The present invention relates generally to a dynamic behavior control apparatus for an automotive vehicle, and more specifically, to a method and apparatus for correcting offsets in vehicle dynamic sensors.
Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Typical dynamic control systems include sensors corresponding to various vehicle dynamics. Examples thereof include: a yaw rate sensor, a roll rate sensor, a longitudinal acceleration sensor, and a lateral acceleration sensor. Typical dynamic control systems also include a controller that receives the sensor signals and controls various safety and stability systems in response thereto.
During various different phases of vehicle operation, the aforementioned sensors tend to generate errors that may result in false signals received in the controller.
It would therefore be desirable to provide a correction or compensation system and method. The new system should not require additional sensors and should also not require shutting-down dynamic control sensors. The present invention is directed to these ends.
It is therefore an object of the invention to provide a system for correcting for offsets within vehicle dynamic sensors.
In one aspect of the invention, a sensor offset correction method for a vehicle includes generating a first offset correction signal for a vehicle dynamic sensor at a sensor power-up, generating a second offset correction signal for the vehicle dynamic sensor when the vehicle is moving, and correcting the vehicle dynamic sensor in response to the first offset correction signal and the second offset correction signal.
In a further aspect of the invention, a control system for an automotive vehicle having a vehicle body includes a cluster of vehicle dynamic sensors positioned within the vehicle body adapted to generate a plurality of vehicle dynamic signals.
The system may further include a controller adapted to receive the plurality of vehicle dynamic signals, generate a first offset correction signal for one of the cluster of the vehicle dynamic sensors in response to a DC bias and at a sensor power-up, generate a second offset correction signal for the one of the cluster of the vehicle dynamic sensors in response to a signal equivalent to a temperature drift signal and when the vehicle is moving, generate a third offset correction signal for the one of the cluster of the vehicle dynamic sensors when the vehicle is at rest and the one of the cluster of the vehicle dynamic sensors is below an accuracy threshold, and correct the one of the cluster of the vehicle dynamic sensors in response to the first offset correction signal, the second offset correction signal and the third offset correction signal.
One advantage of the invention is that readings from vehicle dynamic sensors are more accurate.
Other objects and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures the same reference numerals are used to identify the same components.
Referring to
The vehicle control system 18 includes the sensor system 16. The sensing system 16 may use a six control sensor set including three axial accelerometers including a lateral accelerometer 27 (generating a lateral acceleration signal), a longitudinal accelerometer 28 (generating a longitudinal acceleration signal), and a vertical accelerometer 29 (generating a vertical acceleration signal) and three axial rotation rate detectors including a yaw rate sensor 30 (generating a yaw rate signal), a roll rate sensor 31 (generating a roll rate signal), and a pitch rate sensor 32 (generating a pitch signal). Of course, those skilled in the art will recognize that one or more sensors may not be included in the system 18.
The sensor system 16 further includes various other sensors, such as wheel speed sensors 20, a steering angle sensor 33 (hand-wheel sensor), and steering angle position sensors 34 (road-wheel sensors). As one skilled in the art will understand, the various sensors generate a plurality of vehicle dynamic signals. These are further described below.
The vehicle control system 18 may also include the controller 26. The controller 26 receives the plurality of vehicle dynamic signals and generates a first offset correction signal for one of the cluster 16 of the vehicle dynamic sensors (27, 28, 30, or 31) in response to a DC bias and at a sensor power-up. The controller 26 also generates a second offset correction signal for the one of the cluster 16 of the vehicle dynamic sensors (27, 28, 30, or 31) in response to a signal equivalent to a temperature drift signal and when the vehicle 19 is moving. The controller 26 further generates a third offset correction signal for the one of the cluster 16 of the vehicle dynamic sensors (27, 28, 30, or 31) when the vehicle 19 is at rest and the sensor is below an accuracy threshold. The controller 26 still further corrects the vehicle dynamic sensing system 16 in response to the first offset correction signal, the second offset correction signal and the third offset correction signal.
Based upon inputs from the sensor system 16, the controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors are used in a commercial embodiment. The safety device 38 may control an airbag 40 or a steering actuator or braking actuator at one or more of the wheels of the vehicle 19. Also, other vehicle components such as a suspension control 48 are used to adjust the suspension to prevent rollover. Suspension control 48 may include an anti-roll bar.
In this system 18, the output signals from the RSC sensors (Yaw Rate Sensor 30, Roll Rate Sensor 31, Longitudinal Acceleration Sensor 28, Lateral Acceleration Sensor 27) are corrected for errors by removing the zero output DC bias. Such bias constitutes an error that may occur as a result of temperature changes, manufacturing defects, or other factors. This system 18 also compensates for the drift in the sensor output signals that can occur during vehicle operation.
In one embodiment, to reduce run time, calculations of the offset variables are not performed during Anti-Lock Brake (ABS), Active Yaw Control (AYC), Traction Control System (TCS), or Roll Stability Control (RSC) events. Runtime for the system 18 is highest during these events. The signals, however, are filtered and compensated during this time. Calculations of offset variables are also paused when the flag is set (one example of logic therefore includes: RSC_SENSORS_DISTURBED). This flag is set externally when the sensors are undergoing a self-test, the sensor values are too high, or the rate of change is higher than expected.
An example of logic therefore includes: If (ABS_CYCLE ∥ AYC_CYCLE ∥ RSC_CYCLE ∥ TCS-CYCLE); (In generic terms, if ABS, AYC, TCS or RSC are active then the following logic runs.)
{offset_comp( )}; (This function compensates and filters out the signals from sensor.)
else {if(!SENSORS_DISTURBED) {offset_initializaton( ); (This function initializes the offset values.)
if (VEHICLE_STANDSTILL) (offset_resting( ); (When the vehicle 19 is standing still, this function is called.)
else {offset_signals( );} (When the vehicle 19 is moving, this function is called.)
{offset-comp( )} (This function compensates and filters out the signals from sensors.)
One example of offset compensation external inputs to the aforementioned logic includes:
There are three phases of operation occurring within the controller 26: 1) Initialization, normally occurring at electric power-on of the vehicle 19; 2) Resting, occurring whenever the vehicle 19 is not in motion; and 3) Dynamic, occurring when the vehicle 19 is in motion.
Referring to
Initialization of Roll Rate or roll rate signal and Yaw Rate or yaw rate signal occurs when the vehicle ignition key is turned on or electrical power is otherwise supplied to the vehicle systems. INITIALIZATION_COMPLETE indicates a flag is set at the end of initialization. Initialization eliminates initial D.C. bias that is present at the initialization.
If the vehicle 19 is standing still when the ignition is turned on, the offsets are computed such that the filtered roll rate and yaw rate is approximately zero deg/sec. Other vehicle movement checks when standing still, such as rolling or turning, are also performed. Initialization continues until the initialization timer reaches, for example, one second. If the vehicle 19 starts moving before initialization is complete, the average of the maximum and minimum offset values (that have been calculated over a long time period, such as the entire operating time of the vehicle 19) are computed and used as the initial offset values.
In one embodiment, the average of the yaw rate and roll rate is limited to between, for example, +−3.5 deg/sec, because the sensor specification defines the +−3.5 deg/sec example as the worst case zero point offset for the rate sensors.
Initialization occurs when the vehicle ignition is turned on, or electrical power is otherwise supplied to the vehicle systems. If the vehicle 19 is standing still when the ignition is turned on, then the offsets are computed such that the filtered Ax (Longitudinal Acceleration) and Ay (Lateral Acceleration) values are approximately equal to the Ax and Ay values that existed and were written to the controller EEPROM 47 (Electrically Erasable Programmable Read-Only Memory) when power was removed from the system 18 at the end of the previous driving cycle.
If the vehicle 19 was not standing still when the previous EEPROM 47 write occurred or an EEPROM 47 write did not occur during the last ignition off, then the offsets is computed by taking the average of the maximum and minimum value. The system assumes that the geographical location of the vehicle 19 has not been changed since the vehicle 19 has been shut off. Also to minimize error if the vehicle 19 has been moved during an ignition off, the Ax and Ay offset calculations are limited to within the boundaries of maximum and minimum values from EEPROM 47.
An example of initialization logic includes:
For the aforementioned logic, one example of offset initialization external inputs includes:
One example of offset initialization outputs include:
Offset initialization parameters include: rr_ofst_eep_max, which is the maximum limit that the roll rate offset can be; yr_ofst_eep_max, which is the maximum limit that the yaw rate offset can be; along_ofst_eep_max, which is the maximum limit that the longitudinal acceleration offset can be; alat_ofst_eep_max, which is the maximum limit that the lateral acceleration offset can be.
One example of offset initialization state variables includes: bf_uc_initialization_status, which is an initialization flag for checking initialization condition status, and ss_tim_initialization_timer, which sets a start time for the initialization timer.
In one embodiment of the present invention, if the vehicle 19 starts moving before the initialization completes, a flag is set, and an initial value of the Ax and Ay offsets is computed by taking the maximum and minimum offsets values from EEPROM 47. When the initial value is calculated by taking the average of the maximum and the minimum value, it is always limited to, for example, +−1.5 m/sec^2 for the acceleration sensors, because the acceleration sensors should not experience the worst case zero point offset of greater than, for example, 0.11 g. An example of logic therefore includes:
In operation block 64, a second offset correction signal is generated for the vehicle dynamic sensor (27, 28, 30, or 31) when the vehicle 19 is moving. The second offset signal deals with moving conditions of the vehicle. Embodiments thereof are discussed below.
If the vehicle 19 is turning continuously for a given time period (15 seconds is used in this example) in one direction, offset compensation may be paused for yaw rate, roll rate, and Ay. If the vehicle 19 is turning continuously to the right hand side, a negative turn flag is set and if it is turning to the left hand side, a positive turning flag is set. Logic to illustrate this includes:
To clarify the aforementioned logic, an example of dynamic offset external inputs includes:
An example of dynamic offset variables includes:
An example of dynamic offset outputs includes:
One embodiment of dynamic offset parameters includes: TURNING_TIME; MAX_COUNT_VALUE; MIN_COUNT_VALUE; Rr_ofst_eep_max; Yr_ofst_eep_max; Alat_ofst_eep_max; Along_ofst_eep_max; and p_LOOP_TIME_SEC.
Under most normal driving circumstances, the average yaw rate and the average roll rate should be close to zero over a long period of time. Any time a non-zero value is detected for the yaw rate and/or roll rate, they are compensated for continuously by a very small amount, which is equal to the maximum temperature drift rate for the signal.
Over a long period of time, the average road bank angle is considered to be zero. Any time a non-zero value is detected, lateral acceleration offset is adjusted in the controller 26 such that lateral acceleration will drive road bank angle to zero.
Over a long period of time, the average road pitch angle is considered to be zero. Any time a non-zero value is detected, longitudinal acceleration offset is adjusted in the controller 26 such that longitudinal acceleration will drive pitch angle to zero. Road pitch angle is calculated by taking the current pitch angle estimate and then subtracting the relative pitch angle and the pitch angle offset. Logic to illustrate this includes:
RoadPitchEst=PitchAngleEst−PitchOffset−PitchRelative;
In operation block 66, a third offset correction signal is generated for a vehicle dynamic sensor when the vehicle 19 is at rest. Embodiments thereof are included below.
An example of offset resting external inputs includes:
An example of offset resting state variables includes:
An example of offset resting outputs includes:
An example of offset resting parameters includes: 1. Yr_ofst_eep_max; 2. ALLOWED_RESTING_ROLL_ACC: Acceleration that is allowed when standing still; 3. ALLOWED_RESTING_YAW_ACC: Acceleration that is allowed when standing still.
After the vehicle 19 comes to a complete stop, to ensure that no transient signals (such as may be caused by the vehicle 19 rocking, bouncing, or swaying on its suspension) are received in the controller 26, the controller 26 waits, for example, an additional second. An example of logic thereof includes:
An average value for filtered lateral acceleration (Ax) and longitudinal acceleration (Ay) for a period of 1 second is generated after the vehicle 19 has come to a stop. These values are used to compute the Ax and Ay offsets during standing still. Any drifts in Ax and Ay are considered to be due to sensor drifts and is compensated for by applying the appropriate offset. An example of logic and inputs therefore follow.
One example of filtering and compensation external inputs includes:
One example of filtering and compensation state variables includes:
One example of filtering and compensation outputs includes:
One example of filtering and compensation parameters includes: RR_MAX_LOOP; RR_DECR_CNTR; YR_MAX_LOOP; YR_DECR_CNTR; AX_MAX_LOOP; AX_DECR_CNTR; AY_MAX_LOOP; and AY_DECR_CNTR.
Filtering and compensation logic includes the computed values of the offsets taken out from the raw value before they are filtered. Therefore: RawRollRate−=RollRateOffset; RawYawRate−=YawRateOffset; RawAx−=AxOffset; and RawAy−=AyOffset.
An embodiment of logic for generating offsets during standing still includes:
If any vehicle rolling motions or change in yaw is picked up when stopped, VEHICLE_STOPPED_FOR_ONE_SEC and HOLD_RESTING_VALUES flags is unset. Resting Ax and Ay values (step 2) is re-computed after this. Logic therefore includes:
Any changes in lateral acceleration and longitudinal acceleration are assumed to be due to sensor drifts when the vehicle 19 is at a standstill. Logic to illustrate this includes:
During a vehicle standstill, offset compensation is performed within the controller 26 such that the filtered roll and yaw rate is zero. Logic to illustrate this includes:
If the vehicle 19 is turned while standing still, like when the vehicle 19 is stopped/parked on a turntable of a parking facility (referred to as a turntable event), the offset compensation is held constant until the turning is completed by calculating a resting yaw rate compensation value while the vehicle 19 is standing still. No fast compensation is performed while the vehicle 19 is standing still for the resting yaw rate. If this value exceeds a threshold, offset compensation is paused until it is below the threshold. Logic to illustrate this includes:
If an initialization has taken place during a turn table type event, it is corrected when the vehicle 19 is standing still after initialization. In such event, the offsets value is reset to the average of the maximum and the minimum values from EEPROM 47. In such cases, the rate sensors (27, 28, 30, or 31) are limited to, for example, +−3.5 deg/sec and the acceleration sensors is limited to, for example, +−1.5 m/sec^2. The controller 26 achieves this by taking the initial value of the yaw rate after the completion of offset initialization and FltYRRest. Logic to illustrate this includes:
In operation block 68, the vehicle dynamic sensor (27, 28, 30, or 31) is corrected in response to the first offset correction signal, the second offset correction signal, and the third offset correction signal.
In other words, the computed values of the offsets are taken out from the raw sensor value before the sensors (27, 28, 30, or 31) are filtered. Logic to illustrate this includes:
The roll rate sensor 31 is filtered by limiting the roll rate velocity to a maximum of RR_xxx_CNTR * RR_DELTA. These values are established by taking the worst-case conditions (the maximum roll rate) from data. The slope is continually increased by increasing the counter. The counter is limited the RR_MAX_LOOP value. So, the maximum rate change experienced by the roll rate sensor 31 is RR_MAX_LOOP * RR_DELTA. Logic to illustrate this includes:
The same logic is applied to filter Yaw Rate:
The same logic is applied to filter Longitudinal Acceleration:
The same logic is applied to filter Lateral Acceleration:
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
The present invention claims priority to provisional application No. 60/401,417 filed on Aug. 5, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2917126 | Phillips | Dec 1959 | A |
3604273 | Kwok et al. | Sep 1971 | A |
3608925 | Murphy | Sep 1971 | A |
3899028 | Morris et al. | Aug 1975 | A |
3948567 | Kasselmann et al. | Apr 1976 | A |
3972543 | Presley et al. | Aug 1976 | A |
4023864 | Lang et al. | May 1977 | A |
RE30550 | Reise | Mar 1981 | E |
4480714 | Yabuta et al. | Nov 1984 | A |
4592565 | Eagle | Jun 1986 | A |
4597462 | Sano et al. | Jul 1986 | A |
4650212 | Yoshimura | Mar 1987 | A |
4679808 | Ito et al. | Jul 1987 | A |
4690553 | Fukamizu et al. | Sep 1987 | A |
4761022 | Ohashi | Aug 1988 | A |
4765649 | Ikemoto et al. | Aug 1988 | A |
4767588 | Ito | Aug 1988 | A |
4778773 | Sukegawa | Oct 1988 | A |
4809183 | Eckert | Feb 1989 | A |
4827416 | Kawagoe et al. | May 1989 | A |
4872116 | Ito et al. | Oct 1989 | A |
4888696 | Akatsu et al. | Dec 1989 | A |
4898431 | Karnopp et al. | Feb 1990 | A |
4930082 | Harara et al. | May 1990 | A |
4951198 | Watanabe et al. | Aug 1990 | A |
4960292 | Sadler | Oct 1990 | A |
4964679 | Rath | Oct 1990 | A |
4967865 | Schindler | Nov 1990 | A |
4976330 | Matsumoto | Dec 1990 | A |
4998593 | Karnopp et al. | Mar 1991 | A |
5033770 | Kamimura et al. | Jul 1991 | A |
5058017 | Adachi et al. | Oct 1991 | A |
5066041 | Kindermann et al. | Nov 1991 | A |
5088040 | Matsuda et al. | Feb 1992 | A |
5089967 | Haseda et al. | Feb 1992 | A |
5163319 | Spies et al. | Nov 1992 | A |
5200896 | Sato et al. | Apr 1993 | A |
5208749 | Adachi et al. | May 1993 | A |
5224765 | Matsuda | Jul 1993 | A |
5228757 | Ito et al. | Jul 1993 | A |
5239868 | Takenaka et al. | Aug 1993 | A |
5247466 | Shimada et al. | Sep 1993 | A |
5261503 | Yasui | Nov 1993 | A |
5265020 | Nakayama | Nov 1993 | A |
5274576 | Williams | Dec 1993 | A |
5278761 | Ander et al. | Jan 1994 | A |
5282134 | Gioutsos et al. | Jan 1994 | A |
5307274 | Takata et al. | Apr 1994 | A |
5311431 | Cao et al. | May 1994 | A |
5324102 | Roll et al. | Jun 1994 | A |
5335176 | Nakamura | Aug 1994 | A |
5365439 | Momose et al. | Nov 1994 | A |
5370199 | Akuta et al. | Dec 1994 | A |
5408411 | Nakamura et al. | Apr 1995 | A |
5446658 | Pastor et al. | Aug 1995 | A |
5510989 | Zabler et al. | Apr 1996 | A |
5548536 | Ammon | Aug 1996 | A |
5549328 | Cubalchini | Aug 1996 | A |
5579245 | Kato | Nov 1996 | A |
5598335 | You | Jan 1997 | A |
5602734 | Kithil | Feb 1997 | A |
5610575 | Gioutsos | Mar 1997 | A |
5627756 | Fukada et al. | May 1997 | A |
5634698 | Cao et al. | Jun 1997 | A |
5640324 | Inagaki | Jun 1997 | A |
5648903 | Liubakka | Jul 1997 | A |
5671982 | Wanke | Sep 1997 | A |
5676433 | Inagaki et al. | Oct 1997 | A |
5694319 | Suissa et al. | Dec 1997 | A |
5703776 | Soung | Dec 1997 | A |
5707117 | Hu et al. | Jan 1998 | A |
5707120 | Monzaki et al. | Jan 1998 | A |
5719790 | Lohrenz et al. | Feb 1998 | A |
5720533 | Pastor et al. | Feb 1998 | A |
5723782 | Bolles, Jr. | Mar 1998 | A |
5732377 | Eckert | Mar 1998 | A |
5732378 | Eckert et al. | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5736939 | Corcoran | Apr 1998 | A |
5737224 | Jeenicke et al. | Apr 1998 | A |
5740041 | Iyoda | Apr 1998 | A |
5742918 | Ashrafi et al. | Apr 1998 | A |
5742919 | Ashrafi et al. | Apr 1998 | A |
5762406 | Yasui et al. | Jun 1998 | A |
5782543 | Monzaki et al. | Jul 1998 | A |
5787375 | Madau et al. | Jul 1998 | A |
5801647 | Survo et al. | Sep 1998 | A |
5809434 | Ashrafi et al. | Sep 1998 | A |
5816670 | Yamada et al. | Oct 1998 | A |
5825284 | Dunwoody et al. | Oct 1998 | A |
5857160 | Dickinson et al. | Jan 1999 | A |
5857535 | Brooks | Jan 1999 | A |
5869943 | Nakashima et al. | Feb 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5893896 | Imamura et al. | Apr 1999 | A |
5925083 | Ackermann | Jul 1999 | A |
5931546 | Nakashima et al. | Aug 1999 | A |
5944137 | Moser et al. | Aug 1999 | A |
5944392 | Tachihata et al. | Aug 1999 | A |
5946644 | Cowan et al. | Aug 1999 | A |
5964819 | Naito | Oct 1999 | A |
5971503 | Joyce et al. | Oct 1999 | A |
6002974 | Schiffmann | Dec 1999 | A |
6002975 | Schiffmann et al. | Dec 1999 | A |
6026926 | Noro et al. | Feb 2000 | A |
6038495 | Schiffmann | Mar 2000 | A |
6040916 | Griesinger | Mar 2000 | A |
6050360 | Pattok et al. | Apr 2000 | A |
6055472 | Breunig et al. | Apr 2000 | A |
6062336 | Amberkar et al. | May 2000 | A |
6065558 | Wielenga | May 2000 | A |
6073065 | Brown et al. | Jun 2000 | A |
6079513 | Nishizaki et al. | Jun 2000 | A |
6081761 | Harada et al. | Jun 2000 | A |
6085860 | Hackl et al. | Jul 2000 | A |
6086168 | Rump | Jul 2000 | A |
6089344 | Baughn et al. | Jul 2000 | A |
6104284 | Otsuka | Aug 2000 | A |
6122568 | Madau et al. | Sep 2000 | A |
6122584 | Lin et al. | Sep 2000 | A |
6129172 | Yoshida | Oct 2000 | A |
6141604 | Mattes et al. | Oct 2000 | A |
6141605 | Joyce | Oct 2000 | A |
6144904 | Tseng | Nov 2000 | A |
6149251 | Wuerth et al. | Nov 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6169939 | Raad et al. | Jan 2001 | B1 |
6176555 | Semsey | Jan 2001 | B1 |
6178375 | Breunig | Jan 2001 | B1 |
6179310 | Clare et al. | Jan 2001 | B1 |
6179394 | Browalski et al. | Jan 2001 | B1 |
6184637 | Yamawaki et al. | Feb 2001 | B1 |
6185485 | Ashrafti et al. | Feb 2001 | B1 |
6186267 | Hackl et al. | Feb 2001 | B1 |
6192305 | Schiffmann | Feb 2001 | B1 |
6195606 | Barta et al. | Feb 2001 | B1 |
6198988 | Tseng | Mar 2001 | B1 |
6202009 | Tseng | Mar 2001 | B1 |
6202020 | Kyrtsos | Mar 2001 | B1 |
6206383 | Burdock | Mar 2001 | B1 |
6219604 | Dilger et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6226579 | Hackl et al. | May 2001 | B1 |
6233510 | Platner et al. | May 2001 | B1 |
6263261 | Brown et al. | Jul 2001 | B1 |
6266596 | Hartman et al. | Jul 2001 | B1 |
6272420 | Schramm et al. | Aug 2001 | B1 |
6278930 | Yamada et al. | Aug 2001 | B1 |
6282471 | Burdock et al. | Aug 2001 | B1 |
6282472 | Jones et al. | Aug 2001 | B1 |
6282474 | Chou et al. | Aug 2001 | B1 |
6292734 | Murakami et al. | Sep 2001 | B1 |
6292759 | Schiffmann | Sep 2001 | B1 |
6311111 | Leimbach et al. | Oct 2001 | B1 |
6314329 | Madau et al. | Nov 2001 | B1 |
6315373 | Yamada et al. | Nov 2001 | B1 |
6321141 | Leimbach | Nov 2001 | B1 |
6324445 | Tozu et al. | Nov 2001 | B1 |
6324446 | Brown et al. | Nov 2001 | B1 |
6324458 | Takagi et al. | Nov 2001 | B1 |
6330522 | Takeuchi | Dec 2001 | B1 |
6332104 | Brown et al. | Dec 2001 | B1 |
6338012 | Brown et al. | Jan 2002 | B1 |
6349247 | Schramm et al. | Feb 2002 | B1 |
6351694 | Tseng et al. | Feb 2002 | B1 |
6352318 | Hosomi et al. | Mar 2002 | B1 |
6356188 | Meyers et al. | Mar 2002 | B1 |
6360147 | Lee | Mar 2002 | B1 |
6363309 | Irie et al. | Mar 2002 | B1 |
6366833 | Fukuyama | Apr 2002 | B1 |
6370938 | Leimbach et al. | Apr 2002 | B1 |
6394240 | Barwick | May 2002 | B1 |
6397127 | Meyers et al. | May 2002 | B1 |
6419240 | Burdock et al. | Jul 2002 | B1 |
6428118 | Blosch | Aug 2002 | B1 |
6438464 | Woywod et al. | Aug 2002 | B1 |
6477480 | Tseng et al. | Nov 2002 | B1 |
6496758 | Rhode et al. | Dec 2002 | B1 |
6496763 | Griessbach | Dec 2002 | B1 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6547022 | Hosomi et al. | Apr 2003 | B1 |
6554293 | Fennel et al. | Apr 2003 | B1 |
6556908 | Lu et al. | Apr 2003 | B1 |
6559634 | Yamada | May 2003 | B1 |
6600985 | Weaver et al. | Jul 2003 | B1 |
6704631 | Winner et al. | Mar 2004 | B1 |
6718279 | Bustgens et al. | Apr 2004 | B1 |
6810311 | Winner et al. | Oct 2004 | B1 |
20020014799 | Nagae | Feb 2002 | A1 |
20020040268 | Yamada et al. | Apr 2002 | A1 |
20020056582 | Chubb | May 2002 | A1 |
20020075139 | Yamamoto et al. | Jun 2002 | A1 |
20020082749 | Meyers et al. | Jun 2002 | A1 |
20020096003 | Yamada et al. | Jul 2002 | A1 |
20020139599 | Lu | Oct 2002 | A1 |
20030040856 | Winner et al. | Feb 2003 | A1 |
20030109939 | Burgdorf et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
36 16 907 | Nov 1987 | DE |
38 15 938 | Nov 1989 | DE |
43 21 571 | Jan 1994 | DE |
42 27 886 | Feb 1994 | DE |
43 35 979 | Apr 1995 | DE |
43 42 732 | Jun 1995 | DE |
199 07 633 | Oct 1999 | DE |
0 430 813 | Dec 1993 | EP |
0 662 601 | Jul 1995 | EP |
0 758 601 | Feb 1997 | EP |
24 25 342 | Dec 1979 | FR |
2257403 | Jan 1993 | GB |
2 342 078 | Apr 2000 | GB |
62055211 | Sep 1985 | JP |
63116918 | May 1988 | JP |
63151539 | Jun 1988 | JP |
63203456 | Aug 1988 | JP |
1101238 | Apr 1989 | JP |
2171373 | Jul 1990 | JP |
3042360 | Feb 1991 | JP |
3045452 | Feb 1991 | JP |
4008837 | Jan 1992 | JP |
5016699 | Jan 1993 | JP |
5254406 | Oct 1993 | JP |
6278586 | Oct 1994 | JP |
6297985 | Oct 1994 | JP |
6312612 | Nov 1994 | JP |
8080825 | Mar 1996 | JP |
9005352 | Jan 1997 | JP |
10024819 | Jan 1998 | JP |
10329682 | Dec 1998 | JP |
11011272 | Jan 1999 | JP |
11170992 | Jun 1999 | JP |
11254992 | Sep 1999 | JP |
11255093 | Sep 1999 | JP |
11304663 | Oct 1999 | JP |
11304662 | Nov 1999 | JP |
816849 | Mar 1981 | SU |
WO 0220318 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040030474 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
60401417 | Aug 2002 | US |