The present invention relates to surveillance networks, and more particularly to the deployment of surveillance networks.
Warfare, police activity, counter-terrorism and similar situations can subject individuals to significant risks of injury. An important aspect of such situations is information gathering. Accurate and timely information can help to reduce the risk of personnel injury, avoid escalation of an incident, or provide a tactical advantage in a conflict situation. Unfortunately, gathering information presents its own risks. Reconnaissance personnel sent into undercover situations or war zones face the risk of detection, capture, injury, and the like.
One significant improvement in surveillance techniques is the use of unmanned robotic devices for information gathering. Using a remotely-controlled robotic device can, for example, help to avoid the need to expose individuals to a dangerous environment. Robotic devices have been used with success in defusing bombs, searching for earthquake survivors, and space exploration. Unmanned aerial vehicles have achieved great success in wartime scenarios. Unmanned aerial vehicles allow surveillance of a battlefield area without requiring exposure of a pilot to threats.
While successful, unmanned aerial vehicles have a number of limitations. For example, aerial vehicles tend to perform best at monitoring environments that are visible from an aerial vantage point, and therefore have difficulty observing concealed (e.g., under thick vegetation), indoor, or underground activities. Unmanned aerial vehicles also tend to be quite expensive and require specially-trained personnel to operate.
One alternative to information gathering using unmanned aerial vehicles is the placement of networks of fixed-position information sensors (e.g., intrusion detection systems, roadside traffic monitors, and the like). Fixed-position information sensors can be inexpensive, but must be placed into the environment to be monitored. Accordingly, installation of a fixed-position information-gathering network can subject individuals to undesired risks.
While ground robotic devices offer the potential to address some of these shortcomings, to date, little use has been made of ground robotic devices for information gathering. One challenge in the use of ground robotic devices is placement (and removal) of the devices into an environment to be monitored, particularly if covert surveillance is desired.
Accordingly, it has been recognized that improved techniques for deployment of information gathering equipment is needed.
In one embodiment, the present invention resides in a method for gathering information from within an earth-surface environment. The method includes inserting one or more mobile robotic devices having a sensing subsystem, a communications subsystem, and a navigation subsystem into an earth-surface environment. The method also includes configuring the mobile robotic device into a traveling pose selected from a plurality of available traveling poses, and directing the mobile robotic device with the navigation system to a sensing location within the earth-surface environment. The method further includes monitoring the sensing subsystem for information and communicating the information from the sensing subsystem to a remote location. The method can also include removing the mobile robotic device from the sensing location within the earth-surface environment.
In another embodiment, the present invention resides in a method of concealing a surveillance network within a earth-surface environment. The method includes inserting a plurality of mobile robotic devices into a earth-surface environment, configuring each of the mobile robotic devices into a traveling pose selected from a plurality of available traveling poses, and directing each of the mobile robotic devices to a different concealed sensing location within the earth-surface environment. The method further includes sensing information about the earth-surface environment using sensors disposed on the each of the mobile robotic devices, or on one or more pods carryable and deployable by the robotic devices, and communicating the information to a remote location.
In still another embodiment, the present invention resides in a method of establishing a concealed surveillance network within a earth-surface environment. The method includes inserting one or more mobile robotic devices into a earth-surface environment, directing the mobile robotic devices to a plurality of concealed sensing locations within the earth-surface environment and, optionally, depositing one or more sensing pods at each of the concealed sensing locations. The method further includes sensing information about the environment using sensors disposed on the robotic devices themselves and/or each sensing pod, and communicating the information from the robotic devices and/or the sensing pods to a remote location.
In still another embodiment, the present invention resides in a system for surreptitiously gathering information from within an earth-surface environment, comprising at least one mobile robotic device operable within an earth-surface environment, which is configurable into at least one deployment pose and a plurality of traveling poses, the mobile robotic device comprising a multi-frame body having multiple single-track units coupled by an active articulating linkage, a navigation subsystem for selecting the optimum traveling pose for the earth-surface environment, and a sensing subsystem for collecting information from the earth-surface environment. The system further comprises a carrier vehicle operable with the mobile robotic device as configured in the at least one deployment pose to facilitate deployment of the mobile robotic device into the earth-surface environment, wherein the mobile robotic device is separable from the carrier vehicle and reconfigurable into one of the plurality of traveling poses so as to enable the mobile robotic device to locate to a first sensing location within the earth-surface environment.
In still another embodiment, the present invention resides in a system for surreptitiously gathering information from within an earth-surface environment, comprising a plurality of mobile robotic devices operable within an earth-surface environment, each being configurable into at least one deployment pose and a plurality of traveling poses, the mobile robotic devices comprising a multi-frame body having multiple single-track units coupled by an active articulating linkage, a navigation subsystem for selecting the optimum traveling pose for the earth-surface environment, and a sensing subsystem for collecting information from the earth-surface environment. The system further comprises a carrier vehicle operable with one or more of the mobile robotic devices as configured in the at least one deployment pose to facilitate deployment of the mobile robotic devices into the earth-surface environment, wherein the mobile robotic devices are separable from the carrier vehicle and reconfigurable into one of the plurality of traveling poses so as to enable the mobile robotic devices to locate to a first sensing location within the earth-surface environment, and wherein the plurality of mobile robotic devices operate to facilitate the establishment of a surveillance network within the earth-surface environment.
Features and advantages of the present invention will be apparent from the detailed description that follows, and when taken in conjunction with the accompanying drawings together illustrate, by way of example, features of the invention. It will be readily appreciated that these drawings merely depict representative embodiments of the present invention and are not to be considered limiting of its scope, and that the components of the invention, as generally described and illustrated in the figures herein, could be arranged and designed in a variety of different configurations. Nonetheless, the present invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
a and 5b are perspective illustrations of the mobile robotic device of
The following detailed description makes reference to the accompanying drawings, which form a part thereof and in which are shown, by way of illustration, various representative embodiments in which the invention can be practiced. While these embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments can be realized and that various changes can be made without departing from the spirit and scope of the present invention. As such, the following detailed description is not intended to limit the scope of the invention as it is claimed, but rather is presented for purposes of illustration, to describe the features and characteristics of the representative embodiments and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined solely by the appended claims.
The following detailed description and exemplary embodiments of the invention will be best understood by reference to the accompanying drawings, wherein the elements and features of the invention are designated by reference numbers throughout. A letter after a reference designator number represents an instance of an element having the reference designator number.
Turning now to the invention in general terms, surveillance and other types of information gathering can be performed by mobile ground robotic devices. For example,
The mobile robotic device 10 can include a first frame unit 12a and a second frame unit 12b (shown here coupled in tandem), with each frame unit having a continuous track 14a, 14b, disposed thereon. Individually articulating arms 18a, 18b, 18c, 18d can be disposed in opposing pairs on each frame unit, and an active actuated linkage arm 30 can couple the first frame unit and second frame unit.
The actuated linkage arm can provide controllable bending about at least one axis, and preferably about multiple axes to provide the robotic device with a plurality of degrees of freedom via a multiple degree of freedom actuated linkage arm that allows the robotic device to be configured into different poses for achieving different tasks. For example, the actuated linkage arm can include joints providing bending about seven different axes as shown here. The multiple degree of freedom linkage arm can include a first wrist-like actuated linkage coupled to the first frame, a second wrist-like actuated linkage coupled to the second frame, and an elbow-like actuated joint coupled between the first and second wrist-like actuated linkage.
The wrist-like actuated linkages can be configured in various ways. For example, the wrist-like actuated linkage can include a series coupled combination of a yaw bending joint, a pitch bending joint, and a rotational joint, with various arm linkages coupled between the joints and the frame. For example, in accordance with an embodiment of the present invention, a wrist-like actuated linkage can include a yaw arm 32 coupled to the frame 12,14 through a yaw bending joint 42 having a yaw axis which provides yaw bending about a lateral axis orientated substantially vertically relative to the frame when the continuous track 14a,14b is in a nominal operating position and in contact with a substantially horizontal supporting surface. The wrist-like actuated linkage can also include a pitch arm 36 coupled to the yaw arm 32 through a pitch bending joint 44 providing pitch bending about a lateral axis oriented substantially horizontally relative to the frame. The wrist-like actuated linkage can also include a rotary or roll joint 36 providing roll rotation about a roll axis 46 and the longitudinal axis of the pitch arm. As shown in
As indicated, this particular arrangement of joints provides significant flexibility in the pose that the mobile robotic device can assume. For example, commonly-owned co-pending U.S. patent application Ser. No. 11/985,323, filed Nov. 13, 2007, and entitled “Serpentine Robotic Crawler”, incorporated by reference herein, describes various systems, poses and movement moves enabled by this particular arrangement of joints. Furthermore, the mobile robotic device can be remotely configured into a transportation or traveling pose, selected from a plurality of available poses, that is best suited for the immediate terrain over which device is traveling or for which it is intended to travel.
Operating the serpentine robotic crawler can include actively controlling and articulating the one or more joints within the actuated multi-degree of freedom linkage arm to establish a desired pose for the serpentine robotic crawler. Drive operation of the continuous tracks can be coordinated with articulation of the high degree of freedom actuated linkage arm to further control the pose and provide movement of the robotic device.
The mobile robotic device can be configured into a first traveling pose referred to herein as the “tank” configuration, where the first frame 12a and second frame 12b, although coupled in tandem, are positioned side by side as illustrated in
The mobile robotic device can be configured into a second traveling pose referred to herein as the “train” configuration, is where the first frame 12a and second frame 12b are aligned end-to-end, as illustrated in
The mobile robotic device can also be configured into another traveling pose suitable for climbing the exterior of a structure. As illustrated in
The mobile robotic device can also be configured into yet another traveling pose suitable for climbing the interior of a structure.
As a result of its ability to reconfigure itself into a variety of different poses, the mobile robotic device can travel across a wide variety of terrains and surfaces, including for example, climbing inside or outside vertical structures (e.g., pipes, chimneys, etc.), crossing gaps, and crawling across inclined and flat surfaces. The mobile robotic device can therefore easily enter small openings, such as vent pipes, ventilation shafts, waste water systems and the like. The mobile robotic device can thus be operated in a stealthy manner, taking advantage of available cover and traveling routes that reduce the likelihood of detection. As a specific example, the mobile robotic device may enter into an environment via a sewer system, traveling through pipes and into building structures, thus bypassing security systems or guard personnel.
It will be appreciated, however, that various other arrangements of a mobile robotic device can be used, and the present invention is not limited to this particular arrangement.
Information 26 obtained from the sensing subsystem 20 can be communicated by the communication subsystem 22 via a communication link 28 to a remote location, such as, for example, a command post or remote control center. Alternatively, if detection of the robotic device within the area is a concern, such as during a covert mission, the robotic device may be equipped with one or more memory storage devices that store the sensed information for later retrieval.
The navigation subsystem 24 provides for movement of the mobile robotic device 10. The navigation subsystem can be autonomous or remotely controlled. For example, autonomous navigation may be performed based on the information 26 received from the sensing subsystem and pre-programmed navigation rules or scenarios. As another example, remote control can be performed via commands 29 received from the communications subsystem originating from a remote location. The navigation system includes outputs 16 that actuate or otherwise operate the tracks 14a, 14b, arms 18a, 18b, 18c, 18d and joints 32, 34, 36, 38 of the mobile robotic device.
A surveillance network can be formed or established by deploying one or more mobile robotic devices, such as the type described in
Emplacement of the surveillance network is primarily concerned with getting the mobile robotic devices into positions from which the desired network can be established and surveillance conducted. For example, emplacement of the surveillance network can include configuring the mobile robotic devices for surreptitious entry into the earth-surface environment, deploying or inserting one or more mobile robotic devices covertly into the earth-surface environment, configuring the mobile robotic device into a traveling pose selected from a plurality of available traveling poses, and directing the mobile robotic device with the navigation system to a sensing location within the earth-surface environment, wherein the surveillance network can be established.
The mobile robotic devices may be carried by a carrier vehicle and deployed from the carrier vehicle into the earth-surface environment. The carrier vehicle may be, by way of example, a ground vehicle, an airborne vehicle, a projectile, a waterborne vehicle, or the like. For example,
As yet another example, lightweight mobile robotic devices can be dropped into the environment upon being equipped or supported by a fall preservation device in the form of a shock-absorbing structure 68 that functions to absorb or cushion the impact. Although shown in
Still other deployment scenarios exist. In one aspect, deployment may be carried out by living subjects, such as various individuals, (e.g., ground troops), animals, etc. In this scenario, the robotic devices may be configured for transport or carrying and packaged into compact, protective, carryable or cartable structures or carriers (e.g., sleeves, canisters, tubes, backpacks, etc.), wherein the living subjects may transport and subsequently facilitate release of the robotic devices, or more tactically unpack and configure the robotic devices for delivery or deployment and operation within the area to be surveyed or observed.
In another aspect, the robotic devices may be deployed via passive means, such as by releasing them into or within a natural route, which may include, but is not limited to, a river, down a hill, a tide of an ocean, a prevailing wind, etc.
Once the one or more mobile robotic devices 10 have been placed into the earth-surface environment 8, they may move into positions from which data is to be collected under control of the navigation subsystem 24. The positions may be predefined, for example, based on a map or geolocation system coordinates. As an alternative, the positions may be defined within the surveillance network in a relative sense, for example, specifying that the robotic devices are to assume predefined relative spacing within a generally defined area.
The mobile robotic devices 10 may take up concealed positions within the environment. For example, when entry includes crawling into building infrastructure such as a waste water system, ventilation system, or the like, the mobile robotic devices may remain within the infrastructure, located near an interface point with human-occupied space. For example, a mobile robotic device may be positioned near a ventilation inlet or outlet, within a floor drain, etc.
Monitoring of the environment by the mobile robotic devices 10 uses the sensing subsystem 20. Depending on the type of sensors included within the sensing subsystem, the mobile robotic device may receive electromagnetic radiation from the environment, receive acoustic energy from the environment, image the environment, sample the environment, and perform similar operations and functions. Data obtained from the sensing subsystem can be communicated via the communication subsystem 22 to a remote location, or it may be stored on one or more memory storage devices for later retrieval.
The establishment of the surveillance network can further include using the mobile robotic device 10 to deposit one or more utility pods at the sensing location within the earth-surface environment, as illustrated in
The utility pods 88 can be stowed or carried within a payload compartment or bay 13 formed into a frame 12a of the mobile robotic device, on a carrier device 15 supported above a continuous track 14b, within a payload formed into a mid-section structure of the articulated linkage (see auxiliary payload bay 17 shown in phantom, which auxiliary payload 17 may be part of a component configured to be operable with and part of an alternately configured articulated linkage arm), or by the arms 18. The utility pods can be deposited at a sensing location within the earth-surface environment 8 using a variety of techniques, including the use of the articulating arms 18a, 18b, 18c, 18d disposed on opposing ends of the frame units 12a, 12b with continuous tracks 14a and 14b, as well as activated linkages, spring-loaded release mechanisms, tilting carrier supports (not shown), etc. After the objectives of the surveillance network have been achieved, one or more of the utility pods can also be retrieved from the remote sensing location using the mobile robotic device 10.
When the surveillance mission is complete, the final phase of operation can be the dismantling of the surveillance network. Dismantling the surveillance network can include removing the plurality of mobile robotic devices 10 from easily detectable locations within the environment into a predetermined concealed state. A variety of techniques 90 can be used for removing the plurality of mobile robotic devices from the environment, as illustrated in
In one exemplary embodiment, the mobile robotic devices may employ an explosive or incendiary self-destruct technique 92 to destroy the mobile robotic device.
While explosive- or incendiary-type self-destruct mechanisms are effective, more discrete self-destruct mechanisms can be employed as well. For instance, the mobile robotic device may include a dissolving technique 94 which involves carrying and releasing a chemical mixture that can operate to dissolve all or part of the mobile robotic device.
As another example, the mobile robotic device 10 may be directed into a difficult to detect position within the environment for a hide-in-place version of dismantling of the surveillance network. For example, the mobile robotic device may use a burrowing technique 96 to burrow into the ground 97 within the environment 8. The burrowing technique can include self-concealment under a trash pile, within a growth of dense vegetation, inside a cave or rock crevasse, and upright against a tree or other structure, etc. A submersion technique 98 can also be particularly effective, for instance, when the mobile robotic device conceals itself in the mud, sediment or rocks at the bottom of a body of water 99.
Alternately, dismantling the surveillance network may include removing the one or more mobile robotic devices entirely from the environment to prevent their easy detection. For example, the mobile robotic devices may exit the environment in the same manner in which they entered, by crawling or swimming back to a carrier vehicle. If desired, a homing device can be activated in the carrier vehicle to aid the mobile robotic devices in returning the carrier vehicle.
Summarizing and reiterating to some extent, mobile robotic devices can be covertly deployed into an environment to collect sensor data which is stored or communicated to a remote location. By using small, covert robotic devices, surreptitious entry into and exit from the environment is possible. The mobile robotic devices can be made difficult to detect when no longer needed by hiding the devices within the environment or removing the devices from the environment. Applications of surveillance networks as described herein can include, without limitation, military operations, law enforcement, espionage, and intelligence gathering.
The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.
More specifically, while illustrative exemplary embodiments of the invention have been described herein, the present invention is not limited to these embodiments, but includes any and all embodiments having modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those skilled in the art based on the foregoing detailed description. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the foregoing detailed description or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present in that limitation: a) “means for” or “step for” is expressly recited; and b) a corresponding function is expressly recited. The structure, material or acts that support the means-plus function limitation are expressly recited in the description herein. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.
This application claims the benefit of U.S. Provisional Application No. 61/186,290, filed Jun. 11, 2009, and entitled “Surveillance Network Deployment Methods,” which application is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
1107874 | Appleby | Aug 1914 | A |
1112460 | Leavitt | Oct 1914 | A |
1515756 | Roy | Nov 1924 | A |
1975726 | Martinage | Oct 1934 | A |
2082920 | Aulmont | Jun 1937 | A |
2312072 | Broadwater | Mar 1940 | A |
2329582 | Bishop | Sep 1943 | A |
2345763 | Mayne | Apr 1944 | A |
2701169 | Cannon | Feb 1955 | A |
2850147 | Hill | Sep 1958 | A |
2933143 | Robinson | Apr 1960 | A |
2967737 | Moore | Jan 1961 | A |
3037571 | Zelle | Jun 1962 | A |
3107643 | Edwards | Oct 1963 | A |
3166138 | Dunn, Jr. | Jan 1965 | A |
3190286 | Stokes | Jun 1965 | A |
3215219 | Forsyth | Nov 1965 | A |
3223462 | Dalrymple | Dec 1965 | A |
3266059 | Stelle | Aug 1966 | A |
3284964 | Saito | Nov 1966 | A |
3311424 | Taylor | Mar 1967 | A |
3362492 | Hansen | Jan 1968 | A |
3387896 | Sobota | Jun 1968 | A |
3489236 | Goodwin | Jan 1970 | A |
3497083 | Anderson | Feb 1970 | A |
3565198 | Ames | Feb 1971 | A |
3572325 | Bazell | Mar 1971 | A |
3609804 | Morrison | Oct 1971 | A |
3650343 | Helsell | Mar 1972 | A |
3700115 | Johnson | Oct 1972 | A |
3707218 | Payne | Dec 1972 | A |
3712481 | Harwood | Jan 1973 | A |
3715146 | Robertson | Feb 1973 | A |
3757635 | Hickerson | Sep 1973 | A |
3808078 | Snellman | Apr 1974 | A |
3820616 | Juergens | Jun 1974 | A |
3841424 | Purcell | Oct 1974 | A |
3864983 | Jacobsen | Feb 1975 | A |
3933214 | Guibord | Jan 1976 | A |
3934664 | Pohjola | Jan 1976 | A |
3974907 | Shaw | Aug 1976 | A |
4015553 | Middleton | Apr 1977 | A |
4051914 | Pohjola | Oct 1977 | A |
4059315 | Jolliffe | Nov 1977 | A |
4068905 | Black | Jan 1978 | A |
4107948 | Molaug | Aug 1978 | A |
4109971 | Black | Aug 1978 | A |
4132279 | Van der Lende | Jan 1979 | A |
4218101 | Thompson | Aug 1980 | A |
4260053 | Onodera | Apr 1981 | A |
4332317 | Bahre | Jun 1982 | A |
4332424 | Thompson | Jun 1982 | A |
4339031 | Densmore | Jul 1982 | A |
4393728 | Larson | Jul 1983 | A |
4396233 | Slaght | Aug 1983 | A |
4453611 | Stacy, Jr. | Jun 1984 | A |
4483407 | Iwamoto et al. | Nov 1984 | A |
4489826 | Dubson | Dec 1984 | A |
4494417 | Larson | Jan 1985 | A |
4551061 | Olenick | Nov 1985 | A |
4589460 | Albee | May 1986 | A |
4621965 | Wilcock | Nov 1986 | A |
4636137 | Lemelson | Jan 1987 | A |
4646906 | Wilcox, Jr. | Mar 1987 | A |
4661039 | Brenholt | Apr 1987 | A |
4671774 | Owsen | Jun 1987 | A |
4700693 | Lia | Oct 1987 | A |
4706506 | Lestelle | Nov 1987 | A |
4712969 | Kimura | Dec 1987 | A |
4713896 | Jennens | Dec 1987 | A |
4714125 | Stacy, Jr. | Dec 1987 | A |
4727949 | Rea | Mar 1988 | A |
4736826 | White et al. | Apr 1988 | A |
4752105 | Barnard | Jun 1988 | A |
4756662 | Tanie | Jul 1988 | A |
4765795 | Rebman | Aug 1988 | A |
4784042 | Paynter | Nov 1988 | A |
4796607 | Allred, III | Jan 1989 | A |
4806066 | Rhodes | Feb 1989 | A |
4815319 | Clement | Mar 1989 | A |
4815911 | Bengtsson | Mar 1989 | A |
4818175 | Kimura | Apr 1989 | A |
4828339 | Thomas | May 1989 | A |
4828453 | Martin et al. | May 1989 | A |
4848179 | Ubhayakar | Jul 1989 | A |
4862808 | Hedgcoxe | Sep 1989 | A |
4878451 | Siren | Nov 1989 | A |
4900218 | Sutherland | Feb 1990 | A |
4909341 | Rippingale | Mar 1990 | A |
4924153 | Toru et al. | May 1990 | A |
4932491 | Collins, Jr. | Jun 1990 | A |
4932831 | White et al. | Jun 1990 | A |
4936639 | Pohjola | Jun 1990 | A |
4997790 | Woo et al. | Mar 1991 | A |
5018591 | Price | May 1991 | A |
5021798 | Ubhayakar | Jun 1991 | A |
5022812 | Coughlan | Jun 1991 | A |
5046914 | Holland et al. | Sep 1991 | A |
5080000 | Bubic | Jan 1992 | A |
5130631 | Gordon | Jul 1992 | A |
5142932 | Moya | Sep 1992 | A |
5172639 | Wiesman et al. | Dec 1992 | A |
5174168 | Takagi | Dec 1992 | A |
5174405 | Carra | Dec 1992 | A |
5186526 | Pennington | Feb 1993 | A |
5199771 | James | Apr 1993 | A |
5205612 | Sugden et al. | Apr 1993 | A |
5214858 | Pepper | Jun 1993 | A |
5219264 | McClure et al. | Jun 1993 | A |
5252870 | Jacobsen | Oct 1993 | A |
5297443 | Wentz | Mar 1994 | A |
5317952 | Immega | Jun 1994 | A |
5337732 | Grundfest | Aug 1994 | A |
5337846 | Ogaki et al. | Aug 1994 | A |
5350033 | Kraft | Sep 1994 | A |
5354124 | James | Oct 1994 | A |
5363935 | Schempf | Nov 1994 | A |
5386741 | Rennex | Feb 1995 | A |
5413454 | Movsesian | May 1995 | A |
5426336 | Jacobsen | Jun 1995 | A |
5428713 | Matsumaru | Jun 1995 | A |
5435405 | Schempf | Jul 1995 | A |
5440916 | Stone et al. | Aug 1995 | A |
5443354 | Stone et al. | Aug 1995 | A |
5451135 | Schempf | Sep 1995 | A |
5465525 | Mifune | Nov 1995 | A |
5466056 | James | Nov 1995 | A |
5469756 | Feiten | Nov 1995 | A |
5516249 | Brimhall | May 1996 | A |
5519814 | Rodriguez et al. | May 1996 | A |
5551545 | Gelfman | Sep 1996 | A |
5556370 | Maynard | Sep 1996 | A |
5562843 | Yasumoto | Oct 1996 | A |
5567110 | Sutherland | Oct 1996 | A |
5570992 | Lemelson | Nov 1996 | A |
5573316 | Wankowski | Nov 1996 | A |
5588688 | Jacobsen | Dec 1996 | A |
5672044 | Lemelson | Sep 1997 | A |
5697285 | Nappi | Dec 1997 | A |
5712961 | Matsuo | Jan 1998 | A |
5749828 | Solomon | May 1998 | A |
5770913 | Mizzi | Jun 1998 | A |
5816769 | Bauer | Oct 1998 | A |
5821666 | Matsumoto | Oct 1998 | A |
5842381 | Feiten | Dec 1998 | A |
RE36025 | Suzuki | Jan 1999 | E |
5878783 | Smart | Mar 1999 | A |
5888235 | Jacobsen | Mar 1999 | A |
5902254 | Magram | May 1999 | A |
5906591 | Dario | May 1999 | A |
5984032 | Gremillion | Nov 1999 | A |
5996346 | Maynard | Dec 1999 | A |
6016385 | Yee | Jan 2000 | A |
6030057 | Fikse | Feb 2000 | A |
6056237 | Woodland | May 2000 | A |
6107795 | Smart | Aug 2000 | A |
6109705 | Courtemanche | Aug 2000 | A |
6113343 | Goldenberg et al. | Sep 2000 | A |
6132133 | Muro et al. | Oct 2000 | A |
6138604 | Anderson | Oct 2000 | A |
6162171 | Ng | Dec 2000 | A |
6186604 | Fikse | Feb 2001 | B1 |
6203126 | Harguth | Mar 2001 | B1 |
6260501 | Agnew | Jul 2001 | B1 |
6263989 | Won | Jul 2001 | B1 |
6264293 | Musselman | Jul 2001 | B1 |
6264294 | Musselman et al. | Jul 2001 | B1 |
6281489 | Tubel et al. | Aug 2001 | B1 |
6323615 | Khairallah | Nov 2001 | B1 |
6325749 | Inokuchi et al. | Dec 2001 | B1 |
6333631 | Das et al. | Dec 2001 | B1 |
6339993 | Comello | Jan 2002 | B1 |
6380889 | Herrmann et al. | Apr 2002 | B1 |
6394204 | Haringer | May 2002 | B1 |
6405798 | Barrett et al. | Jun 2002 | B1 |
6408224 | Okamoto | Jun 2002 | B1 |
6411055 | Fujita | Jun 2002 | B1 |
6422509 | Yim | Jul 2002 | B1 |
6430475 | Okamoto | Aug 2002 | B2 |
6431296 | Won | Aug 2002 | B1 |
6446718 | Barrett et al. | Sep 2002 | B1 |
6450104 | Grant | Sep 2002 | B1 |
6477444 | Bennett et al. | Nov 2002 | B1 |
6484083 | Hayward | Nov 2002 | B1 |
6488306 | Shirey et al. | Dec 2002 | B1 |
6505896 | Boivin | Jan 2003 | B1 |
6512345 | Borenstein | Jan 2003 | B2 |
6522950 | Conca et al. | Feb 2003 | B1 |
6523629 | Buttz | Feb 2003 | B1 |
6529806 | Licht | Mar 2003 | B1 |
6535793 | Allard | Mar 2003 | B2 |
6540310 | Cartwright | Apr 2003 | B1 |
6557954 | Hattori | May 2003 | B1 |
6563084 | Bandy | May 2003 | B1 |
6574958 | Macgregor | Jun 2003 | B1 |
6576406 | Jacobsen et al. | Jun 2003 | B1 |
6595812 | Haney | Jul 2003 | B1 |
6610007 | Belson | Aug 2003 | B2 |
6619146 | Kerrebrock | Sep 2003 | B2 |
6636781 | Shen et al. | Oct 2003 | B1 |
6651804 | Thomas | Nov 2003 | B2 |
6652164 | Stiepel et al. | Nov 2003 | B2 |
6668951 | Won | Dec 2003 | B2 |
6708068 | Sakaue | Mar 2004 | B1 |
6715575 | Karpik | Apr 2004 | B2 |
6725128 | Hogg et al. | Apr 2004 | B2 |
6772673 | Seto | Aug 2004 | B2 |
6773327 | Felice | Aug 2004 | B1 |
6774597 | Borenstein | Aug 2004 | B1 |
6799815 | Krishnan | Oct 2004 | B2 |
6820653 | Schempf | Nov 2004 | B1 |
6831436 | Gonzalez | Dec 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6837318 | Craig | Jan 2005 | B1 |
6840588 | Deland | Jan 2005 | B2 |
6866671 | Tierney | Mar 2005 | B2 |
6870343 | Borenstein | Mar 2005 | B2 |
6889118 | Murray et al. | May 2005 | B2 |
6917176 | Schempf | Jul 2005 | B2 |
6923693 | Borgen | Aug 2005 | B2 |
6936003 | Iddan | Aug 2005 | B2 |
6959231 | Maeda | Oct 2005 | B2 |
7017687 | Jacobsen et al. | Mar 2006 | B1 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7040426 | Berg | May 2006 | B1 |
7044245 | Anhalt et al. | May 2006 | B2 |
7069124 | Whittaker et al. | Jun 2006 | B1 |
7090637 | Danitz | Aug 2006 | B2 |
7137465 | Kerrebrock | Nov 2006 | B1 |
7144057 | Young et al. | Dec 2006 | B1 |
7171279 | Buckingham et al. | Jan 2007 | B2 |
7188473 | Asada | Mar 2007 | B1 |
7188568 | Stout | Mar 2007 | B2 |
7228203 | Koselka et al. | Jun 2007 | B2 |
7235046 | Anhalt et al. | Jun 2007 | B2 |
7331436 | Pack et al. | Feb 2008 | B1 |
7387179 | Anhalt et al. | Jun 2008 | B2 |
7415321 | Okazaki et al. | Aug 2008 | B2 |
7475745 | DeRoos | Jan 2009 | B1 |
7539557 | Yamauchi | May 2009 | B2 |
7546912 | Pack et al. | Jun 2009 | B1 |
7597162 | Won | Oct 2009 | B2 |
7600592 | Goldenberg et al. | Oct 2009 | B2 |
7645110 | Ogawa et al. | Jan 2010 | B2 |
7654348 | Ohm et al. | Feb 2010 | B2 |
7775312 | Maggio | Aug 2010 | B2 |
7798264 | Hutcheson et al. | Sep 2010 | B2 |
7843431 | Robbins et al. | Nov 2010 | B2 |
7845440 | Jacobsen | Dec 2010 | B2 |
7860614 | Reger | Dec 2010 | B1 |
7974736 | Morin et al. | Jul 2011 | B2 |
8002716 | Jacobsen et al. | Aug 2011 | B2 |
8042630 | Jacobsen | Oct 2011 | B2 |
8162410 | Hirose et al. | Apr 2012 | B2 |
8205695 | Jacobsen et al. | Jun 2012 | B2 |
8393422 | Pensel | Mar 2013 | B1 |
20010037163 | Allard | Nov 2001 | A1 |
20020038168 | Kasuga et al. | Mar 2002 | A1 |
20020128714 | Manasas et al. | Sep 2002 | A1 |
20020140392 | Borenstein | Oct 2002 | A1 |
20020189871 | Won | Dec 2002 | A1 |
20030000747 | Sugiyama | Jan 2003 | A1 |
20030069474 | Couvillon, Jr. | Apr 2003 | A1 |
20030097080 | Esashi | May 2003 | A1 |
20030110938 | Seto | Jun 2003 | A1 |
20030223844 | Schiele | Dec 2003 | A1 |
20040030571 | Solomon | Feb 2004 | A1 |
20040099175 | Perrot et al. | May 2004 | A1 |
20040103740 | Townsend | Jun 2004 | A1 |
20040168837 | Michaud | Sep 2004 | A1 |
20040216931 | Won | Nov 2004 | A1 |
20040216932 | Giovanetti | Nov 2004 | A1 |
20050007055 | Borenstein et al. | Jan 2005 | A1 |
20050027412 | Hobson | Feb 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050107669 | Couvillon, Jr. | May 2005 | A1 |
20050115337 | Tarumi | Jun 2005 | A1 |
20050166413 | Crampton | Aug 2005 | A1 |
20050168068 | Courtemanche et al. | Aug 2005 | A1 |
20050168070 | Dandurand | Aug 2005 | A1 |
20050225162 | Gibbins | Oct 2005 | A1 |
20050235898 | Hobson | Oct 2005 | A1 |
20050235899 | Yamamoto | Oct 2005 | A1 |
20050288819 | de Guzman | Dec 2005 | A1 |
20060000137 | Valdivia y Alvarado | Jan 2006 | A1 |
20060005733 | Rastegar et al. | Jan 2006 | A1 |
20060010702 | Roth | Jan 2006 | A1 |
20060010998 | Lloyd et al. | Jan 2006 | A1 |
20060070775 | Anhalt et al. | Apr 2006 | A1 |
20060117324 | Alsafadi et al. | Jun 2006 | A1 |
20060156851 | Jacobsen | Jul 2006 | A1 |
20060225928 | Nelson | Oct 2006 | A1 |
20060229773 | Peretz | Oct 2006 | A1 |
20060290779 | Reverte et al. | Dec 2006 | A1 |
20070029117 | Goldenberg et al. | Feb 2007 | A1 |
20070156286 | Yamauchi | Jul 2007 | A1 |
20070193790 | Goldenberg et al. | Aug 2007 | A1 |
20070260378 | Clodfelter | Nov 2007 | A1 |
20070293989 | Norris | Dec 2007 | A1 |
20080115687 | Gal et al. | May 2008 | A1 |
20080136254 | Jacobsen | Jun 2008 | A1 |
20080164079 | Jacobsen | Jul 2008 | A1 |
20080167752 | Jacobsen | Jul 2008 | A1 |
20080168070 | Naphade | Jul 2008 | A1 |
20080192569 | Ray et al. | Aug 2008 | A1 |
20080215185 | Jacobsen | Sep 2008 | A1 |
20080217993 | Jacobsen | Sep 2008 | A1 |
20080272647 | Hirose et al. | Nov 2008 | A9 |
20080281231 | Jacobsen | Nov 2008 | A1 |
20080281468 | Jacobsen | Nov 2008 | A1 |
20080284244 | Hirose et al. | Nov 2008 | A1 |
20090025988 | Jacobsen et al. | Jan 2009 | A1 |
20090030562 | Jacobsen | Jan 2009 | A1 |
20090035097 | Loane | Feb 2009 | A1 |
20090095209 | Jamieson | Apr 2009 | A1 |
20090171151 | Choset et al. | Jul 2009 | A1 |
20090212157 | Arlton et al. | Aug 2009 | A1 |
20100030377 | Unsworth | Feb 2010 | A1 |
20100036544 | Mashiach | Feb 2010 | A1 |
20100174422 | Jacobsen | Jul 2010 | A1 |
20100201185 | Jacobsen | Aug 2010 | A1 |
20100201187 | Jacobsen | Aug 2010 | A1 |
20100258365 | Jacobsen | Oct 2010 | A1 |
20100268470 | Kamal et al. | Oct 2010 | A1 |
20100317244 | Jacobsen | Dec 2010 | A1 |
20100318242 | Jacobsen | Dec 2010 | A1 |
20120185095 | Rosenstein et al. | Jul 2012 | A1 |
20120205168 | Flynn et al. | Aug 2012 | A1 |
20120264414 | Fung | Oct 2012 | A1 |
20120277914 | Crow et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
2512299 | Sep 2004 | CA |
1603068 | Apr 2005 | CN |
2774717 | Apr 2006 | CN |
1970373 | May 2007 | CN |
3025840 | Feb 1982 | DE |
3626238 | Feb 1988 | DE |
3626328 | Feb 1988 | DE |
19617852 | Oct 1997 | DE |
19714464 | Oct 1997 | DE |
19704080 | Aug 1998 | DE |
10018075 | Jan 2001 | DE |
102004010089 | Sep 2005 | DE |
0105418 | Apr 1984 | EP |
0584520 | Mar 1994 | EP |
0818283 | Jan 1998 | EP |
0924034 | Jun 1999 | EP |
1444043 | Aug 2004 | EP |
1510896 | Mar 2005 | EP |
1832501 | Sep 2007 | EP |
1832502 | Sep 2007 | EP |
2638813 | May 1990 | FR |
2660730 | Oct 1991 | FR |
2850350 | Jul 2004 | FR |
1199729 | Jul 1970 | GB |
S51-106391 | Aug 1976 | JP |
52 57625 | May 1977 | JP |
58-89480 | May 1983 | JP |
SHO 58-80387 | May 1983 | JP |
S59-139494 | Sep 1984 | JP |
60015275 | Jan 1985 | JP |
60047771 | Mar 1985 | JP |
60060516 | Apr 1985 | JP |
60139576 | Jul 1985 | JP |
SHO 60-211315 | Oct 1985 | JP |
61001581 | Jan 1986 | JP |
SHO 61-1581 | Jan 1986 | JP |
SHO 61-180885 | Jan 1986 | JP |
SHO61-020484 | Feb 1986 | JP |
SHO61-054378 | Mar 1986 | JP |
SHO61-075069 | Apr 1986 | JP |
61089182 | May 1986 | JP |
SHO 62-36885 | Mar 1987 | JP |
S62-165207 | Jul 1987 | JP |
SHO 2-162626 | Oct 1987 | JP |
SHO 63-32084 | Mar 1988 | JP |
63306988 | Dec 1988 | JP |
04092784 | Mar 1992 | JP |
H04-126656 | Apr 1992 | JP |
HEI 5-3087 | Jan 1993 | JP |
05147560 | Jun 1993 | JP |
HEI05-270454 | Oct 1993 | JP |
HEI 5-286460 | Nov 1993 | JP |
06-115465 | Apr 1994 | JP |
HEI 8-133141 | Nov 1994 | JP |
2007-216936 | Aug 1995 | JP |
7329841 | Dec 1995 | JP |
HEI 7-329837 | Dec 1995 | JP |
HEI 9-142347 | Jun 1997 | JP |
52122431 | Sep 1997 | JP |
HEI11-347970 | Dec 1999 | JP |
2003-237618 | Feb 2002 | JP |
2003-019985 | Jan 2003 | JP |
2003-315486 | Nov 2003 | JP |
2004080147 | Mar 2004 | JP |
03535508 | Jun 2004 | JP |
2005-19331 | Jan 2005 | JP |
2005-081447 | Mar 2005 | JP |
2005111595 | Apr 2005 | JP |
2006-510496 | Mar 2006 | JP |
2007-237991 | Sep 2007 | JP |
2010-509129 | Mar 2010 | JP |
WO 8702635 | May 1987 | WO |
WO 9637727 | Nov 1996 | WO |
WO 9726039 | Jul 1997 | WO |
WO 0010073 | Feb 2000 | WO |
WO 0216995 | Feb 2002 | WO |
WO 02095517 | Nov 2002 | WO |
WO 03030727 | Apr 2003 | WO |
WO 03037515 | May 2003 | WO |
WO 2004056537 | Jul 2004 | WO |
WO 2005018428 | Mar 2005 | WO |
WO 2006068080 | Jun 2006 | WO |
WO 2008076194 | Jun 2008 | WO |
WO 2008127310 | Oct 2008 | WO |
WO 2008135978 | Nov 2008 | WO |
WO 2008049050 | Jan 2009 | WO |
WO 2009009673 | Jan 2009 | WO |
WO 2010070666 | Jun 2010 | WO |
WO 2012061932 | May 2012 | WO |
Entry |
---|
U.S. Appl. No. 12/171,144, filed Jul. 10, 2008; Stephen C. Jacobsen; office action mailed Jan. 13, 2011. |
U.S. Appl. No. 12/964,996, filed Jan. 27, 2010; Stephen C. Jacobsen; office action mailed Jan. 26, 2011. |
PCT Application PCT/US2010/038339; filed Jun. 11, 2010; Stephen C. Jacobsen; ISR mailed Feb. 9, 2011. |
U.S. Appl. No. 12/765,618, filed Apr. 22, 2010; Stephen C. Jacobsen; office action issued Sep. 20, 2011. |
U.S. Appl. No. 12/350,693, filed Jan. 8, 2009; Stephen C. Jacobsen; office action issued Oct. 12, 2011. |
U.S. Appl. No. 11/985,320, filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Nov. 25, 2011. |
U.S. Appl. No. 12/814,302, filed Jun. 11, 2010; Stephen C. Jacobsen; office action issued Jan. 10, 2012. |
U.S. Appl. No. 11/985,336, filed Nov. 13, 2007; Stephen C. Jacobsen; notice of allowance issued Jan. 19, 2012. |
Mehling et al.; A Minimally Invasive Tendril robot for In-Space Inspection; Feb. 2006; The First IEEE-RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob '06) pp. 690-695. |
U.S. Appl. No. 11/985,320, filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Apr. 25, 2012. |
U.S. Appl. No. 12/350,693, filed Jan. 8, 2009; Stephen C. Jacobsen; office action issued Mar. 28, 2012. |
U.S. Appl. No. 12/814,302, filed Jun. 11, 2010; Stephen C. Jacobsen; office action issued Apr. 18, 2012. |
U.S. Appl. No. 11/985,336, filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Jun. 14, 2011. |
U.S. Appl. No. 12/820,881, filed Jun. 22, 2010; Stephen C. Jacobsen; notice of allowance issued Jun. 9, 2011. |
U.S. Appl. No. 12/765,618, filed Apr. 22, 2010; Stephen C. Jacobsen; Notice of Allowance issued Feb. 2, 2012. |
U.S. Appl. 12/171,146, filed Jul. 10, 2008; Stephen C. Jacobsen; office action issued Feb. 9, 2012. |
U.S. Appl. No. 12/765,618, filed Apr. 22, 2010; Stephen C. Jacobsen; office action issued Apr. 6, 2011. |
U.S. Appl. No. 11/985,320, filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Apr. 12, 2011. |
U.S. Appl. No. 11/985,324, filed Nov. 13, 2007; Stephen C. Jacobsen; notice of allowance issued Apr. 18, 2011. |
U.S. Appl. No. 12/151,730, filed May 7, 2008; Stephen C. Jacobsen; notice of allowance issued Apr. 15, 2011. |
U.S. Appl. No. 12/171,146, filed Jul. 10, 2008; Stephen C. Jacobsen; office action dated Aug. 20, 2012. |
U.S. Appl. No. 13/181,380, filed Jul. 12, 2011; Stephen C. Jacobsen; office action dated Jul. 17, 2012. |
U.S. Appl. No. 12/814,302, filed Jun. 11, 2010; Stephen C. Jacobsen; notice of allowance dated Jul. 25, 2012. |
U.S. Appl. No. 12/694,996, filed Jan. 27, 2010; Stephen C. Jacobsen; Office Action Issued Sep. 30, 2010. |
U.S. Appl. No. 12/151,730, filed May 7, 2008; Stephen C. Jacobsen; Office Action Issued Nov. 15, 2010. |
U.S. Appl. No. 12/171,144, filed Jul. 10, 2008; Stephen C. Jacobsen; Office Action Issued Aug. 11, 2010. |
U.S. Appl. No. 11/985,324, filed Nov. 13, 2007; Stephen C. Jacobsen; Office Action Issued Nov. 1, 2010. |
PCT/US10/38331; filed Jun. 11, 2009; Stephen C. Jacobsen; Isr Issued Dec. 1, 2010. |
U.S. Appl. No. 12/820,881, filed Jun. 22, 2010; Stephen C. Jacobsen; office action issued Nov. 30, 2010 |
Arnold, Henry, “Cricket the robot documentation.” online manual available at http://www.parallaxinc.com, 22 pages. |
Iagnemma, Karl et al., “Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers.” International Journal of Robotics Research, Oct.-Nov. 2004, pp. 1029-1040, vol. 23, No. 10-11. |
Hirose, et al., “Snakes and strings; new robotic components for rescue operations,” International Journal of Robotics Research, Apr.-May 2004, pp. 341-349, vol. 23, No. 4-5. |
Paap et al., “A robot snake to inspect broken buildings,” IEEE, 2000, pp. 2079-2082, Japan. |
Braure, Jerome, “Participation to the construction of a salamander robot: exploration of the morphological configuration and the locomotion controller”, Biologically Inspired Robotics Group, master thesis, Feb. 17, 2004, pp. 1-46. |
Jacobsen, et al., Advanced intelligent mechanical sensors (AIMS), Proc. IEEE Trandsucers Jun. 24-27, 1991, abstract only, San Fransico, CA. |
Jacobsen, et al., “Research robots for applications in artificial intelligence, teleoperation and entertainment”, International Journal of Robotics Research, 2004, pp. 319-330, vol. 23. |
Jacobsen, et al., “Multiregime MEMS sensor networks for smart structures,” Procs. SPIE 6th Annual Inter. Conf. on Smart Structues and Materials, Mar. 1-5, 1999, pp. 19-32, vol. 3673, Newport Beach CA. |
MaClean et al., “A digital MEMS-based strain gage for structural health monitoring,” Procs. 1997 MRS Fall Meeting Symposium, Nov. 30-Dec. 4, 1997, pp. 309-320, Boston Massachusetts. |
Berlin et al., “MEMS-based control of structural dynamic instability”, Journal of Intelligent Material Systems and Structures, Jul. 1998 pp. 574-586, vol. 9. |
Goldfarb, “Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots,” IEEE Transactions on Mechatronics, Jun. 2003, vol. 8 No. 2. |
Dowling, “Limbless Locomotion: Learning to crawl with a snake robot,” The Robotics Institute at Carnegie Mellon University, Dec. 1997, pp. 1-150. |
Matthew Heverly & Jaret Matthews: “A wheel-on-limb rover for lunar operation” Internet article, Nov. 5, 2008, pp. 1-8, http://robotics.estec.esa.int/i-SAIRAS/isairas2008/Proccedings/SESSION%2026/m116-Heverly.pdf. |
NASA: “Nasa's newest concept vehicles take off-roading out of this world” Internet article, Nov. 5, 2008, http://www.nasa.gov/mission—pages/constellation/main/lunar—truck.html. |
Revue Internationale De defense, “3-D vision and urchin” Oct. 1, 1988, p. 1292, vol. 21, No. 10, Geneve CH. |
Advertisement, International Defense review, Jane's information group, Nov. 1, 1990, p. 54, vol. 23, No. 11, Great Britain. |
Ren Luo “Development of a multibehavior-based mobile robot for remote supervisory control through the internet” IEEE/ ASME Transactions on mechatronics, IEEE Service Center, Piscataway, NY, Dec. 1, 2000, vol. 5, No. 4. |
Nilas Sueset et al., “A PDA-based high-level human-robot interaction” Robotics, Automation and Mechatronics, IEEE Conference Singapore, Dec. 1-3, 2004, vol. 2, pp. 1158-1163. |
U.S. Appl. No. 12/350,693, filed Jan. 8, 2009; Stephen C. Jacobsen; notice of allowance dated Sep. 20, 2012. |
U.S. Appl. No. 13/481,631, filed May 25, 2012; Ralph W. Pensel; notice of allowance dated Sep. 24, 2012. |
U.S. Appl. No. 12/814,304, filed Jun. 11, 2010; Stephen C. Jacobsen; office action dated Nov. 13, 2012. |
U.S. Appl. No. 12/117,233, filed May 8, 2008; Stephen C. Jacobsen; office action dated Nov. 23, 2012. |
Mehling, et al.; “A Minimally Invasive Tendril Robot for In-Space Inspection”; Biomedical Robotics and Biomechatronis, 2006. |
Celaya et al; Control of a Six-Legged Robot Walking on Abrupt Terrain; Proceedings of the 1996 IEE International Conference on Robotics and Automation, Minneapolis, Minnesota; Apr. 1996; 6 pages. |
Burg et al; Anti-Lock Braking and Traction Control Concept for All-Terrain Robotic Vehicles; Proceedings of the 1997 IEE International Conference on Robotics and Automation; Albuquerque, New Mexico; Apr. 1997; 6 pages. |
U.S. Appl. No. 12/117,233, filed May 8, 2008; Stephen C. Jacobsen. office action dated Nov. 23, 2012. |
U.S. Appl. No. 13/181,380, filed Jul. 12, 2011; Stephen C. Jacobsen; notice of allowance dated Dec. 24, 2012. |
U.S. Appl. No. 12/171,146, filed Jul. 10, 2008; Stephen C. Jacobsen; office action dated Mar. 6, 2013. |
U.S. Appl. No. 12/117,233, filed May 8, 2000; Stephen C. Jacobsen; office action dated May 6, 2013. |
U.S. Appl. No. 12/171,146, filed Jul. 10, 2008; Stephen C. Jacobsen; notice of allowance dated Jun. 24, 2013. |
Schenker, et al.; “Reconfigurable robots for all terrain exploration”; 2000, CIT. |
Blackburn, et al.; Improved mobility in a multi-degree-of-freedom unmanned ground vehicle; Unmanned Ground Vehicles Technology VI; Proceedings of SPIE vol. 5422; Sep. 2, 2004; 124-134; vol. 5422; SPIE. |
U.S. Appl. No. 12/117,233, filed May 8, 2008; Stephen C. Jacobsen; office action dated Dec. 19, 2013. |
PCT Application PCT/US2013/067840; filed Oct. 31, 2013; Raytheon Company; International Search Report mailed Aug. 29, 2014. |
Simmons et al.; Coordinated Deployment of Multiple, Heterogeneous Robots; School of Computer Science, Carnegie Mellon University, Pittsburgh, PS; Honeywell Technology Center, Minneapolis, MN; Intelligent Robot Systems; 2000; pp. 2254-2260; vol. 3. |
U.S. Appl. No. 13/665,669, filed Oct. 31, 2012; Fraser M. Smith; office action dated Jul. 7, 2014. |
Number | Date | Country | |
---|---|---|---|
20100318242 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61186290 | Jun 2009 | US |