The present invention relates generally to energy efficiency across the data center, and more particularly to the migration of data based on power consumption.
Energy efficiency across the entire data center is becoming a top concern for corporations around the world. This problem requires consideration of all energy efficiency components of the data center, from component levels through server and system levels, and concluding with the complete data center. At the system level, storage devices are an extremely important part of the equation, which needs to be analyzed. Disk systems can require substantial amounts of power to operate and cool, and in many cases, can require more power than the server itself.
Data migration is the process of transferring data between storage types, formats or computer systems. Data migration is usually performed programmatically to achieve an automated migration, freeing up human resources from tedious tasks. It is required when organizations or individuals change computer systems or upgrade to new systems, or when systems merge (such as when the organizations that use them undergo a merger/takeover).
To achieve an effective data migration procedure, data on the old system is mapped to the new system providing a design for data extraction and data loading. The design relates old data formats to the new system's formats and requirements. Programmatic data migration may involve many phases but it minimally includes data extraction where data is read from the old system and data loading where data is written to the new system.
After loading into the new system, results are subjected to data verification to determine that data was accurately translated, is complete, and supports processes in the new system. During verification, there may be a need for a parallel run of both systems to identify areas of disparity and forestall erroneous data loss. Automated and manual data cleansing is commonly performed in migration to improve data quality, eliminate redundant or obsolete information, and match the requirements of the new system. Data migration phases (design, extraction, cleansing, load, verification) for applications of moderate to high complexity are commonly repeated several times before the new system is activated.
Traditional data migration involves business decisions from application owners and IT administrators to predefine a destination database that usually resides physically on another disk for each given source database. Very often, such migration is a one to one relationship where a source database is mapped to a predefined destination database This migration process is done at a database level that involves no concerns on how data is being used by applications and how it relates to power consumption.
Reference is made to
It is a primary object of the invention to provide a method and system for migrating data based on power conservation. It is another object of the invention to provide a method and system for selecting the destination database based on energy efficiency. It is a further object of the invention to provide a method and system for determining the length of time for realizing cost savings after migration of data has been performed.
These and other objects and advantages are accomplished by a method for migrating source data from one or more databases to a destination database, wherein the destination database is selected based on power consumption of the destination database. Specifically, the method of the present invention determines which destination database should be selected by selecting a number of candidates and comparing the power consumed, the available space and the maximum monthly power consumption limit. In one aspect of the method of the invention, a user intervention policy is created to evaluate which data should be moved to a destination database that is more energy efficient than the source database. In another aspect of the method of the invention, a “payback period” is calculated to determine the amount of time that will elapse before savings are realized.
In accordance with another embodiment, a system is provided for migrating source data from one or more databases to a destination database, wherein the destination database is selected based on power consumption of the destination database. Specifically, the system of the present invention determines which destination database should be selected by selecting a number of candidates and comparing the power consumed, the available space and the maximum monthly power consumption limit. In one aspect of the system of the invention, the system includes a data migration server to control the decision process and manage the data migration based on energy efficiency characteristics. In another aspect of the system of the invention, the data migration server handles the mapping of the data. In yet another aspect of the invention, the data migration server maintains the user intervention policy table, which is critical to the destination database decision.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
As will be appreciated, the present invention provides an effective method for reducing energy consumption of certain types of computer systems. The data migration process is enhanced by using power consumption as a guiding factor in determining how data in the source database can be assigned real time to a destination database to maintain a desirable power consumption level. Reference is made to
Data from Database A is sent to a Staging Server 24 and data from Database B is sent to a Staging Server 26 to test and check the data. The data migration server 28 looks at a number of databases and determines the best destination database to send the data from Database A and Database B.
Data migration server 28 also handles the mapping of data from staging server 26 to the destination database. Scripts can be written to handle the migration process or existing database migration tools may be used to assist administrators in the migration process. Existing tools include a graphical user interface (GUI), which can interface with the data migration server 28.
In order to determine the best possible candidate for the destination database, the data migration server monitors the power consumption level of each destination database candidate. The monitoring may be accomplished by using an internal or external power meter device and other devices known for measuring power usage. In addition to monitoring power consumption, the data migration server executes migration policies and performs a predictive data migration decision-making process. Migration policies can include, but are not limited to, control of reference data, schema configurations, and merges of data.
Examples of types of databases useful herein as a destination database are set forth in Table 1 below. The parameters set forth in the Table are accessed in order to determine the best possible candidate for the destination database. The type of source data, the frequency of use of the source data, and the amount of source data to be moved are factors that are also taken into consideration when determining the best destination candidate for migration of data. For example, if the source data is not frequently accessed, the best candidate for the destination database may be Database 2 or 3, which use more power for each operation than Database 1 because the data will not be accessed on a regular basis. In comparison, if source data is frequently used, it may be more advantageous to move it to a database such as Database 1, which uses less power per operation.
Reference is made to
As mentioned above, the data migration server not only evaluates candidates for the destination database, but also must manage and assess the source data to determine when and where to move the data. Examples of source databases and parameters to be evaluated are set forth in Table 2, a User Intervention Policy Table. The source databases are reviewed by the data migration server.
In addition to the parameters set forth in Table 2, others may include the age of the data, the seasonality of the data and peak issues related to the data. Moreover, the values in Table 2 above are weighted to assist in further assessment of the data. Table 3 provides examples of weighted numbers to be applied to the parameters in Table 2.
The policies from the User Intervention Policy Table along with the weightings from the User Intervention Policy Weighting Table are then applied to the destination. The destination is updated as appropriate. For example, data that is less critical, older, and used less often by an application that is deemed of lower importance may be moved to a destination that is not as power efficient as a newer and more critical database used every day since a relatively idle storage device may use somewhat less power than a very busy one. Once the data migration server has selected the most efficient destination database according to the Destination Database Table for any given transaction, the power consumption can be predicted to reflect how much power has been used up to this point.
In circumstances where the data does not have to be moved, a determination can be made regarding potential cost savings. A calculation is provided to compute the “payback period,” which is the time period that it will take to realize savings. The time period may be measured in minutes, hours, days, months, or years. The formula is as follows:
(T0+E0)x=Mi+Ei)x.
whereby
The following example illustrates the use of the formula.
The current system's total cost of ownership of the source database is $10.00 per month. The energy consumption for the current system is $20.00 per month. The total cost of ownership of the destination database is $20.00 per month and the energy consumption for the destination database is $5.00 per month. The migration cost to move the data is $50.00. The amount of time that must be expended before savings can be realized is calculated as follows:
(10+20)x=50+(20+5)x
30x=50+25x
5x=50
x=10
Therefore, the “payback period” or the break-even point for migration in this example is ten months. Total costs are the same for ten months. Thereafter, savings will be realized.
Another embodiment of the invention is directed to a medium that is readable by a computer or other device, which includes an executable instruction for initializing data migration. In an aspect, the executable instruction involves the process steps 42-54 shown in
The term computer-readable medium as used herein refers to any medium that participates in providing an instruction to a computer processor for execution. Such a medium may take many forms, including but not limited to non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks. Volatile media include dynamic memory. Transmission media include coaxial cables, copper wire and fiber optics. Transmission media can also take the form of acoustic, optical, or electromagnetic waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a hard disc, any magnetic medium, a CD-ROM, CDRW, DVD, any other optical medium, optical mark sheets, and any other physical medium with patterns of holes or other optically recognizable indicia, a RAM, a PROM, an EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave, or any other medium from which a computer can read.
The invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended embodiments.
Number | Name | Date | Kind |
---|---|---|---|
5313631 | Kao | May 1994 | A |
6732241 | Riedel | May 2004 | B2 |
6775673 | Mahalingam et al. | Aug 2004 | B2 |
6789115 | Singer et al. | Sep 2004 | B1 |
6915287 | Felsted et al. | Jul 2005 | B1 |
20020107871 | Wyzga et al. | Aug 2002 | A1 |
20030051104 | Riedel | Mar 2003 | A1 |
20030158847 | Wissner et al. | Aug 2003 | A1 |
20030177150 | Fung et al. | Sep 2003 | A1 |
20050055590 | Farkas et al. | Mar 2005 | A1 |
20050060107 | Rodenberg et al. | Mar 2005 | A1 |
20050125463 | Joshi et al. | Jun 2005 | A1 |
20050251802 | Bozek et al. | Nov 2005 | A1 |
20050268121 | Rothman et al. | Dec 2005 | A1 |
20050273726 | Wyzga et al. | Dec 2005 | A1 |
20060080371 | Wong et al. | Apr 2006 | A1 |
20060167883 | Boukobza | Jul 2006 | A1 |
20060212495 | Tokunaga et al. | Sep 2006 | A1 |
20070011209 | Wietlisbach et al. | Jan 2007 | A1 |
20070130234 | Ikegaya et al. | Jun 2007 | A1 |
20070136392 | Oh et al. | Jun 2007 | A1 |
20070150488 | Barsness et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
1 215 590 | Jun 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20090282273 A1 | Nov 2009 | US |