1. Field of Invention
This invention relates to the field of media rating based on physiological response from viewers.
2. Background of the Invention
In testing a viewer's response to a piece of media, a clutter reel (such as a playlist of media instances) is often created where multiple advertisements or other media instances may be shown in a row, with the media instance in question as one member of the clutter reel. The clutter reel is made specifically for testing of a specific media instance and is designed to answer a specific question about the media instance in question. However, the clutter reel may also induce bias if is static, because every viewer (tester of the media instances) will watch the media instances in the clutter reel in the same order. Consequently, testers often do not focus on any one piece of media, allowing their experiences with earlier media instances to influence/bias their viewing and subsequent feelings/responses to later ones. There is a need for a process, which would enable efficient testing of a large number of media instances by a large group of testers to obtain the most pertinent data from the testers during a testing session.
The present invention enables large scale media testing by human testers, where each tester may see multiple pertinent media instances during a single testing session and choose the optimal overall pairings between the testers and the media instances to minimize the number of testers needed for each testing project. By increasing the number of pertinent media views produced by each tester during each testing session, the approach increases the efficiency of media testing and reduces testing costs and time.
The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” or “some” embodiment(s) in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
An approach to large scale media testing by human testers is enabled, which allows each tester to see multiple pertinent media instances during a single testing session and chooses the optimal overall pairings between the testers and the media instances to minimize the number of testers needed for each testing project. By increasing the number of pertinent media views produced by each tester during each testing session, the approach increases the efficiency of media testing and reduces testing costs and time.
Referring to
Referring to
In some embodiments, inputs to the test scheduler may include at least one or more of the following:
In some embodiments, the test scheduler goes through the following steps to create the best ordered list of testers:
In some embodiments, the test scheduler can be made to predict which media instance(s) will be viewed in the future when a tester arrives, based on the testers who have already scheduled for testing. Such prediction further optimizes the testers who are brought in and creates a more stable testing session by more accurately predicting the overall outcome of testing.
In some embodiments, the priority score calculator calculates a ranking, or a priority score value, for each individual media instance and can combine them to create a score for a set of media instances. A priority score of a media instance is high for a tester if the media instance really needs to be tested and if a tester of the media would create a pertinent view for the media instance. On the other hand, the priority score is low for the tester if the media instance does not need to be tested as much, or if the tester does not fit the profile of “correct” testers for the media instance as defined by, for a non-limiting example, the creator of the media instance.
In some embodiments, the priority score of each media instance can take into account at least one or more of the following variables:
In some embodiments, an overall priority score for the tester can be calculated by combining the scores of individual media instances in the playlist once the playlist has been created. The overall score corresponds to the amount and worth of the information gained by having the selected tester test the set of media in the list. One way to calculate the overall score is to average the individual scores; another way is to add the individual scores together. This overall score can then be used to schedule a testing session based on the priorities of the testers.
In some embodiments, the priority score of a media instance in a testing project can be calculated based on pertinent data about a tester and the media instance to be tested by the tester. Such data includes but is not limited to, due date of the media instance, the number of views already obtained for the media instance, the priority of the media instance, and any other pertinent information. The function to calculate the priorities can be one of the following:
In some embodiments, a score can be calculated for each variable that makes up the function. These scores can then be combined either through averaging or other means:
Here, scores for a variable can be calculated via a non-linear function, making the weighting change drastically depending on the inputs. For a non-limiting example, if there is no need for a 23 year old tester to test a piece of media, the score would be very, very low. More specifically, assuming all scores are in the range between 0 to 1.0, if the media instance has been tested by all 23 year old Georgian natives, and if another one comes along, the score would be low (0.1), whereas if a 35 year old from Idaho comes along, the score would be a 0.9. For another non-limiting example, if there are only two days left to complete testing of a specific media instance, the score could be a 0.8, whereas if there are 20 days left, the score would be a 0.25. These scores can then be combined to create an overall priority score. For the non-limiting examples above, if the media instance had 2 days left to be tested and the tester was from Idaho, the score would be (0.8+0.9)/2=0.85, whereas if another instance of media had 20 days left and was to be watched by a Georgian native, it would have a score of (0.25+0.1)/2=0.175.
In some embodiments, all media instances in the testing project can be ranked based on their resulting priority scores. The ones at the beginning are those most need to be viewed and the ones at the end are those no longer need to be tested anymore. Those ranked at the top can then be added to a playlist for a tester to view. For the non-limiting example discussed above, those two media instances would be ranked accordingly and the first one would have a higher ranking.
In some embodiments, the size of the playlist for a tester is affected by the type of media instances the tester is going to view. For a non-limiting example, a natural size for a playlist of television commercials is roughly 20 of them, approximating the number of ads that viewers currently see in a 30 minute window of television.
In some embodiments, the media instances in the playlist for a tester to watch should be chosen in a way that creates a natural viewing experience for the tester in addition to choosing media instances that fit the tester's demographic to gain the most knowledge from the tester. To keep the experience natural, the playlist should emulate the experience each tester would have at home or wherever the tester normally interacts with the media instances. The goal is to increase testing efficiency of the playlist and reduce bias by up to an order of magnitude or more and, at the same time, effectively pairing testers and media instances so that every time a tester watches a media instance would create a resultant pertinent set of information about that media instance.
In some embodiments, one approach to create a natural experience for a tester is to iteratively take the top ranked media instance and compare it to the filtering rules listed above to determine if it is Ok to include the media instance in the playlist of the tester or not. If the top of the playlist includes media instances from only one industry, company, or other non-ideal subsection of all media instances, the tester will not enjoy a natural experience and may thus create non-ideal testing data. For a non-limiting example, watching 20 beer or laundry detergent ads would not approximate the real world experience for the tester and would create a very strange response from the tester. If a playlist for a tester already has 3 ads from the beer industry, the 4th beer ad would be discarded because there are already too many beer ads for a natural experience for the tester.
In some embodiments, a set of heuristic characteristics or constraints (filtering rules) is created for rating the worth (i.e., amount of pertinent data generated) of each interaction between a tester and a media instance, allowing for a more optimal (natural) overall choice by which testers should be brought in to a testing session and once they are there, which media instances the testers should interact with or watch. For each individual tester, every single media instance can be ranked based on each heuristic. Conversely, media instances can be ranked on a set of dimensions for each tester, creating many different ranked orderings of all media instances.
In some embodiments, the set of heuristics can be based on one or more of:
In some embodiments, the filtering rules for the playlist to make the experience natural for a tester include one or more of following.
In some embodiments, the database of testers includes information (metadata) pertaining to each of the testers that allows the testers to be divided into categories. Such information includes, but is not limited to, name, age, gender, race, income, residence, type of job, hobbies, activities, purchasing habits, political views, etc. as described above.
In some embodiments, the database of media stores pertinent data for each media instance, and/or data recorded from viewing of the media instances by the testers, including physiological, survey and other pertinent test data. Once stored, such data can be aggregated and easily accessed for later analysis of the media instances. The pertinent data of each media instance that is being stored includes but is not limited to the following:
In some embodiments, a test administrator is operable to perform one or more of the following: selecting the testers, calculating which testers to schedule for a testing session, checking testers in to create a playlist for each of them, running the testing session, and automatically recording physiological and survey data during the testing session. In addition, the test administrator can order the scheduling of testers based on their priorities. Here, the test administrator can be either an automated program that invites and schedules testers or a human being who calls them and schedules them.
Referring to
Such novel testing approach records both physiological and survey data, allowing them to be compared and correlated against each other for more accurate and efficient analysis of testing data. The testing data can then be stored into the database of test data and be post-processed to obtain pertinent conclusions about the media instances tested. Note that the testing session does not need to be run by experts, which makes it possible to run testing sessions at any testing facilities distributed around the country. The media instances and the testing data can be transmitted back to a centralized location for storage in the database of test data and/or post processing.
In some embodiments, an integrated headset can be placed on a viewer's head for measurement of his/her physiological data while the viewer is watching an event of the media. The data can be recorded in a program on a computer that allows viewers to interact with media while wearing the headset.
In some embodiments, the integrated headset can be turned on with a push button and the viewer's physiological data is measured and recorded instantly. The data transmission can be handled wirelessly through a computer interface that the headset links to. No skin preparation or gels are needed on the viewer to obtain an accurate measurement, and the headset can be removed from the viewer easily and can be instantly used by another viewer, allows measurement to be done on many participants in a short amount of time and at low cost. No degradation of the headset occurs during use and the headset can be reused thousands of times.
One embodiment may be implemented using a conventional general purpose or a specialized digital computer or microprocessor(s) programmed according to the teachings of the present disclosure, as will be apparent to those skilled in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art. The invention may also be implemented by the preparation of integrated circuits or by interconnecting an appropriate network of conventional component circuits, as will be readily apparent to those skilled in the art.
One embodiment includes a computer program product which is a machine readable medium (media) having instructions stored thereon/in which can be used to program one or more computing devices to perform any of the features presented herein. The machine readable medium can include, but is not limited to, one or more types of disks including floppy disks, optical discs, DVD, CD-ROMs, micro drive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Stored on any one of the computer readable medium (media), the present invention includes software for controlling both the hardware of the general purpose/specialized computer or microprocessor, and for enabling the computer or microprocessor to interact with a human viewer or other mechanism utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, operating systems, execution environments/containers, and applications.
The foregoing description of the preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Particularly, while the concepts of “calculator”, “creator”, and “scheduler” are used in the embodiments of the systems and methods described above, it will be evident that such concepts can be interchangeably used with equivalent concepts such as, class, method, type, interface, (software) module, bean, component, object model, and other suitable concepts. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This application claims priority to U.S. Provisional Patent Application No. 60,962,486, filed Jul. 26, 2007, and entitled “Method and system for creating a dynamic and automated clutter reel for testing of user response that greatly increases information gained,” by Hans C. Lee et al., and is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60962486 | Jul 2007 | US |