, Microsoft's HTML library, mshtml.dll, calls a library named msls31.dll for text processing. Specifically, it calls a function named LsCreateLine( ) within msls31.dll to determine breakup of text into lines.
The function LsCreateLine( ) uses a memory buffer to store contents from an HTML page. The contents are stored between markers for HTML tags. Specifically, Internet Explorer uses a special 16-bit Unicode marker as a placeholder for an HTML tag. Internet Explorer 5, for example, uses U+FFFE Unicode markers to delineate HTML text within tags, and Internet Explorer 6 uses U+FDEF Unicode markers. For the sake of clarity, the special marker is referred to as U+FFFE hereinbelow, but it will be appreciated by those skilled in the art that the actual Unicode marker character used by a browser may differ from browser version to browser version.
The text portion of an HTML page is written to the buffer in 16-bit Unicode characters, between appropriate markers. The positions of the markers are stored in a look-up table.
Reference is now made to
For protected text, the HTML page contains encrypted text rather than original text. Thus Unicode characters 1220 come from an encrypted text string “#X@T7?% S#+UG*)”. In accordance with a preferred embodiment of the present invention, buffer 1200 is modified by replacing encrypted text with decrypted text. Modified buffer 1250 includes the same U+FFFE markers 1210, but it holds Unicode characters 1260 from a decrypted text string “Four score”, rather than from the encrypted text string.
It is noted that the decrypted string has fewer characters than the encrypted string. Preferably this is the case in general. As such, Unicode characters 1260 from the decrypted string occupy fewer memory locations than Unicode characters 1210 from the encrypted string. If the extra space were to be collapsed by closing in the U+FFFE markers in buffer 1250, then the look-up table storing the marker addresses would no longer be consistent with the buffer contents. In turn, this would generally result in incorrect formatting when the Internet Explorer browser tries to display the HTML page.
In a preferred embodiment of the present invention, the unfilled memory locations in buffer 1250 are filled with an invisible Unicode character U+200F. This special character is ignored by the browser, similar to the way zeros are ignored in front of integers. Moreover, the U+200F Unicode character is only ignored when it is in front of other Unicode characters, rather than behind them, analogous to the way zeros are ignored in front of integers but not at the end of integers. As such, the present invention preferably pads U+200F Unicode characters 1270 in front of the decrypted characters 1260, so as to fill the buffer between markers 1210.
More precisely, as shown in
Buffer 1250, containing the decrypted text, is then processed by LsCreateLine as if the HTML page itself had contained the decrypted string.
In a preferred embodiment of the present invention, decoding step 940 (
The term “patching” as used throughout the present invention includes several techniques for intervening with a function call. These include:
In several Microsoft Windows operating systems, when an application is executed, the system creates a look-up table in its process space, with addresses for each of the system functions called by the application. The present invention preferably identifies entries in the look-up table corresponding to functions that it patches, and replaces the addresses in the look-up table with addresses to other functions.
The present invention operates by patching system functions such as TextOut( ) and DrawText( ) so as to decode encrypted content prior to rasterization. In this way, the page itself never exists as a page with decrypted content on client computer 140 (
Assignee's patent application U.S. Ser. No. 09/397,331, now U.S. Pat. No. 6,298,446, referenced hereinabove, describes protection of raster data displayed on a display device. Using the method and system described therein, graphical system functions such as BitBlt( ), StretchBlt( ), PlgBlt( ) and GetPixel( ) can be patched so that if an application performs a screen capture, the image that is actually captured is watermarked or else is a substitute image altogether. Thus by combining the present invention with the invention described in U.S. Ser. No. 09/397,331, original text can be protected both while it is on screen and while it is off screen.
In a preferred embodiment, for reasons of security the present invention is selective as to which device contexts it renders decrypted data to. For example, the present invention may be configured so as to render decrypted data to screen device contexts but not to render decrypted data to memory or printer device contexts. The permitted device contexts are preferably stored in a “white list,” which the present invention accesses to determine whether or not to render decrypted data to a specific device context.
Additional Considerations
In reading the above description, persons skilled in the art will realize that there are many apparent variations that can be applied to the methods and systems described. Although the present invention has been described with reference to copy protection of text, it applies to other forms of data as well, including audio data, image data and video data. The present invention provides a general methodology to protect content of data that is rendered and formatted using patchable system calls.
For example, the present invention can be applied to image data by encrypting the data prior to its being saved or converted into a graphics format. On the receiving end, such data is rendered into a bitmap and then displayed by employing systems calls such as BitBlt( ) and StretchBlt( ). In a preferred embodiment, at the point at which the encrypted image data is passed to BitBlt( ) or StretchBlt( ) for display, the present invention decrypts the image data by patching the BitBlt( ) and StretchBlt( ) system functions.
Similarly, for audio data, the present invention preferably replaces such data with encrypted data, and only decodes the encrypted data when it is being rendered to a device for playing on an audio sound card.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific exemplary embodiments without departing from the broader spirit and scope of the invention as set forth in the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application is a continuation of and incorporates by reference assignee's application U.S. Ser. No. 09/996,623, now U.S. Pat. No. 6,993,662, filed on Nov. 28, 2001 and entitled “Method and System for Copy Protection of Displayed Data Content.” This application is a continuation-in-part of assignee's pending application U.S. Ser. No. 09/774,236, filed on Jan. 29, 2001 and entitled “Method and System for Copy Protection of Data Content,” which is a continuation-in-part of assignee's application U.S. Ser. No. 09/397,331, now U.S. Pat. No. 6,298,446, filed on Sep. 14, 1999 and entitled “Method and System for Copyright Protection of Digital Images Transmitted over Networks.”
Number | Name | Date | Kind |
---|---|---|---|
4405829 | Rivest et al. | Sep 1983 | A |
4586811 | Kubo et al. | May 1986 | A |
4827508 | Shear | May 1989 | A |
4977594 | Shear | Dec 1990 | A |
4991118 | Akiyama et al. | Feb 1991 | A |
5012232 | Fadem | Apr 1991 | A |
5050213 | Shear | Sep 1991 | A |
5300946 | Patrick | Apr 1994 | A |
5303370 | Brosh et al. | Apr 1994 | A |
5410598 | Shear | Apr 1995 | A |
5454067 | Tsai | Sep 1995 | A |
5509070 | Schull | Apr 1996 | A |
5533124 | Smith et al. | Jul 1996 | A |
5559933 | Boswell | Sep 1996 | A |
5570306 | Soo | Oct 1996 | A |
5590258 | Aoyama | Dec 1996 | A |
5636292 | Rhoads | Jun 1997 | A |
5638513 | Ananda | Jun 1997 | A |
5642207 | Smitt | Jun 1997 | A |
5710834 | Rhoads | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5721788 | Powell et al. | Feb 1998 | A |
5745254 | Saton | Apr 1998 | A |
5745360 | Leone et al. | Apr 1998 | A |
5745604 | Rhoads | Apr 1998 | A |
5748763 | Rhoads | May 1998 | A |
5748783 | Rhoads | May 1998 | A |
5754170 | Ranganathan | May 1998 | A |
5758068 | Brandt et al. | May 1998 | A |
5761669 | Montague et al. | Jun 1998 | A |
5761686 | Bloomberg | Jun 1998 | A |
5764770 | Schipper et al. | Jun 1998 | A |
5765152 | Erickson | Jun 1998 | A |
5768426 | Rhoads | Jun 1998 | A |
5778372 | Cordell et al. | Jul 1998 | A |
5781914 | Stork et al. | Jul 1998 | A |
5790117 | Halviatti et al. | Aug 1998 | A |
5801679 | McCain | Sep 1998 | A |
5801689 | Huntsman | Sep 1998 | A |
5805724 | Metcalfe et al. | Sep 1998 | A |
5809160 | Powell et al. | Sep 1998 | A |
5822432 | Moskowitz et al. | Oct 1998 | A |
5822436 | Rhoads | Oct 1998 | A |
5832119 | Rhoads | Nov 1998 | A |
5835712 | DuFresne | Nov 1998 | A |
5835722 | Bradshaw et al. | Nov 1998 | A |
5838902 | Shin | Nov 1998 | A |
5841886 | Rhoads | Nov 1998 | A |
5841978 | Rhoads | Nov 1998 | A |
5850481 | Rhoads | Dec 1998 | A |
5862260 | Rhoads | Jan 1999 | A |
5870544 | Curtis | Feb 1999 | A |
5872915 | Dykes et al. | Feb 1999 | A |
5875249 | Mintzer et al. | Feb 1999 | A |
5875296 | Shi et al. | Feb 1999 | A |
5881287 | Mast | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5893101 | Balogh et al. | Apr 1999 | A |
5900005 | Saito | May 1999 | A |
5901277 | Chu et al. | May 1999 | A |
5905505 | Lesk | May 1999 | A |
5920848 | Schultzer et al. | Jul 1999 | A |
5954028 | Miyashita et al. | Sep 1999 | A |
5968119 | Stedman et al. | Oct 1999 | A |
5974441 | Rogers et al. | Oct 1999 | A |
5982931 | Ishimaru | Nov 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
5983351 | Glogan | Nov 1999 | A |
5986676 | Dwin et al. | Nov 1999 | A |
5991399 | Graunke et al. | Nov 1999 | A |
5999622 | Yasukawa et al. | Dec 1999 | A |
5999941 | Anderson | Dec 1999 | A |
6009410 | LeMole et al. | Dec 1999 | A |
6011905 | Huttenlocher et al. | Jan 2000 | A |
6014702 | King et al. | Jan 2000 | A |
6032150 | Nguyen | Feb 2000 | A |
6038031 | Murphy | Mar 2000 | A |
6052780 | Glover | Apr 2000 | A |
6055530 | Sato | Apr 2000 | A |
6088355 | Mills et al. | Jul 2000 | A |
6119108 | Holmes et al. | Sep 2000 | A |
6121970 | Guedalia | Sep 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6178243 | Pomerantz et al. | Jan 2001 | B1 |
6202092 | Takimoto | Mar 2001 | B1 |
6205480 | Broadhurst et al. | Mar 2001 | B1 |
6209036 | Aldred et al. | Mar 2001 | B1 |
6209103 | Schreiber et al. | Mar 2001 | B1 |
6212329 | Sugahara | Apr 2001 | B1 |
6236387 | Imada | May 2001 | B1 |
6240450 | Sharples et al. | May 2001 | B1 |
6260141 | Park | Jul 2001 | B1 |
6263365 | Scherpbier | Jul 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6282362 | Murphy et al. | Aug 2001 | B1 |
6282653 | Berstis et al. | Aug 2001 | B1 |
6289137 | Sugiyama et al. | Sep 2001 | B1 |
6298422 | Spilo et al. | Oct 2001 | B1 |
6298446 | Schreiber et al. | Oct 2001 | B1 |
6314409 | Schneck et al. | Nov 2001 | B2 |
6324569 | Ogilvie et al. | Nov 2001 | B1 |
6339761 | Cottingham | Jan 2002 | B1 |
6339826 | Hayes, Jr. et al. | Jan 2002 | B2 |
6343274 | McCollom et al. | Jan 2002 | B1 |
6343738 | Ogilvie | Feb 2002 | B1 |
6353892 | Schreiber et al. | Mar 2002 | B2 |
6385728 | DeBry | May 2002 | B1 |
6438575 | Khan et al. | Aug 2002 | B1 |
6460140 | Schoch et al. | Oct 2002 | B1 |
6463467 | Mages et al. | Oct 2002 | B1 |
6470450 | Langford et al. | Oct 2002 | B1 |
6480959 | Granger et al. | Nov 2002 | B1 |
6487543 | Ozaki et al. | Nov 2002 | B1 |
6557103 | Boncelet, Jr. et al. | Apr 2003 | B1 |
6587127 | Leeke et al. | Jul 2003 | B1 |
6601108 | Marmor | Jul 2003 | B1 |
6611845 | Dockter et al. | Aug 2003 | B1 |
6615191 | Seeley | Sep 2003 | B1 |
6618484 | Van Wie et al. | Sep 2003 | B1 |
6659861 | Faris et al. | Dec 2003 | B1 |
6661904 | Sasich et al. | Dec 2003 | B1 |
6664969 | Emerson et al. | Dec 2003 | B1 |
6668246 | Yeung et al. | Dec 2003 | B1 |
6675201 | Parkkinen | Jan 2004 | B1 |
6694434 | McGee et al. | Feb 2004 | B1 |
6766454 | Riggins | Jul 2004 | B1 |
6785015 | Smith et al. | Aug 2004 | B1 |
6804452 | Kuroda et al. | Oct 2004 | B1 |
6877005 | Hunter et al. | Apr 2005 | B2 |
6903681 | Faris et al. | Jun 2005 | B2 |
6931532 | Davis et al. | Aug 2005 | B1 |
6976248 | Balassanian | Dec 2005 | B2 |
7190878 | Bolduc | Mar 2007 | B2 |
20010021926 | Schneck et al. | Sep 2001 | A1 |
20010042045 | Howard et al. | Nov 2001 | A1 |
20020013792 | Imielinski et al. | Jan 2002 | A1 |
20020021807 | Saito | Feb 2002 | A1 |
20020026475 | Marmor | Feb 2002 | A1 |
20020059344 | Britton et al. | May 2002 | A1 |
20020078343 | Rubin et al. | Jun 2002 | A1 |
20020078361 | Giroux et al. | Jun 2002 | A1 |
20020112250 | Koplar et al. | Aug 2002 | A1 |
20020156742 | Ogino et al. | Oct 2002 | A1 |
20020188570 | Holliman et al. | Dec 2002 | A1 |
20020194485 | Ram et al. | Dec 2002 | A1 |
20030133702 | Collart | Jul 2003 | A1 |
20040054630 | Ginter et al. | Mar 2004 | A1 |
20040225890 | Kang et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
1517215 | Mar 2005 | EP |
WO 9825373 | Jun 1998 | WO |
WO 9844424 | Oct 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050240759 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09996623 | Nov 2001 | US |
Child | 11169823 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09774236 | Jan 2001 | US |
Child | 09996623 | US | |
Parent | 09397331 | Sep 1999 | US |
Child | 09774236 | US |