Dynamic DNS Monitoring and Sinkholing
In one embodiment, the present invention is a method and system for identifying and/or attacking botnets. A bot is a robot or compromised computer that is used to carry out an attack. Examples of attacks include, but are not limited to, Distributed Denial of Service (DDOS) attacks, hosting distributed phishing pages, and key cracking. A botnet is a collection of bots. Botnets are composed of the bot victims reaped from different viruses, worms and Trojans. Thus, botnets are often referred to as viruses, worms or Trojans, depending on the context. The original infections compel the victim bots to run bot programs, which allow for remote administration.
Botnet Creation
To better understand how to detect and respond to botnets, an example pattern of botnet creation is presented in
Detecting Botnets
Botmasters also see another advantage in using subdomains. Even if service to a 3LD is suspended, service to other 3LDs within the same SLD is usually not disrupted. So, if “obtnet1.example.com” is sent to sinkhole computer, traffic to “normaluser.example.com” and “botnet2.example.com” is not disrupted. (Some DDNS providers may aggressively revoke accounts for the entire SLD, however, depending on the mix of users.) This lets botmasters create multiple, redundant DDNS services for their networks, all using the same SLD.
By comparison, most normal users usually do not employ subdomains when adding subcategories to an existing site. For example, if a legitimate company owns “example.com” and wants to add subcategories of pages on their web site, they are more likely to expand the URL (e.g., “example.com/products”) instead using a 3LD subdomain (e.g., “products.example.com”). This lets novice web developers create new content cheaply and quickly, without the need to perform complicated DNS updates (and implement virtual host checking in the web server) following each change to a web site.
Thus, normal users tend to have a single domain name (with subcategories of content hanging off the URL), while bot computers tend to use mostly subdomains. Of course, botmasters could decide to exclusively use SLDs for their botnets instead of 3LDs, but this doubles their cost (because each domain name must be purchased in addition to the original SLD) and increases the number of potentially risky financial transactions (that may lead to traceback) required to create the network.
Thus, to determine the number of 3LDs, in 405, for a given SLD, the canonical SLD DNS request rate is calculated. The canonical SLD request rate is defined as the total number of requests observed for all the 3LDs present in a SLD, plus any request to the SLD. We use the term |SLD| to represent the number of 3LDs observed in a given SLD. Thus, if the SLD “example.com” has two subdomains “one.example.com” and “two.example.com”, then its |SLD|=2. For a given SLDi, with rate RSLD
Once the canonical SLD request rate is determine, in 410 it is determined if the canonical SLD request rate significantly deviates from the mean. When put in canonical form, distinguishing the normal and bot computer traffic is straight forward. The bottom line of
The inequality places an upper bound on the chance that the difference between X and μ will exceed a certain threshold t. As shown on the bottom line of
A distinguishing feature for this second filter is that botnet DNS request rates are usually exponential over a 24 hour period. The diurnal nature of bot behavior means that there are periodic spikes in bot requests. These spikes are caused by infected hosts who turn on their computers in the morning, releasing a sudden burst of DNS traffic as the bots reconnect to the C&C computer. This spike is not present in normal DNS request rates, which require (usually slower and random) user interaction to generate a DNS request. In some cases, flash crowds of users visiting a popular site may behave like a botnet, but this is rare, and likely not sustained as seen in botnets.
Turning to
Turning to 510, it is then determined if the sorted 24-hour traffic has any exponential activity. Any standard distance metric can compare the distributions. For example, the Mahalanbis distance can be used to measure the distance between request rate distributions and a normal model. (Note that other distance metrics can also be used.) The Mahalanobiso distance, d, is:
d2(x,
The Mahalanobis distance metric considers the variance of request rates in addition to the average request rate. This detects outliers, and measures the consistency of the observed request rates with the trained (normal) samples. The Mahalanobis distance metric can be simplified by assuming the independence of each sample in the normal traffic, and therefore removing the covariance matrix:
As with the canonical SLD request rate, training can be done using the normal model, and an appropriate threshold can be picked. Training can be done with a model of normal data, and a threshold chosen so that false positives are not generated. If observed traffic for a host has too great a distance score from the normal, it is deemed an outlier, and flagged as a bot computer.
Because of the underlying diurnal pattern driving bot computer name lookups, the sorted request rates only become distinct when grouped into clusters at least several hours in length. For this reason, this secondary detection system can also be used for low-and-slow spreading worms, and as an additional filtration step for noisy networks.
Disrupting Botnets
Another response option, DDNS removal 610, is to simply remove the botnets DDNS entry or name registration. Once the traffic is deemed abusive, and measured in the sinkhole, it is possible to revoke the DDNS account. Moreover, it is also possible in some cases to revoke the domain registration used by a botnet. Registration can be revoked where “whois” contact information is missing or proven wrong.
An additional optional response is the use of tarpits 615. There are at least two general types of tarpits: network layer (playing “TCP games”) and application layer (honeypots). For network tarpits, in response to incoming bot synchronous (SYN) requests, bots can be sent a reset (RST), blackholed (i.e., given no response), sent a single acknowledgment, given multiple acknowledgments, or handed off to different types of tarpits. Routing layer (LaBrae-style) tarpits, for example, are easily evaded by modern multi-threaded bots. Many bot computers blacklist Internet Protocols (IPs) that repeatedly timeout or behave like a tarpit. Other bot computers use special application layer protocols or port-knocking (i.e., finding ports that are open) to detect tarpits and rival (hijacking) C&C computers.
For this reason, network-level tarpits are not completely effective against all classes of bot computers. For bot computers that have learned how to evade network-layer tarpits, an application-level tarpit is utilized. Many of these bot computers leave the non-application level sinkhole because they expect a particular set of packets from the C&C computer, such as a port-knocking sequence or special banner message from an Internet Relay Chat (IRC) server. A limited proxy can be used to learn the appropriate hand-shake login sequence the bot expects. The bot computers first join the sinkhole, and are sent to an application-layer tarpit, also called a honeypot. The honeypot sends a “safe” heuristic subset of commands to the C&C computer, and observes the proper response behavior. Unsafe instructions (e.g., commands to scan networks or download other malware) are discarded, since this might expose a bot computer to instructions encoded in the channel topic. Even custom-made, non-RFC compliant protocols, such as heavily modified IRC servers, cannot evade application sinkholing, which slowly learns the proper sequence of instructions to fool the bot computers.
Analyzing Botnets
Modeling Prior Botnets to Predict Future Botnets.
In addition to the responses explained above, experience with previous botnets can also be used to predict the behavior of future botnets. Botnets are very widespread, so it is helpful to comparatively rank them and prioritize responses. Short-term variations in population growth can also be predicted, which is helpful because most dropper programs are short lived. In addition, different botnets use a heterogeneous mix of different infections exploiting different sets of vulnerabilities, often in distinct networks, with variable behavior across time zones. A model that can express differences in susceptible populations, and gauge how this affects propagation speed, is useful.
Botnets have a strongly diurnal nature.
As illustrated in
As the number of infected computers in a region varies over time, α(t) is defined as the diurnal shaping function, or fraction of computers in a time zone that are still on-line at time t. Therefore, α(t) is a periodical function with a period of 24 hours. Usually, α(t) reaches its peak level at daytime (when users turn on their computers) and its lowest level at night (when users shut off their computers).
Diurnal Model for Single Time Zone.
First, a closed network within a single time zone is considered. Thus, all computers in the network have the same diurnal dynamics. It should be noted that the diurnal property of computers is determined by computer user behavior (e.g., turning on the computer at the beginning of the day). For the formula below, I(t) is defined as the number of infected hosts at time t. S(t) is the number of vulnerable hosts at time t. N(t) is the number of hosts that are originally vulnerable to the worm under consideration. The population N(t) is variable since such a model covers the case where vulnerable computers continuously go online as a worm spreads out. For example, this occurs when a worm propagates over multiple days. To consider the online/offline status of computers, the following definitions are used.
To capture the situation where infected hosts are removed (e.g., due to computer crash, patching or disconnecting when infection is discovered), R(t) is defined as the number of removed infected hosts at time t. Thus:
Note that for internet worm modeling
This diurnal model for a single time zone can be used to model the propagation of regional viruses and/or worms. For example, worms and/or viruses tend to focus on specific geographic regions because of the language used in the e-mail propagation system. Similarly, worms have hard-coded exploits particular to a language specific version of an Operating System (OS) (e.g., a worm that only successfully attacks Windows XP Home Edition Polish). For these regional worms and/or viruses, the infection outside of a single zone is negligible and the infection within the zone can be accurately modeled by the above formula. It should also be noted that it is possible to not consider the diurnal effect. To so do, α(t) is set equal to 1.
Diurnal Model for Multiple Time Zones.
Worms and/or viruses are not limited to a geographic region. Victim bots are usually spread over diverse parts of the world, but can be concentrated in particular regions, depending on how the underlying infections propagate. For example, some attacks target a particular language edition of an operating system, or use a regional language as part of a social engineering ploy. For example, there are worms and/or viruses that contain enormous look-up tables of buffer-overflows offset for each language edition of Windows. Similarly, many email spreading worms and/or viruses use a basic, pigeon English, perhaps to maximize the number of Internet users who will read the message and potentially open up the virus. These regional variations in infected populations play an important role in malware spread dynamics. Thus, in some situations it is useful to model the worm and/or virus propagation in the entire Internet across different time zones. Since computers in one time zone could exhibit different diurnal dynamics from the ones in another time zone, computers in each zone are treated as a group. The Internet can then be modeled as 24 interactive computer groups for 24 time zones. Since many of the time zones have negligible numbers of computers (such as time zones spanning parts of the Pacific Ocean), worm propagation can be considered in K time zones where K is smaller than 24. For a worm and/or virus propagation across different time zones, the worm propagation for time zone i is:
For a uniform-scan worm and/or virus, since it evenly spreads out its scanning traffic
Thus, when a new worm and/or virus is discovered, the above equation can be used by inferring the parameter βji based on a monitored honeypot behavior of scanning traffic. (Note that a honeypot is a computer set up to attract malicious traffic so that it can analyze the malicious traffic.) As noted above with reference to
Thus, as illustrated in
The diurnal models tell us when releasing a worm will cause the most severe infection to a region or the entire Internet. For worms that focus on particular regions, the model also allows prediction of future propagation, based on time of release. A table of derived shaping functions can be built, which are based on observed botnet data and other heuristics (e.g., the exploit used, the OS/patch level it affects, country of origin). When a new worm and/or virus is discovered, the table for prior deviations can be consulted to forecast the short-term population growth of the bot, relative to its favored zone and time of release.
In addition, knowing the optimal release time for a worm will help improve surveillance and response. To identify an optimal release time, the scenario is studied where the worm uniformly scans the Internet and all diurnal groups have the same number of vulnerable population, i.e., N1=N2=N3. To study whether the worm's infection rate β affects the optimal release time, the worm's scan rate η (remember
is changed. The study of optimal release times is useful because we can better determine the defense priority for two viruses or worms released in sequence. Viruses often have generational releases, e.g., worm.A and worm.B, where the malware author improves the virus or adds features in each new release. The diurnal model allows consideration of the significance of code changes that affect S(t) (the susceptible population). For example, if worm.A locally affects Asia, and worm.B then adds a new feature that also affects European users, there clearly is an increase in its overall S(t), and worm.B might become a higher priority. But when worm.B comes out, relative when worm.A started, plays an important role. For example, if the European users are in a diurnal low phase, then the new features in worm.B are not a near-term threat. In such a case, worm.A could still pose the greater threat, since it has already spread for several hours. On the other hand, if worm.B is released at a time when the European countries are in an upward diurnal phase, then worm.B could potentially overtake worm.A with the addition of the new victims.
The diurnal models in
DNSBL Monitoring
Another method of passively detecting and identifying botnets (i.e., without disrupting the operation of the botnet) is through revealing botnet membership using Domain Name System-based Blackhole List (DNSBL) counter-intelligence. DNSBL can be used to passively monitor networks, often in real-time, which is useful for early detection and mitigation. Such passive monitoring is discreet because it does not require direct communication with the botnet. A bot that sends spam messages is usually detected by an anti-spam system(s) and reported/recorded in a DNSBL, which is used to track IP addresses that originate spam. An anti-spam system gives a higher spam score to a message if the sending IP address can be looked up on a DNSBL. It is useful to distinguish DNSBL traffic, such as DNSBL queries, that is likely being perpetrated by botmasters from DNSBL queries performed by legitimate mail servers.
Bots sometimes perform look-ups (i.e., reconnaissance to determine whether bots have been blacklisted) on the DNSBL. For example, before a new botnet is put in use for spam, the botmaster of the new botnet or another botnet may look up the members of the new botnet on the DNSBL. If the members are not listed, then the new botnet, or at least certain bots, are considered “fresh” and much more valuable.
If the bot performing reconnaissance is a known bot, e.g., it is already listed on the DNSBL or it is recorded in some other botnet database (e.g., a private botnet database), then the new botnet can be identified using the IPs being queried by the bot. Analysis can be performed at the DNSBL server, and for each query to the DNSBL, the source IP issuing the query can be examined, and the subject IP being queried can also be examined. If the source IP is a known bot, then the subject IP is also considered to be a bot. All of the subject IPs that are queried by the same source IP in a short span of time are considered to be in the same botnet.
If an unknown bot is performing reconnaissance, it must first be identified as a bot, and then the IPs it queries can also be identified as bots. DNSBL reconnaissance query traffic for botnets is different than legitimate DNSBL reconnaissance query traffic. FIG. 10 illustrates several methods for analyzing reconnaissance traffic, according to several embodiments of the invention.
Self-Reconnaissance
In 1005, self-reconnaissance is detected. To perform “self-reconnaissance”, the botmaster distributes the workload of DNSBL look-ups across the botnet itself such that each bot is looking up itself. Detecting such botnet is straightforward because a legitimate mail server will not issue a DNSBL look-up for itself.
Single Host Third-Party Reconnaissance
In 1010, single host third-party reconnaissance is detected. To explain third-party reconnaissance, a look-up model is provided in
A legitimate mail server both receives and sends email messages, and hence, will both perform look-ups (for the email messages it received in) and be the subject of look-ups by other mail servers (for the email messages it sent out). In contrast, hosts performing reconnaissance-based look-ups will only perform queries; they generally will not be queried by other hosts. Legitimate mail servers are likely to be queried by other mail servers that are receiving mail from that server. On the other hand, a host that is not itself being looked up by any other mail server is, in all likelihood, not a mail server but a bot. This observation can be used to identify hosts that are likely performing reconnaissance: lookups from hosts that have a low in-degree (the number of look-ups on the bot itself for the email messages it sent out), but have a high out-degree (the number of look-ups the bot performs on other hosts) are more likely to be unrelated to the delivery of legitimate mail.
In single host third-party reconnaissance, a bot performs reconnaissance DNSBL look-ups for a list of spamming bots. The in-degree (din) should be small because the bot is not a legitimate mail server and it has not yet sent a lot of spam messages (otherwise it will have been a known bot listed in DNSBL already). Thus, a look-up ratio αA is defined as:
Thus, utilizing the above formula, a bot can be identified because it will have a much larger value of α than the legitimate mail servers. Single-host reconnaissance can provide useful information. For example, once a single host performing such look-ups has been identified, the operator of the DNSBL can monitor the lookups issued by that host over time to track the identity of hosts that are likely bots. If the identity of this querying host is relatively static (i.e., if its IP address does not change over time, or if it changes slowly enough so that its movements can be tracked in real-time), a DNSBL operator could take active countermeasures.
Distributed Reconnaissance
Referring back to
The temporal arrival pattern of queries at the DNSBL by hosts performing reconnaissance may differ from temporal characteristics of queries performed by legitimate hosts. With legitimate mail server's DNSBL look-ups, the look-ups are typically driven automatically when email arrives at the mail server and will thus arrive at a rate that mirrors the arrival rates of email. Distributed reconnaissance-based look-ups, on the other hand, will not reflect any realistic arrival patterns of legitimate email. In other words, the arrival rate of look-ups from a bot is not likely to be similar to the arrival rate of look-ups from a legitimate email server.
If the DNSBL is subscription-based or has access control, use a list of approved users (the email servers) to record the IP addresses that the servers use for accessing the DNSBL service. Enter these addresses into a list of Known Mail Server IPs.
If the DNSBL service allows anonymous access, monitor the source IPs of incoming look-up requests, and record a list of unique IP addresses (hereinafter “Probable Known Mail Server IPs”). For each IP address in the Probably Known Mail Server IPs list:
Connect to the IP address to see if the IP address is running on a known mail server. If a banner string is in the return message from the IP address, and its responses to a small set of SMTP commands, e.g. VRFY, HELO, EHLO, etc., match known types and formats of responses associated with a typical known mail server, then the IP address is very likely to be a legitimate email server, and in such a case, enter it into the list of Known Mail Server IPs.
Those of skill in the art will understand that other methods may be used to compile a list of known legitimate email servers. In 1310, for each of the known or probable legitimate email servers, its look-ups to DNSBL are observed, and its average look-up arrival rate λi for a time interval (say, a 10-minute interval) is derived. This can be done, for example, by using the following simple estimation method. For n intervals (say n is 6), for each interval, the number of look-ups from the mail server, dk are recorded. The average arrival rate of look-ups from the mail servers over n time intervals is simply:
In 1315, once the look-up arrival rates from the known mail servers are learned, the average look-up arrival rate λ′ from a source IP (that is not a known legitimate email server or a known bot) can be analyzed over n time intervals
In 1320, if λ′ is very different from each λi, i.e., ═λ′−λi═>t for all i's, where t is a threshold, the source IP is considered a bot. The above process of measuring the arrival rates of the legitimate servers is repeated for every n time intervals. The comparison of the arrival rate from a source IP, λ′, with the normal values, λi's, is performed using the λ′ and λi's computed over the same period in time.
In addition to finding bots that perform queries for other IP addresses, the above methods also lead to the identification of additional bots. This is because when a bot has been identified as performing queries for other IP addresses, the other machines being queried by the bot also have a reasonable likelihood of being bots.
The above methods could be used by a DNSBL operator to take countermeasures (sometimes called reconnaissance poisoning) towards reducing spam by providing inaccurate information for the reconnaissance queries. Examples of countermeasures include a DNSBL communicating to a botmaster that a bot was not listed in the DNSBL when in fact it was, causing the botmaster to send spam from IP addresses that victims would be able to more easily identify and block. As another example, a DNSBL could tell a botmaster that a bot was listed in the blacklist when in fact it was not, potentially causing the botmaster to abandon (or change the use of) a machine that would likely be capable of successfully sending spam. The DNSBL could also be intergrated with a system that performs bot detection heuristics, as shown in
In addition, a known reconnaissance query could be used to boost confidence that the IP address being queried is in fact also a spamming bot. Furthermore, DNSBL lookup traces would be combined with other passively collected network data, such as SMTP connection logs. For example, a DNSBL query executed from a mail server for some IP address that did not recently receive an SMTP connection attempt from that IP address also suggests reconnaissance activity.
DNS Cache Snooping
In general, most domain names that are very popular, and thus used extensively, are older, well-known domains, such as google.com. Because of the nature of botnets, however, although they are new, they are also used extensively because bots in the botnet will query the botnet C&C machine name more frequently at the local Domain Name Server (LDNS), and hence, the resource record of the C&C machine name will appear more frequently in the DNS cache. Since non-recursive DNS queries used for DNS cache inspection do not alter the DNS cache (i.e., they do not interfere with the analysis of bot queries to the DNS), they can be used to infer the bot population in a given domain. Thus, when the majority of local DNS servers in the Internet are probed, a good estimate of the bot population in a botnet is found.
DNS cache inspection utilizes a TTL (time-to-live) value (illustrated in
Referring to
Identifying Open Recursive Servers
Open recursive servers can be identified to, for example: (a) estimate botnet populations, (b) compare the relative sizes of botnets, and (c) determine if networks have botnet infections based on the inspection of open recursive DNS caches.
Open recursive DNS servers are DNS servers that respond to any user's recursive queries. Thus, even individuals outside of the network are permitted to use the open recursive DNS server. The cache of any DNS server stores mappings between domain names and IP addresses for a limited period of time, the TTL period, which is described in more detail above. The presence of a domain name in a DNS server's cache indicates that, within the last TTL period, a user had requested that domain. In most cases, the user using the DNS server is local to the network.
In 1705 of
To speed up the search for all DNS servers on the Internet, 1705 breaks up the routable space into organizational units. The intuition is that not all IPv4 addresses have the same probability of running a DNS server. Often, organizations run just a handful of DNS servers, or even just one. The discovery of a DNS server within an organizational unit diminishes (to a non-zero value) the chance that other addresses within the same organization's unit are also DNS servers.
1705 is explained in more detail in
In 1915, the organizational units are sorted in descending order according to their CPRS values.
Domain Ranking
1710 of the DNS cache inspection process (which can be independent of 1705) produces a set of candidate domains. In other words, this phase generates a list of “suspect” domains that are likely botnet C&C domains. There are multiple technologies for deriving such a suspect list. For example, one can use DDNS or IRC monitoring to identify a list of C&C domains. Those of ordinary skill in the art will see that DDNS monitoring technologies can yield a list of botnet domains.
Cache Inspection
1715 of the DNS cache inspection process combines the outputs of 1705 and 1710. For each domain identified in 1710, a non-recursive query is made to each non-recursive DNS server identified in 1705. Thus, for the top N entries (i.e., the N units with the lowest scores in 1915), the following steps are performed to determine if the DNS server is open recursive:
a. A non-recursive query is sent to the DNS server for a newly registered domain name. This step is repeated with appropriate delays until the server returns an NXDOMAIN answer, meaning that no such domain exists.
b. A recursive query is then immediately sent to the DNS server for the same domain name used in the previous non-recursive query. If the answer returned by the DNS server is the correct resource record for the domain (instead of NXDOMAIN), the DNS server is designated as open recursive.
Determine Number of DNS Servers
Once an open recursive server is discovered, its cache can be queried to find the server's IP address. Often the server's IP address can be hard to discover because of server load balancing. Load balancing is when DNS servers are clustered into a farm, with a single external IP address. Requests are handed off (often in round-robin style) to an array of recursive DNS machines behind a single server or firewall. This is illustrated in
This problem is addressed by deducing the number of DNS machines in a DNS farm. Intuitively, multiple non-recursive inspection queries are issued, which discover differences in TTL periods for a given domain. This indirectly indicates the presence of a separate DNS cache, and the presence of more than one DNS server behind a given IP address.
Some load balancing is performed by a load balancing switch (often in hardware) that uses a hash of the 4-tuple of the source destination ports and IP addresses to determine which DNS server to query. That is, queries will always reach the same DNS server if the queries originate from the same source IP and port. To accommodate this type of load balancing, a variation of the above steps can be performed. 2115 through 2135 can be performed on different machines with distinct source IPs. (This may also be executed on a single multihomed machine that has multiple IP addresses associated with the same machine and that can effectively act as multiple machines.) Thus, instead of starting three threads from a single source IP address, three machines may each start a single thread and each be responsible for querying the DNS server from a distinct source IP. One of the machines is elected to keep track of the ADS count. The distributed machines each wait for a separate wait period, w1, w2, and w3, per step 2115. The distributed machines coordinate by reporting the outcome of the results in steps 2120-2130 to the machine keeping track of the ADS count.
If all DNS queries use only (stateless) UDP packets, the queries may all originate from the same machine, but forge the return address of three distinct machines programmed to listen for the traffic and forward the data to the machine keeping track of the ADS count.
Once the ADS count has been determined for a given DNS server, cache inspection can be performed according to the procedure in
A master thread waits for half the TTLSOA period, and then instructs the child threads to send their DNS queries. (Since there are twice as many queries as ADS, there is a high probability that each of the DNS servers will receive once of the queries.)
If any of the threads querying an ORN (an open recursive DNS server) reports the ORN not having a cache entry for DomainS, repeat step (a) immediately.
If all of the threads reports that the ORN has a cache entry for DomainS, the smallest returned TTL for all of the threads is called TTLmin, and all of the threads for TTLmin−1 seconds sleep before waking to repeat step (a).
In 2215, the above cycle, from 2210(a) to 2210(c), builds a time series data set of DomainS with respect to an open recursive DNS server. This cycle repeats until DomainS is no longer of interest. This occurs when any of the following takes place:
a. DomainS is removed from the list of domains generated by 1710. That is, DomainS is no longer of interest.
b. For a period of x TTLSOA consecutive periods, fewer than y recursive DNS servers identified in 1705 have any cache entries for DomainS. That is, the botnet is old, no longer propagating, and has no significant infected population. In practice, the sum of the x TTLSOA period may total several weeks.
In 2220, the cycle from steps 2210(a) to 2210(c) can also stop when the open recursive DNS server is no longer listed as open recursive by 1705 (i.e., the DNS server can no longer be queried).
Analysis
The analysis phase 1720 takes the cache observations from 1715, and for each domain, performs population estimates. In one embodiment, the estimates are lower and upper bound calculations of the number of infected computers in a botnet. For example, a botnet could be estimated to have between 10,000 and 15,000 infected computers. One assumption made is that the requests from all the bots in a network follow the same Poisson distribution with the same Poisson arrival rate. In a Poisson process, the time interval between two consecutive queries is exponentially distributed. We denote the exponential distribution rate as λ. Each cache gap time interval, Ti, ends with a new DNS query from one bot in the local network, and begins some time after the previous DNS query. Thus, in
As illustrated in
Lower Bound Calculation.
A lower bound can be calculated on the estimated bot population. For the scenario depicted in the figure above, there was at least one query that triggered the cache episode from b1 to e1. While there may have been more queries in each caching episode, each caching event from bi to ei represents at least a single query.
If λl is a lower bound (l) for the arrival rate, and Ti is the delta between two caching episodes, and M is the number of observations, for M+1 cache inspections, λl can be estimated as:
Using analysis of a bot (e.g., by tools for bot binary analysis), the DNS query rate λ can be obtained for each individual bot. Then from the above formula, the estimate of the bot population {circumflex over (N)}l, in the network can be derived as follows:
Upper Bound Calculation.
During a caching period, there are no externally observable effects of bot DNS queries. In a pathological case, numerous queries could arrive just before the end of a caching episode, ei. An upper bound can be calculated on the estimated bot population. Define λu as the upper bound estimate of the Poisson arrival rate. For the upper bound estimate, there are queries arriving between the times bi and ei. The time intervals Ti, however, represent periods of no arrivals, and can be treated as the sampled Poisson arrival time intervals of the underlying Poisson arrival process. It is fundamental that random, independent sample drawn from a Poisson process is itself a Poisson process, with the same arrival rate. This sampling is called the “Constructed Poisson” process.
For M observations, the estimated upper bound (u) arrival rate λu is:
The population of victims needed to generate the upper bound arrival rate λu can therefore be estimated as:
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. In fact, after reading the above description, it will be apparent to one skilled in the relevant art(s) how to implement the invention in alternative embodiments. Thus, the present invention should not be limited by any of the above-described exemplary embodiments.
In addition, it should be understood that the figures and algorithms, which highlight the functionality and advantages of the present invention, are presented for example purposes only. The architecture of the present invention is sufficiently flexible and configurable, such that it may be utilized in ways other than that shown in the accompanying figures and algorithms.
Further, the purpose of the Abstract of the Disclosure is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract of the Disclosure is not intended to be limiting as to the scope of the present invention in any way.
This application claims priority to provisional application No. 60/730,615, entitled “Method to detect and respond to attacking networks,” filed on Oct. 27, 2005, which is herein incorporated by reference. This application also claims priority to provisional application number 60/799,248, entitled “Revealing botnet membership using DNSBL counter-intelligence,” filed on May 10, 2006, which is also herein incorporated by reference.
This application is supported in part by NSF grant CCR-0133629, Office of Naval Research grant N000140410735, and Army Research Office contract W911NF0610042.
Number | Name | Date | Kind |
---|---|---|---|
4843540 | Stolfo | Jun 1989 | A |
4860201 | Stolfo et al. | Aug 1989 | A |
5363473 | Stolfo et al. | Nov 1994 | A |
5497486 | Stolfo et al. | Mar 1996 | A |
5563783 | Stolfo et al. | Oct 1996 | A |
5668897 | Stolfo | Sep 1997 | A |
5717915 | Stolfo et al. | Feb 1998 | A |
5748780 | Stolfo | May 1998 | A |
5920848 | Schultzer et al. | Jul 1999 | A |
6401118 | Thomas | Jun 2002 | B1 |
6983320 | Thomas et al. | Jan 2006 | B1 |
7013323 | Thomas et al. | Mar 2006 | B1 |
7039721 | Wu et al. | May 2006 | B1 |
7069249 | Stolfo et al. | Jun 2006 | B2 |
7093292 | Pantuso | Aug 2006 | B1 |
7136932 | Schneider | Nov 2006 | B1 |
7152242 | Douglas | Dec 2006 | B2 |
7162741 | Eskin et al. | Jan 2007 | B2 |
7225343 | Honig et al. | May 2007 | B1 |
7277961 | Smith et al. | Oct 2007 | B1 |
7331060 | Ricciulli | Feb 2008 | B1 |
7372809 | Chen et al. | May 2008 | B2 |
7383577 | Hrastar et al. | Jun 2008 | B2 |
7424619 | Fan et al. | Sep 2008 | B1 |
7426576 | Banga et al. | Sep 2008 | B1 |
7448084 | Apap et al. | Nov 2008 | B1 |
7483947 | Starbuck | Jan 2009 | B2 |
7487544 | Schultz et al. | Feb 2009 | B2 |
7536360 | Stolfo et al. | May 2009 | B2 |
7634808 | Szor | Dec 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7657935 | Stolfo et al. | Feb 2010 | B2 |
7665131 | Goodman | Feb 2010 | B2 |
7698442 | Krishnamurthy | Apr 2010 | B1 |
7752125 | Kothari et al. | Jul 2010 | B1 |
7752665 | Robertson et al. | Jul 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7818797 | Fan et al. | Oct 2010 | B1 |
7913306 | Apap et al. | Mar 2011 | B2 |
7930353 | Chickering | Apr 2011 | B2 |
7962798 | Locasto et al. | Jun 2011 | B2 |
7979907 | Schultz et al. | Jul 2011 | B2 |
7996288 | Stolfo | Aug 2011 | B1 |
8015414 | Mahone | Sep 2011 | B2 |
8074115 | Stolfo et al. | Dec 2011 | B2 |
8161130 | Stokes | Apr 2012 | B2 |
8224994 | Schneider | Jul 2012 | B1 |
8341745 | Chau et al. | Dec 2012 | B1 |
20010044785 | Stolfo et al. | Nov 2001 | A1 |
20010052007 | Shigezumi | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20010055299 | Kelly | Dec 2001 | A1 |
20020021703 | Tsuchiya et al. | Feb 2002 | A1 |
20020066034 | Schlossberg et al. | May 2002 | A1 |
20030065926 | Schultz et al. | Apr 2003 | A1 |
20030065943 | Geis et al. | Apr 2003 | A1 |
20030069992 | Ramig | Apr 2003 | A1 |
20030167402 | Stolfo et al. | Sep 2003 | A1 |
20030204621 | Poletto et al. | Oct 2003 | A1 |
20040002903 | Stolfo et al. | Jan 2004 | A1 |
20040111636 | Baffes et al. | Jun 2004 | A1 |
20040187032 | Gels et al. | Sep 2004 | A1 |
20040205474 | Eskin et al. | Oct 2004 | A1 |
20040215972 | Sung et al. | Oct 2004 | A1 |
20050021848 | Jorgenson | Jan 2005 | A1 |
20050039019 | Delany | Feb 2005 | A1 |
20050108407 | Johnson et al. | May 2005 | A1 |
20050108415 | Turk et al. | May 2005 | A1 |
20050257264 | Stolfo et al. | Nov 2005 | A1 |
20050261943 | Quarterman et al. | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050281291 | Stolfo et al. | Dec 2005 | A1 |
20060015630 | Stolfo et al. | Jan 2006 | A1 |
20060075084 | Lyon | Apr 2006 | A1 |
20060143711 | Huang et al. | Jun 2006 | A1 |
20060146816 | Jain | Jul 2006 | A1 |
20060156402 | Stone et al. | Jul 2006 | A1 |
20060168024 | Mehr | Jul 2006 | A1 |
20060178994 | Stolfo et al. | Aug 2006 | A1 |
20060212925 | Shull | Sep 2006 | A1 |
20060224677 | Ishikawa et al. | Oct 2006 | A1 |
20060230039 | Shull | Oct 2006 | A1 |
20060247982 | Stolfo et al. | Nov 2006 | A1 |
20060253584 | Dixon | Nov 2006 | A1 |
20070050708 | Gupta et al. | Mar 2007 | A1 |
20070064617 | Reves | Mar 2007 | A1 |
20070083931 | Spiegel | Apr 2007 | A1 |
20070162587 | Lund et al. | Jul 2007 | A1 |
20070239999 | Honig et al. | Oct 2007 | A1 |
20070274312 | Salmela et al. | Nov 2007 | A1 |
20070294419 | Ulevitch | Dec 2007 | A1 |
20080028073 | Trabe et al. | Jan 2008 | A1 |
20080060054 | Srivastava | Mar 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080155694 | Kwon et al. | Jun 2008 | A1 |
20080229415 | Kapoor | Sep 2008 | A1 |
20080276111 | Jocoby et al. | Nov 2008 | A1 |
20090055929 | Lee et al. | Feb 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090222922 | Sidiroglou et al. | Sep 2009 | A1 |
20090241191 | Keromytis et al. | Sep 2009 | A1 |
20090254658 | Kamikura et al. | Oct 2009 | A1 |
20090254992 | Schultz et al. | Oct 2009 | A1 |
20100011243 | Locasto et al. | Jan 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100064368 | Stolfo et al. | Mar 2010 | A1 |
20100064369 | Stolfo et al. | Mar 2010 | A1 |
20100138919 | Peng | Jun 2010 | A1 |
20100146615 | Locasto et al. | Jun 2010 | A1 |
20100169970 | Stolfo et al. | Jul 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20110041179 | Stahlberg | Feb 2011 | A1 |
20110214161 | Stolfo et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 0237730 | May 2002 | WO |
WO 02098100 | Dec 2002 | WO |
Entry |
---|
“Spamming Botnets: Signatures and Characteristics” Xie et al; ACM SIGCOMM. Settle. WA; Aug. 2008; 12 pages. |
Jelena Mirkovic et al., “Internet Denial of Service: Attack and Defense Mechanisms”, pp. v-ix, 101-151, 153-220, 221-240 (2005). |
Joe Stewart, “Bobax Trojan Analysis”, http://www.lurhq.com/bobax.thml, May 17, 2004. |
David Brumley et al., “Tracking Hackers on IRC”, http://www.doomed.com/texts/ircmirc/TrackingHackerson IRC.htm, Dec. 8, 1999. |
Brian Krebs, “Bringing Botnet Out of the Shadows”, Washingontpost.com, http://www.washingtonpost.com/wp-dyn/content/article/2006/03/21/AR2006032100279—pf.html, Mar. 21, 2006. |
“SwatIT: Bots, Drones, Zombies, Worms and Other Things That Go Bump in the Night”, http://swatit.org/bots, 2004. |
Christian Kreibich, “Honeycomb: Automated NIDS Signature Creation Using Honeypots”, 2003, http://www.cl.cam.ac.uk/research/srg/netos/papers/2003-honeycomb-sigcomm-poster.pdf. |
DMOZ Open Directory Project, Dynamic DNS Providers List, http://dmoz.org/Computers/Software/Internet/Servers/Address—Management/Dynamic—DNS—Services/. |
David Moore, “Network Telescopes: Observing Small or Distant Security Events”, http://www.caida.org/publications/presentations/2002/usenis—sec/usenix—sec—2002—files/frame.htm; Aug. 8, 2002. |
Vincent H. Berk et al., “Using Sensor Networks and Data Fusion for Early Detection of Active Worms”, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement II, Proceedings of SPIE, vol. 5071, pp. 92-104 (2003). |
International Search Report issued in Applicaton No. PCT/US06/038611 mailed Jul. 8, 2008. |
Written Opinion issued in Application No. PCT/US06/038611 mailed Jul. 8, 2008. |
International Preliminary Report on Patentability issued in Application No. PCT/US06/038611 mailed Mar. 26, 2009. |
O. Diekmann et al,. “Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation”, John Wiley & Son, Ltd., 2000, pp. v-xv and 1-303. |
Jelena Mirkovic et al,. “Internet Denial of Service: Attack and Defense Mechanisms”, Prentice Hall Professional Technical Reference, 2004, pp. v-xxii and 1-372. |
“Symantec Internet Security Threat Report: Trends for Jan. 1, 2004-Jun. 30, 2004” Symantec, Sep. 2004, pp. 1-54. |
David Dagon et al., “HoneyStat: Local Worm Detection Using Honeypots”, RAID 2004, LNCS 3224, pp. 39-58 (2004). |
Jonghyun Kim et al., “Measurement and Analysis of Worm Propagation on Internet Network Topology”, IEEE, pp. 495-500 (2004). |
Andreas Marx, “Outbreak Response Times: Putting AV to the Test”, www.virusbtn.com, Feb. 2004, pp. 4-6. |
Cliff Changchun Zou et al., “Worm Propagation Modeling and Analysis Under Dynamic Quarantine Defense”, WORM'03, Oct. 27, 2003, Washington, DC USA, 10 pages. |
Thorsten Holz, “Anti-Honeypot Technology”, 21st Chaos Communication Congress, slides 1-57, Dec. 2004. |
“CipherTrust's Zombie Stats”, http://www.ciphertrust.com/resources/statistics/zombie.php 3 pages, printed Mar. 25, 2009. |
Joe Stewart, “Phatbot Trojan Analysis”, http://www.secureworks.com/research/threats/phatbot, Mar. 15, 2004, 3 pages. |
Thorsten Holz et al., “A Short Visit to the Bot Zoo”, IEEE Security & Privacy, pp. 76-79 (2005). |
Michael Glenn, “A Summary of DoS/DDoS Prevention, Monitoring and Mitigation Techniques in a Service Provider Environment”, SANS Institute 2003, Aug. 21, 2003, pp. ii-iv, and 1-30. |
Dennis Fisher, “Thwarting the Zombies”, Mar. 31, 2003, 2 pages. |
Felix C. Freiling et al., “Botnet Tracking: Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks”, ESORICS 2005, LNCS 3679, pp. 319-335 (2005). |
Vinod Yegneswaran et al., “Global Intrusion Detection in the DOMINO Overlay System”, Proceedings of Network and Distributed Security Symposium (NDSS), 17 pages Feb. 2004. |
Vinod Yegneswaran et al., “On the Design and Use of Internet Sinks for Network Abuse Monitoring”, RAID 2004, LNCS 3224, pp. 146-165 (2004). |
Cliff C. Zou et al., “Routing Worm: A Fast, Selective Attack Worm Based on IP Address Information”, Technical Report: TR-03-CSE-06, Principles of Advanced and Distributed Simulation (PADS) 2005, pp. 199-206, Jun. 1-3, 2005. |
File History for U.S. Appl. No. 12/538,612, filed Aug. 10, 2009 (downloaded Apr. 29, 2010). |
Dongeun Kim et al., “Request Rate Adaptive Dispatching Architecture for Scalable Internet Server”, Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER'00); pp. 289-296 (2000). |
Keisuke Ishibashi et al., “Detecting Mass-Mailing Worm Infected Hosts by Mining DNS Traffic Data”, SIGCOMM'05 Workshops, pp. 159-164 (Aug. 22-26, 2005). |
Nicholas Weaver et al., “A Taxonomy of Computer Worms”, WORM'03, pp. 11-18 (Oct. 27, 2003). |
File History of U.S. Appl. No. 11/538,212. |
Stephan Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion Detection”, ACM Transactions on Information and System Security, vol. 3, No. 3, pp. 186-205 (Aug. 2000). |
Niel Landwehr et al., “Logistic Model Trees”, Machine Learning, vol. 59, pp. 161-205 (2005). |
Richard O. Duda et al., “Pattern Classification, Second Edition”, John Wiley & Sons, Inc., pp. vii-xx, and 1-654, Copyright 2001. |
File History of U.S. Appl. No. 12/538,612. |
File History of U.S. Appl. No. 12/985,140. |
File History of U.S. Appl. No. 13/008,257. |
File History of U.S. Appl. No. 13/205,928. |
File History of U.S. Appl. No. 13/309,202. |
File History of U.S. Appl. No. 13/358,303. |
File History of U.S. Appl. No. 13/749,205. |
P. Mockapetris, “Domain Names—Concepts and Facilities”, Network Working Group, http://www.ietf.org/rfc/rfc1034.txt, Nov. 1987 (52 pages). |
P. Mockapetris, “Domain Names—Implementation and Specification”, Network Working Group, http://www.ietf.org/rfc/rfc1035.txt, Nov. 1987 (52 pages). |
P Akritidis et al., “Efficient Content-Based Detection of Zero-Day Worms”, 2005 IEEE International Conference in communications, vol. 2, pp. 837-843, May 2005. |
Nicholas Weaver et al., “Very Fast Containment of Scanning Worms”, In proceedings of the 13th USENIX Security in Symposium, pp. 29-44, Aug. 9-13, 2004. |
David Whyte et al., “DNS-Based Detection of Scanning Worms in an Enterprise Network”, In Proc. of the 12th Annual Network and Distributed System Security Symposium, pp. 181-195, Feb. 3-4, 2005. |
Cristian Abad et al., “Log Correlation for Intrusion Detection: A Proof of Concept”, In Proceedings of The 19th Annual Computer Security Application Conference (ACSAC'03), (11 pages) (2003). |
Lala A. Adamic et al., “Zipf's Law and the Internet”, Glottometrics, vol. 3, pp. 143-150 (2002). |
K.G. Anagnostakis et al., “Detecting Targeted Attacks Using Shadow Honeypots”, In Proceedings of the 14th USENX Secuirty Symposium, pp. 129-144 (2005). |
Paul Baecher et al., “The Nepenthes Platform: An Efficient Approach to Collect Malware”, In Proceedings of Recent Advances in Intrusion Detection (RAID 2006), LNCS 4219, pp. 165-184, Sep. 2006. |
Paul Barford et al., “An Inside Look at Botnets”, Special Workshop on Malware Detection, Advances in Information Security, Spring Verlag, pp. 171-192 (2006). |
James R. Binkley et al., “An Algorithm for Anomaly-Based Botnet Detection”, 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI '06), pp. 43-48, Jul. 7, 2006. |
Steven Cheung et al., “Modeling Multistep Cyber Attacks for Scenario Recognition”, In Proceedings of the Third DARPA Information Survivability Conference and Exposition (DISCEX III), vol. 1, pp. 284-292, Apr. 22-24, 2003. |
Evan Cooke et al., “The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets”, Steps to Reducing Unwanted Traffic on the Internet Workshop (SRUTI '05), pp. 39-44, Jul. 7, 2005. |
Frederic Cuppens et al., “Alert Correlation in a Cooperative Intrusion Detection Framework”, In Proceedings of IEEE Symposium on Security and Privacy 2002, pp. 202-215 (2002). |
David Dagon et al., “Modeling Botnet Propagation using Time Zones”; The 13th Annual Network and Distributed System Security Symposium 2006, Feb. 2-3, 2006 (18 pages). |
Roger Dingledine et al., “Tor: The Second-Generation Onion Router”, In Proceedings of the 13th Usenix Security Symposium, pp. 303-320 Aug. 9-13, 2004. |
Steven T. Eckman et al., “STATL: An Attack Language for State-Based Intrusion Detection”, Journal of Computer Security, vol. 10, pp. 71-103 (2002). |
Daniel R. Ellis, et al., “A Behavioral Approach to Worm Detection”, WORM'04, Oct. 29, 2004 (11 pages). |
Prahlad Fogla et al., “Polymorphic Blending Attacks”, In Proceedings of 15th Usenix Security Symposium, pp. 241-256, (2006). |
Koral Ilgun et al., “State transition Analysis: A Rule-Based Intrusion Detection Approach”, IEEE Transactions on Software Engineering, vol. 21, No. 3, pp. 181-199, Mar. 1995. |
Giovanni Vigna et al., “NetSTAT: A Network-based Intrusion Detection Approach”, In Proceedings of the 14th Annual Computer Security Applications Conference (ACSAC '98), pp. 25-34, Dec. 7-11, 1998. |
Christopher Kruegel et al., “Polymorphic Worm Detection using Structural Information of Executables”, RAID 2005, pp. 207-226 (2005). |
Ke Wang et al., “Anagram: A Content Anomaly Detector Resistant to Mimicry Attack”, In Proceedings of the International Symposium on Recent Advances in Intrusion Detection (RAID) (2006) (20 pages). |
Ke Wang et al., “Anomalous Payload-Based Worm Detection and Signature Generation”, In Proceedings of the International Symposium on Recent Advances in Intrusion Detection (RAID) (2005) (20 pages). |
David Whyte, “Exposure Maps: Removing Reliance on Attribution During Scan Detection”, 1st Usenix Workshop on Hot Topics in Security, pp. 51-55 (2006). |
Jiahai Yang et al., “CARDS: A Distributed System for Detecting Coordinated Attacks”, In Sec (2000) (10 pages). |
Vinod Yegneswaran et al., “Using Honeynets for Internet Situational Awareness”, In proceedings of the Fourth Workshop on Hot Topics in Networks (HotNets IV), Nov. 2005 (6 pages). |
Jaeyeon Jung et al., “DNS Performance and the Effectiveness of Caching”, IEEE/ACM Transactions on Networking, vol. 10, No. 5, pp. 589-603, Oct. 2002. |
Duane Wessels et al., “Measurements and Laboratory Simulations of the Upper DNS Hierarchy”, In PAM (2005) (10 pages). |
Paul Barham et al. “Xen and the Art of Virtualization”, SOSP'03, Oct. 19-22, 2003 (14 pages). |
Ulrich Bayer et al., “TTAnalyze: A Tool for Analyzing Malware”, In Proceedings of the 15th Annual Conference European Institute for Computer Antivirus Research(EICAR), pp. 180-192 (2006). |
Fabrice Bellard, “QEMU, A Fast and Portable Dynamic Translator”, In Proceedings of the Annual Confernce on Usenix Annual Technical Conference, pp. 41-46 (2005). |
Kevin Borders et al., “Siren: Catching Evasive Malware (Short Paper)”, IEEE Symposium on Security and Privacy, pp. 78-85, May 21-24, 2006. |
Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag New York, Inc., Secauscus, NJ, USA, 2006. |
Matt Bishop, “Computer Security: Art and Science”, Addison-Wesley Professional, 2003. |
Michael Sipser, “Introduction to the Theory of Computation”, International Thomson Publishing, 1996. |
Peter Szor, “The Art of Computer Virus Research and Defense”, Addison-Wesley Professional, 2005. |
Anil K. Jain et al., “Algorithms for Clustering Data”, Prentice-Hall, Inc., 1988. |
V. Laurikari, “TRE”, 2006 (5 pages). |
Changda Wang et al., “The Dilemma of Covert Channeis Searching”, ICISC 2005, LNCS 3935, pp. 169-174, 2006. |
Mihai Christodorescu et al., “Semantics-Aware Malware Detection”, In Proceeding of the 2005 IEEE Symposium on Security and Privacy, pp. 32-46 (2005). |
Peter Ferrie, “Attacks on Virtual Machine Emulators”, Symantec Advance Threat Research, 2006 (13 pages). |
Tal Garfinkel et al., “A Virtual Machine Introspection Based Architecture for Intrusion Detection”, In Proceedings of Network and Distributed Systems Security Symposium, Feb. 2003 (16 pages). |
G. Hunt et al., “Detours: Binary Interception of WIN32 Functions”, Proceedings of the 3rd Usenix Windows NT Symposium, Jul. 12-13, 1999 (9 pages). |
Xuxian Jiang et al., “Virtual Playgrounds for Worm Behavior Investigation”, RAID 2005, LNCS 3858, pp. 1-21 (2006). |
Christopher Kruegel et al., “Detecting Kernel-Level Rootkits Through Binary Analysis”, In Proceedings of the Annual Computer Security Applications Conference (ACSAC), pp. 91-100, Dec. 2004. |
Paul Royal et al., “PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing Malware”, In Proceedings of the Annual Computer Security Applications Conference (ACSAC), pp. 289-300 (2006). |
Rich Uhlig et al., “Intel Virualization Technology”, Computer, vol. 38, No. 5, pp. 48-56, May 2005. |
Amit Vasudevan et al., “Stealth Breakpoints”, In Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC), pp. 381-392, (2005). |
Amit Vasudevan et al., “Cobra: Fine-Grained Malware Analysis Using Stealth Localized-Executions”, In Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P'06), pp. 264-279 (2006). |
Yi-Min Wang et al., “Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities”, In NDSS'06 (2006) (15 pages). |
Joanna Rutkowska, “Introducing Blue Pill”, http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html, Jun. 22, 2006 (26 pages). |
Maria Halkidi et al., “On Clustering Validation Techniques”, Journal of Intelligent Information Systems, vol. 17, pp. 107-145 (2001). |
A.K. Jain et al., “Data Clustering: A Review”, ACM Computing Surveys, vol. 31, No. 3, pp. 264-323, Sep. 1999. |
Hyang-Ah Kim et al., “Autograph: Toward Automated, distributed Worm Signature Detection”, In Usenix Security Symposium (2004) (16 pages). |
Christian Kreibich et al., “Honeycomb—Creating Intrusion Detection Signatures Using Honeypots”, In ACM Workshop on Hot Topics in Networks (2003) (6 pages). |
Zhichun Li et al., “Hamsa: Fast Signature Generational for Zero-Day Polymorphic Worms with Provable Attack Resilience”, In IEEE Symposium on Security and Privacy (2006) (15 pages). |
James Newsome et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In IEEE Symposium on Security and Privacy (2005) (16 pages). |
Sun Wu et al., “AGREP—A Fast Approximate Pattern-Matching Tool”, In Usenix Technical Conference (1992) (10 pages). |
Vinod Yegneswaren et al.,, “An Architecture for Generating Semantics-Aware Signatures”, In Usenix Security Symposium (2005) (16 pages). |
Jaeyeon Jung, “Fast Portscan Detection Using Sequential Hypothesis Testing”, In Proceedings of IEEE Symposium on Security Privacy, pp. 211-225 (2004). |
Carl Livades et al., “Using Machine Learning Techniques to Identify Botnet Traffic”, In 2nd IEEE LCN Workshop on Network Security (WoNS'2006), pp. 967-974 (2006). |
“CVE-2006-3439”, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3439, printed Jun. 27, 2012 (2 pages). |
David Moore, “Inferring Internet Denial-of-Service Activity”, In Proceedings of the 10th Usenix Security Symposium, Aug. 13-17, 2001 (15 pages). |
Peng Ning et al., “Constructing Attack Scenarios Through Correlation of Intrusion Alerts”, In Proceedings of Computer and Communications Security (CCS'02), Nov. 18-22, 2002 (10 pages). |
Vern Paxson, “Bro: A System for Detecting Network Intruders in Real-Time”, In Proceedings of the 7th Usenix Security Symposium, Jan. 26-29, 1998 (22 pages). |
Phillip A. Porras, “Privacy-Enabled Global Threat Monitoring”, IEEE Security & Privacy, pp. 60-63 (2006). |
Anirudh Ramachandran et al., “Understanding the Network-Level Behavior of Spammers”, In Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM'06), Sep. 11-16, 2006 (13 pages). |
Martin Roesch, “SNORT—Lightweight Intrusion Detection for Networks”, In Proceedings of 13th System Administration Conference (LISA'99), pp. 229-238, Nov. 7-12, 1999. |
Robin Sommer et al., “Enhancing Byte-Level Network Intrusion Detection Signatures with Context”, In Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS'03), pp. 262-271, Oct. 27-30, 2003. |
Stuart Staniford et al., “Practical Automated Detection of Stealthy Portscans”, Journal of Computer Security, vol. 10, pp. 105-136 (2002). |
S. Staniford-Chen et al., “GrIDS—A Graph Based Intrusion Detection System for Large Networks”, In Proceedings of the 19th National Information Systems Security Conference, pp. 361-370 (1996). |
Steven J. Templeton et al., “A Requires/Provides Model for Computer Attacks”, In Proceedings of the 2000 Workshop on New Security Paradigms (NSPW'00), pp. 31-38 (2000). |
Alfonso Valdes et al., “Probabilistic Alert Correlation”, In Proceedings of the Recent Attack in Intrusion Detection (RAID 2001), LNCS 2212, pp. 54-68 (2001). |
Fredrik Valeur et al., “A Comprehensive Approach to Intrusion Detection Alert Correlation”, IEEE Transactions on Dependable and Secure Computing, vol. 1, No. 3, pp. 146-169, Jul. 2004. |
Kjersti Aas et al., “Text Categorisation: A Survey”, Norwegian Computing Center, Jun. 1999 (38 pages). |
M. Andrews, “Negative Caching of DNS Queries (DNS NCACHE)”, http://tools.ietf.org/html/rfc2308, Mar. 1998 (20 pages). |
Simon Biles, “Detecting the Unknown with Snort and Statistical Packet Anomaly Detecting Engine”, www.cs.luc.edu/˜pld/courses/447/sum08/class6/biles.spade.pdf (2003) (9 pages). |
James Newsome et al., “Paragraph: Thwarting Signature Learning by Training Maliciously”, In Recent Advance in Intrusion Detection (RAID), 2005 (21 pages). |
Dan Pelleg et al., “X-Means: Extending K-Means with Efficient Estimation of the Number of Clusters”, In International Conference on Machine Learning (2000) (8 pages). |
Roberto Perdisci et al., “Misleading Worm Signature Generators Using Deliberate Noise Injection”, In IEEE Symposium on Security and Privacy (2006) (15 pages). |
Sumeet Singh et al., “Automated Worm Fingerprinting”, In ACM/USENIX Symposium on Operating System Design and Implementation, Dec. 2004 (16 pages). |
R. Arends et al. , “Protocol Modifications for the DNS Security Extensions”, htp://www.ietf.org/rfc/rfc4035.txt, Mar. 2005 (50 pages). |
R. Arends et al. , “DNS Security Introduction and Requirements”, htp://www.ietf.org/rfc/rfc4033.txt, Mar. 2005 (20 pages). |
R. Arends et al., “Resource Records for the DNS Security Extensions”, htp://www.ietf.org/rfc/rfc4034.txt, Mar. 2005 (28 pages). |
Jaeyeon Jung et al., “Modeling TTL-Based Internet Caches”, IEEE INFOCOM 2003, pp. 417-426, Mar. 2003. |
Florian Weimer, “Passive DNS Replication”, In Proceedings of the 17th Annual FIRST Conference on Computer Security Incident, Apr. 2005 (13 pages). |
Manos Antonakakis et al., “Unveiling the Network Criminal Infrastructure of TDSS/TDL4”, http://www.damballa.com/downloads/r—pubs/Damballa—tdss—tdl4—case—study—public.pdf, (undated) (16 pages). |
T. Berners-Lee et al., “RFC3986—Uniform Resource Identifier (URI): Generic Syntax”, http://www.hjp.at/doc/rfc/rfc3986.html, Jan. 2005 (62 pages). |
D. De La Higuera et al., “Topology of Strings: Median String is NP-Complete”, Theoretical Computer Science, vol. 230, pp. 39-48 (2000). |
John C. Platt, “Probablistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods”, Advances in Large margin Classifiers, vol. 10, No. 3, pp. 61-74, Mar. 26, 1999. |
Nello Cristianini et al., “An Introduction to Support Vector Machines: and other Kernal-Based Learning Methods”, Cambridge University Press, New York, NY, USA (2000). |
http://www.bleedingsnort.com, retrieved from Internet Archive on May 23, 2013, Archived Sep. 26, 2006 (3 pages). |
http://www.dshield.org, retrieved from Internet Archive on May 23, 2013, Archived Sep. 29, 2006 (2 pages). |
http://www.alexa.com, retrieved from Internet Archive on May 23, 2013, Archived Sep. 25, 2006 (3 pages). |
http://www.dnswl.org, retrieved from Internet Archive on May 23, 2013, Archived Jul. 15, 2006 (4 pages). |
http://www.spamhaus.org/sbl/, retrieved from Internet Archive on May 23, 2013, Archived Sep. 24, 2006 (24 pages). |
http://www.opendns.com, retrieved from Internet Archive on May 23, 2013, Archived Sep. 9, 2006 (25 pages). |
http://www.avira.com, retrieved from Internet Archive on May 23, 2013, Archived Sep. 29, 2006 (13 pages). |
http://www.oreans.com/themida.php, retrieved from Internet Archive on May 23, 2013, Archived Aug. 23, 2006 (12 pages). |
http://www.vmware.com, retrieved from Internet Archive on May 23, 2013, Archived Sep. 26, 2006 (32 pages). |
http://www.siliconrealms.com, retrieved from Internet Archive on May 23, 2013, Archived Sep. 4, 2006 (12 pages). |
http://www.dyninst.org, retrieved from Internet Archive on May 23, 2013, Archived Aug. 20, 2006 (pages). |
F. Heinz et al., “IP Tunneling Through Nameserver”, http://slashdot.org/story/00/09/10/2230242/ip-tunneling-through-nameservers, Sep. 10, 2000 (23 Pages). |
Zhuoqing Morley Mao et al., “A Precise and Efficient Evaluation of the Proximity Between Web Clients and Their Local DNS Servers”, In Proceedings of USENIX Annual Technical Conference (2002) (14 pages). |
Cliff Changchun Zou et al., “Code Red Worm Propagation Modeling and Analysis”, In Proceedings of 9th ACM Conference on Computer and Communications Security (CCS '02), Nov. 2002. |
Cliff C. Zou et al,. “Email Worm Modeling and Defense”, In the 13th ACM International Confrerence on Computer Communications and Networks (CCCN '04), Oct. 2004. |
Cliff Changchun Zou et al., “Monitoring and Early Warning for Internet Worms”, In Proceedings fo the 10th ACM Conference on Computer and Communications Security (CCS '03), Oct. 2003. |
Cliff Changchun Zou et al., “On the Performance of Internet Worm Scanning Strategies”, Technical Report TR-03-CSE-07, Umass ECE Dept., Nov. 2003. |
Zin Zhang et al., “Detecting Stepping Stones”, In Proceedings of the 9th USENIX Security Symposium, Aug. 2000. |
Alexander Gostev, “Malware Elovution: Jan.-Mar. 2005”, Viruslist.com, http.//www.viruslist.com/en/analysis?pubid=162454316, (Mar. 2005). |
Jiang Wu et al., “An Effective Architecture and Algorithm for Detecting Worms with Various Scan Techniques”, In Proceedings of the 11th Annual Network and Distributed System Security Symposium (NDSS '04), Feb. 2004. |
Matthew M. Williamson et al., “Virus Throttling for Instant Messaging”, Virus Bulletin Conference, Sep. 2004, Chicago, IL, USA, (Sep. 2004). |
F. Weimer, “Passive DNS Replication”, http://www.enyo.de/fw/software/dnslogger, 2005. |
Ke Wang et al., “Anomalous Payload-Based Network Intrusion Detection”, In Proceedings of the 7th International Symposium on Recent Advances in Intrusion Detection (RAID 2004), 2004. |
P. Vixie et al,. “RFC 2136: Dynamic Updates in the Domain Name System (DNS Update)”, http://www.faqs.org/rfcs.rfc2136.html (Apr. 1997). |
Joe Stewart, “Dipnet/Oddbob Worm Analysis”, SecureWorks, http://www.secureworks.com/research/threats/dipnet/ (Jan. 13, 2005). |
Harold Thimbleby et al., “A Frameworkfor Modelling Trojans and Computer Virus Infection”, Computer Journal, vol. 41, No. 7, pp. 444-458 (1999). |
Paul Bachner et al., “Know Your Enemy: Tracking Botnets”, http://www.honeynet.org/papers/bots/, (Mar. 13, 2005). |
“LockDown Security Bulletin—Sep. 23, 2001”, http://lockdowncorp.com/bots/ (Sep. 23, 2001). |
Colleen Shannon et al., “The Spread of the Witty Worm”, http://www.caida.org/analysis/security/witty/index.xml (Mar. 19, 2004). |
Moheeb Abu Rajab et al., “On the Effectiveness of Distributed Worm Monitoring”, In Proceedings fo the 14th USENIX Security Symposium (2005). |
Niels Provos, “CITI Technical Report 03-1: A Virtual Honeypot Framework”, http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf (Oct. 21, 2003). |
“Know yor Enemy: Honeynets”, http://www.honeypot.org/papers/honeynet, (May 31, 2006). |
David Moore et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, In Proceedings of the IEEE INFOCOM 2003, Mar. 2003. |
Joe Stewart, “I-Worm Baba Analysis”, http://secureworks.com/research/threats/baba (Oct. 22, 2004). |
David Moore et al., “Slammer Worm Dissection: Inside the Slammer Worm”, IEEE Security & Privacy, vol. 1, No. 4 (Jul.-Aug. 2003). |
David Moore et al., “Code-Red: A Case Study on the Spread and Victims of an Internet Worm”, http://www.icir.org/vern/imw-2002/imw2002-papers/209.ps/gz (2002). |
Joe Stewart, “Sinit P2P Trojan Analysis”, http://www.secureworks.com/research/threats/sinit, (Dec. 8, 2003). |
Martin Krzywinski, “Port Knocking—Network Authentication Across Closed Ports”, Sys. Admin Magazine, vol. 12, pp. 12-17 (2003). |
Christopher Kruegel et al., “Anomaly Detection of Web-Based Attacks”, In Proceedings of the 10th ACM Conference on Computer and Comunication Security (CCS '03), Oct. 27-31, 2003, Washington, DC, USA, pp. 251-261. |
“Dabber Worm Analysis”, LURHQ Threat Intelligence Group, http://www.lurhq.com/dabber.html (May 13, 2004). |
Abstract of Jeffrey O. Kephart et al,. “Directed-Graph Epidemiological Models of Computer Viruses”, Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy; Oakland, CA, May 20-22, 1991; pp. 343-359 (May 20-22, 1991). |
C. Kalt “RFC 2810—Internet Relay Chat: Architecture” http://faqs.org/rfcs/rfc2810.html (Apr. 2000). |
Xuxian Jiang et al., “Cerias Tech Report 2005-24: Virtual Playgrounds for Worm Behavior Investigation”, Purdue University, Feb. 2005. |
Neal Hindocha et al., “Malicious Threats and Vulnerabilities in Instant Messaging”, Virus Bulletin International Conference, Sep. 2003. |
“NSTX (IP-over-DNS) HOWTO”, http://thomer.com/howtos/nstx.html (Nov. 4, 2005). |
Christopher W. Hanna, “Using Snort to Detect Rogue IRC Bot Programs”, Technical Report, SANS Institute 2004 (Oct. 8, 2004). |
Jaeyeon Jung et al., “An Empirical Study of Spam Traffic and the Use of DNS Black Lists”, In Proc. ACM SIGCOMM Internet Measurement Conference (IMC '04), Oct. 25-27, 2004, Taormina, Sicily, Italy, pp. 370-375. |
Srikanth Kandula et al., “Botz-4-Sale: Surviving Organized DDoS Attacks That Mimic Flash Crowds”, Technical Report LCS TR-969, Laboratory for Compuyter Science, MIT, 2004. |
Sven Krasser et al., “Real-Time and Forensic Network Data Analysis Using Animated and Coordinated Visualization”, Proceedings of the 6th IEEE Information Assurance Workshop (Jun. 2005). |
David Moore et al., “Inferring Internet Denial-of-Service Activity”, In Proceedings of the 2001 USENIX Security Symposium, 2001. |
Stephane Racine, “Master's Thesis: Analysis for Internet Relay Chat Usage by DDoS Zombies”, ftp://www.tik.ee.ethz.ch/pub/students/2003-2004-Wi/MA-2004-01.pdf (Nov. 3, 2003). |
Anirudh Ramachandran et al., “Understanding the Network-Level Behavior of Spammers”, SIGCOMM '06, Sep. 11-15, 2006, Pisa, Italy, pp. 291-302. |
Ramneek Puri, “Bots & Botnet: An Overview”, SANS Institue 2003, http://www.giac.com/practical/GSEC/Ramneek—Puri—GSEC.pdf (Aug. 8, 2003). |
Stuart E. Schechter et al., “Access for Sale: A New Class of Worm”, In 2003 ACM Workshop on Rapid Malcode (WORM '03), ACM SIGSAC, Oct. 27, 2003, Washington, DC, USA. |
Stuart Staniford, “How to Own the Internet in Your Spare Time”, In Proc. 11th USENIX Security Symposium, San Fransico, CA, Aug. 2002. |
Martin Overton, “Bots and Botnets: Risks, Issues and Prevention”, 2005 Virus Bulletin Conference at the Burlington, Dublin, Ireland, Oct. 5-7, 2005, http://arachnid.homeip.net/papers/VB2005-Bots—and—Botnets-1.0.2.pdf. |
Yin Zhang et al., “Detecting Stepping Stones”, Proceedings of the 9th USENIX Security Symposium, Denver, Colorado, USA, Aug. 14-17, 2000. |
David Dagon et al., “Worm Population Control Through Periodic Response”, Technical Report, Georgia Institute for Technology, Jun. 2004. |
Scott Jones et al., “The IPM Model of Computer Virus Management”, Computers & Security, vol. 9, pp. 411-418 (1990). |
Jeffrey O. Kephart et al., “Directed-Graph Epidemiological Models of Computer Viruses”, In Proceedings of IEEE Symposium on Security and Privacy, pp. 343-359 (1991). |
Darrell M. Kienzle et al., “Recent Worms: A Survey and Trends”, In WORM '03, Proceedings of the 2003 ACM Workshop on Rapid Malcode, Washington, DC, USA, pp. 1-10, Oct. 27, 2003. |
Bill McCarty, “Botnets: Big and Bigger”, IEEE Security and Privacy Magazine, vol. 1, pp. 87-89 (2003). |
Xinzhou Qin et al., “Worm Detection Using Local Networks”, Technical Report GIT-CC-04-04, College of Computing, Georgia Institute of Technology, Feb. 2004. |
Yang Wang et al., “Modeling the Effects of Timing Parameters on Virus Propagation”, In Proceedings of ACM CCS Workshop on Rapid Malcode (WORM '03), Washington, DC, pp. 61-66, Oct. 27, 2003. |
Donald J. Welch et al., “Strike Back: Offensive Actions in Information Warfare”, in AMC New Security Paradigm Workshop, pp. 47-52 (1999). |
T. Liston, “Welcome to My Tarpit: The Tactical and Strategic Use of LaBrea”, http://www.hackbusters.net/LaBrea/LaBrea.text, Oct. 24, 2001. |
R. Pointer, “Eggdrop Development”, http://www.eggheads.org, Oct. 1, 2005. |
S. Staniford, Code Red Analysis Pages: July Infestation Analysis, http://www.silicondefense.com/cr/july.html, Nov. 18, 2001. |
Alex Ma, “NetGeo—The Internet Geographic Database”, http://www.caida.org/tools/utilities/netgeo/index.xml, Sep. 6, 2006. |
MathWorks Inc. Simulink, http://www.mathworks.com/products/simulink, Dec. 31, 2005. |
David Dagon et al., “Modeling Botnet Propagation Using Time Zones”, In Proceedings of the 13th Annual Network and Distributed Systems Security Symposium (NDSS '06), Feb. 2006. |
John Canavan, “Symantec Security Response: W32.Bobax.D”, http://www.sarc.com/avcent/venc/data/w32.bobax.d.html, May 26, 2004. |
“Whois Privacy”, www.gnso.icann.org/issues/whois-privacy/index.shtml, Jun. 3, 2005. |
John D. Hardin, “The Scanner Tarpit HOWTO”, http://www.impsec.org/linus/security/scanner-tarpit.html, Jul. 20, 2002. |
Charles J. Krebs, “Ecological Methodology”, Harper & Row, Publishers, New York, pp. v-x, 15-37, 155-166, and 190-194 (1989). |
D.J. Daley et al., “Epidemic Modelling: An Introduction”, Cambridge University Press, pp. vii-ix, 7-15, and 27-38 (1999). |
Lance Spitzner, “Honeypots: Tracking Hackers”, Addison-Wesley, pp. vii-xiv, 73-139, 141-166, and 229-276 (2003). |
V. Fuller et al., “RFC 1519—Classless Inter-Domain Routing (CIDR): An Address Assignment and Aggregation Strategy”, http://www.faqs.org/rfcs/rfc1519.html (Sep. 1993). |
David E. Smith “Dynamic DNS”, http://www.technopagan.org/dynamic (Aug. 7, 2006). |
Dave Dittrich, “Active Response Continuum Research Project”, http://staff.washington.edu/dittrich/arc/ (Nov. 14, 2005). |
Joe Stewart, “Akak Trojan Analysis”, http://www.secureworks.com/research/threats/akak/ (Aug. 31, 2004). |
Monirul I. Sharif, “Mechanisms of Dynamic Analysis and DSTRACE”. |
Kapil Kumar Singh, “IRC Reconnaissance (IRCRecon) Public IRC Heuristics (BotSniffer)” (Jul. 24, 2006). |
http://www.trendmicro.com/en/home/us/home.htm. |
“InterCloud Security Service”, http://ww.trendmicro.com/en/products/nss/icss/evaluate/overview.thm. |
“2006 Press Releases: Trend Micro Takes Unprecedented Approach to Eliminating Botnet Threats with the Unveiling of InterCloud Security Service”,http://www.trendmicro.com/en/about/news/pr/archive/2006/pr092506.htm, (Sep. 25, 2006). |
Paul F. Roberts, “Trend Micro Launches Anti-Botnet Service”, InfoWorld, http://www.infoworld.com/article/06/09/25/HNtrendintercloud—1.html (Sep. 25, 2006). |
CNN Technology News—Expert: Botnets No. 1 Emerging Internet Threat, CNN.com, http://www.cnn.com/2006/TECH/internet/01/31/furst.index.html (Jan. 31, 2006). |
Evan Cooke et al., “The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets”, In USENIX Workshop on Steps to Reducing Unwanted Traffice on the Internet (SRUTI), Jun. 2005. |
Sven Dietrich et al., “Analyzing Distributed Denial of Service Tools: The Shaft Case”, Proceedings of the 14th Systems Administration Conference (LISA 2000), New Orleans, Louisiana, USA, Dec. 3-8, 2000. |
Felix C. Freiling et al,. “Botnet Tracking: Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks”, ESORICS 2005, LNCS 3679, pp. 319-335 (2005). |
Luiz Henrique Gomes et al,. “Characterizing a Spam Traffic”, In Proc. ACM SIGCOMM Internet Measurement Conference (IMC '04), Oct. 25-27, 2004 Taormina, Sicily, Italy, pp. 356-369. |
File History of U.S. Appl. No. 12/985,140, electronically captured on Sep. 3, 2013 for Jun. 3, 2013 to Sep. 3, 2013. |
File History of U.S. Appl. No. 13/205,928, electronically captured on Sep. 3, 2013 for Jun. 3, 2013 to Sep. 3, 2013. |
File History of U.S. Appl. No. 13/358,303, electronically captured on Sep. 3, 2013 for Jun. 3, 2013 to Sep. 3, 2013. |
https://sie.isc.org/, retrieved from Internet Archive on May 23, 2013, Archived Dec. 29, 2008 (2 pages). |
“Troj/Agobot-IB”, http://www.sophos.com/virusinfo/analyses/trojagobotib.html, printed Jun. 27, 2012 (1 page). |
“Norman Sandbox Whitepaper”, Copyright Norman 2003 (19 pages). |
http://www/mcafee.com/us/, printed May 23, 2013 (23 pages). |
“Windows Virtual PC”, http://en.wikipedia.org/wiki/Windows—Virtual—PC, Last Modified May 5, 2013, Printed May 23, 2013 (21 pages). |
http://handlers.sans.org/jclausing/userdb.txt, printed May 24, 2013 (149 pages). |
Timo Sirainen, “IRSSI”, http://en.wikipedia.org/wiki/lrssi, updated May 8, 2013 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20080028463 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
60730615 | Oct 2005 | US | |
60799248 | May 2006 | US |