The present invention is directed to a method and system for use in a biometric image capturing system and more particularly to such a method and system that detects whether the biometric is from a living source.
Various devices are known that use a biometric to record an attribute of an individual, such as an image of a face, fingerprint, eye, etc. to identify an individual. With respect to eye biometrics, devices are known that detect a vascular pattern in a portion of an individual's retina to identify the individual. Examples of such devices are disclosed in U.S. Pat. Nos. 4,109,237; 4,393,366; and 4,620,318. In these devices, a collimated beam of light is focused on a small spot of the retina and the beam is scanned in a circular pattern to generate an analog signal representing the vascular structure of the eye intersecting the circular path of the scanned beam. In the U.S. Pat. No. 4,393,366, the circular pattern is outside of the optic disk or optic nerve and in the U.S. Pat. No. 4,620,318, the light is scanned in a circle centered on the fovea. These systems use the vascular structure outside of the optic disk because it was thought that only this area of the retina contained sufficient information to distinguish one individual from another. However, these systems have problems in consistently generating a consistent signal pattern for the same individual. For example, the tilt of the eye can change the retinal structure “seen” by these systems such that two distinct points on the retina can appear to be superimposed. As such, the signal representing the vascular structure of an individual will vary depending upon the tilt of the eye. This problem is further exacerbated because these systems analyze data representing only that vascular structure which intersects the circular path of scanned light, if the individual's eye is not in exactly the same alignment with the system each time it is used, the scanned light can intersect different vascular structures, resulting in a substantially different signal pattern for the same individual.
Moreover, biometric systems have not been able to accurately detect whether biometric data is artificially created or from a living source. Biometric systems that rely on static biometric data are particularly susceptible to being tricked by artificial or fake biometrics.
In accordance with the present invention, the disadvantages of prior biometric methods and systems have been overcome. The method and system of the present invention detects whether captured images of a biometric are from a living source. As such, it is extremely difficult to trick the biometric system of the present invention.
More particularly, in accordance with one embodiment of the method and system of the present invention, a sequence of images of a biometric is captured wherein the images include a common reference. The system aligns the images represented by the image data with respect to the common reference. Thereafter, the system analyzes an attribute of the biometric represented in the sequence of images to determine whether the attribute changes in the sequence of images in accordance with a living source.
In one embodiment of the present invention, the attribute that is analyzed is the width of at least one blood vessel. In another embodiment of the present invention the attribute that is analyzed is the intensity of pixels associated with at least one blood vessel. If the biometric is an image of an eye, other attributes that may be analyzed include the absorption or reflectivity of portions of the eye to different wavelengths of light; movement of the eye, e.g. Saccadic movements, or, alternatively controlled movement of the eye, etc.
In accordance with another embodiment of the present invention, the system captures a sequence of images of an eye where the images are represented by image data and the images in the sequence include at least one blood vessel. The system then locates the same blood vessel in each of the images of the sequence from the respective image data. Thereafter, the system determines from the image data associated with the respective images in the sequence whether the located blood vessel is pulsing to detect whether the captured images of the eye are from a living source or not.
These and other advantages and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
The system 110 of the present invention automatically captures a pixel image or bit mapped image of an area of the retina 119 of an eye 120 and, in particular, an image of the optic disk 10 and surrounding area. It has been found that the optic disk 10 contains the smallest amount of information in the eye to uniquely identify an individual. Because the eye pivots about the optic nerve, an image of the retina centered on the optic disk is the most stable and repeatable image that can be obtained. The system 110 of the present invention further has a minimal number of optical components resulting in an extremely compact device that is sufficiently small so as to be contained in a portable and/or hand held housing 112. This feature allows the system 110 of the present invention to be used with portable communication devices including wireless Internet access devices, PALM computers, laptops, etc. as well as standard, personal computers. The system 110 of the present invention provides the captured image, represented by a single image frame or a sequence of image frames, to such a device for communication of the image via the Internet or other network to a central location for verification and authentication of the individual's identity. The system of the present invention is also suitable for use at fixed locations. The captured image can be analyzed at the same location at which the image is scanned or at a location remote therefrom.
As shown in
Light reflected from the illuminated area of the retina 119 is picked up by the objective lens 116. The objective lens 116 directs the light reflected from the retina through the partially reflective mirror 118 to a pin hole lens 126 that is positioned in front of and with respect to the image capturing surface of an image sensor such as a CCD camera 122, a CMOS image sensor or other image capturing device. The pin hole lens 126 ensures that the system 110 has a large depth of focus so as to accommodate a wide range of eye optical powers. The CCD camera 122 captures an image of the light reflected from the illuminated area of the retina and generates a signal representing the captured image. In a preferred embodiment, the center of the CCD camera 122 is generally aligned with the centerline of the lens 116 so that the central, i.e. principal image captured is an individual's optic disk. It is noted that in a preferred embodiment of the invention the CCD camera 122 provides digital bit mapped image data representing the captured image.
In a preferred embodiment, a pair of polarizers 127 and 129 that are cross-polarized are inserted into the optical path of the system to eliminate unwanted reflections that can impair the captured image. More particularly, the polarizer 127 is disposed between the light source 160 and the partially reflecting mirror 118 so as to polarize the light from the source 160 in a first direction. The polarizer 129 is such that it will not pass light polarized in the first direction. As such, the polarizer 129 prevents light from the LED 160 from reaching the CCD camera 122. The polarized light from the LED 160 becomes randomized as the light passes through the tissues of the eye to the retina so that the light reflected from the retina to the lens 116 is generally unpolarized and will pass through the polarizer 129 to the CCD camera 122. However, any polarized light from the LED 160 reflecting off of the cornea 131 of the eye will still be polarized in the first direction and will not pass through the polarizer 129 to the CCD camera 122. Thus, the polarizers 127 and 129 prevent unwanted reflections from the light source 160 and cornea 131 from reaching the CCD camera 122 so that the captured image does not contain bright spots representing unwanted reflections. If desired, a third polarizer 133 as shown in
The output of the CCD camera 122 representing the captured image is coupled via a cable 123 to a personal computer, laptop, PALM computer or the like capable of communicating with a remote computer that analyzes the data to identify or authenticate the identity of an individual. Alternatively, the output of the CCD camera is stored or buffered in a memory 177 and transmitted, under the control of a microprocessor 176, directly to the remote computer for analysis. However, before transmitting data representing the captured image, the microprocessor 176 determines whether the captured image is sufficient to provide identification data, i.e. data used to identify an individual or animal as discussed in detail below with reference to
In accordance with a preferred embodiment of the system 110, the LED 160 is a red LED and the light source also includes a green LED 162 that are simultaneously actuated to illuminate the retina. The light from the red LED 160 and the light from the green LED 162 are combined by a combiner 163 or partially reflected mirror coated so as to pass red light from the red LED 160 and to reflect green light from the green LED 162. It has been found that enhanced contrast between the blood vessels of the retina and the background is achieved by illuminating the retina with light having wavelengths in the red spectrum and the green spectrum. However, light from only a red LED may be used to illuminate the retina. Further, wavelengths of light other than red and/or green may be used to illuminate the retina as well.
Further, the objective lens 116 has a first surface 164 and a second surface 166, one or both of which are formed as a rotationally symmetric aspheric surface defined by the following equation.
By forming one or both of the surfaces 164, 166 of the lens 116 as a rotationally symmetric asphere, the quality of the image captured can be substantially increased.
The system 110 further includes a proximity detector in the form of an optical proximity detector or a transducer 174 such as an ultrasound transducer so as to determine when an individual is at a predetermined distance from the system 110. The ultrasound transducer 174 is positioned adjacent the channel 172 and preferably below the channel 172; The transducer 174 is operated in a transmit and a receive mode. In the transmit mode, the ultrasound transducer 174 generates an ultrasound wave that reflects off of an area of the user's face just below the eye 120, such as the user's cheek. The ultrasound wave reflected off of the user's face is picked up by the transducer 174 in a receive mode. From the time at which the wave is sent, the time at which the wave is received, and the speed of the wave through air, the distance between the system 110 and the individual can be determined by a microprocessor 176 or a dedicated integrated circuit (I.C.). The microprocessor 176 or I.C. compares the determined distance between the eye 120 and the system 110 to a predetermined distance value stored in the memory 177, a register or the like, accessible by the microprocessor 176 or I.C. When the microprocessor 176 determines from the output of the ultrasound transducer 174 that the individual is at the predetermined or correct distance, the microprocessor 176 signals the CCD camera 122 to actuate the camera to capture an image of an area of the retina including the optic disk. A system for aligning the eye with the system 110 so that the optic disk is the central image captured is disclosed in U.S. patent application Ser. No. 10/038,168 filed Oct. 23, 2001 and incorporated herein by reference.
In a preferred embodiment, the image captured by the CCD camera 122 is represented by bit mapped digital data provided by the camera 122. The bit mapped image data represents the intensity of pixels forming the captured image. As used herein, bit mapped image data is such that a particular group of data bits corresponds to and represents a pixel at a particular location in the image.
When an image is captured by the camera 122, the microprocessor 176 determines whether the captured image, represented by one or multiple frames of the image, is sufficient for analysis. If a captured image is not sufficient, the microprocessor 176 controls the camera 122 to automatically capture another image. If the microprocessor 176 determines that the capture image is sufficient for analysis, the microprocessor 176 stores the image data, represented by one or multiple frames of the captured image, at least temporarily, before the microprocessor 176 causes the image data to be sent to a host computer to generate the identification data and to authenticate the identity of the individual or animal whose retinal image was captured by the system 110. Alternatively, the microprocessor 176 can generate the identification data as discussed below and then send the identification data to a host computer to perform the authentication process. In a preferred embodiment, whatever data is transmitted from the system 110 is preferably transmitted in encrypted form for security. Moreover, the system's own microprocessor 176 can authenticate the identity of an individual. In such an embodiment, the microprocessor 176 can receive data representing an image of an individual's retina and/or optic disk from a remote location or from an identification card encoded with the data and input to the system 110 for comparison by the microprocessor 176 to the image data captured by the system 110 from the illuminated retina. If the microprocessor 176 determines a match, the identity of the individual is authenticated.
Before generating the unique signal pattern, i.e. the identification data, the system an method of the present invention determines whether a captured image is sufficient to provide the identification data. This feature of the present invention allows an image to be automatically captured and tested for sufficiency. This feature also enables the system to screen out insufficient images at an early point in the analysis to increase the speed and accuracy of the identification system of the present invention.
More particularly, as shown in
Depending on the speed of the microprocessor 176, a software filter as depicted in
Referring to
FIxi=x(i−1)−2x(i)+x(i+1)
FIyi=y(i−1)−2y(i)+y(i+1)
These equations move the ith point toward the mean position of the ith point's nearest neighbors. Each of the external forces FExi and FEyi for the ith point are calculated as follows.
FExi=abs(E[xi+1][yi])−abs(E[xi−1][yi])
FEyi=abs(E[xi][yi+1])−abs(E[xi][yi−1])
These equations determine the difference between the absolute value of the edge strength of the pixels to the right and left of the ith pixel. The x and y coordinates of the ith contour point, i.e. xi, yi, are then updated using the following equation.
xi=xi+a*FIxi+b*FExi
yi=yi+a*FIyi+b*FEyi
where a and b are constants used to control the absolute strengths of the internal and external forces. At block 208, the microprocessor 176 calculates the contour length, l, and the change in contour lengths, dl. The total perimeter length 1, of the contour is calculated after each iteration along with the difference between this value and the value of l for the previous iteration to provide the change in length, dl. The perimeter length, l is equal to the sum, for all i of the geometric distances between the point i and the point i+1. The contour of N points sampled is considered a closed loop so that the first point is equivalent to the N+1 point. From block 208, the microprocessor 176 proceeds to block 209 where l is checked against a threshold. If l is less than the threshold then the image is rejected at block 211 and the microprocessor 176 begins analyzing the next image by returning to block 14 of
Returning to
Other tests to determine the sufficiency of the captured image to provide identification data may be performed at block 15 in lieu of finding the optic disk or in addition thereto. For example, the microprocessor 176 may process the image data to detect reflections. If reflections are detected, the image is determined to be insufficient to provide the identification data and the microprocessor returns to block 14 to cause another image to be captured. Another test for determining whether an image is sufficient to provide identification data may include finding the optic disk and comparing one or more characteristics of the optic disk to a respective threshold or boundary. If the characteristic of the optic disk is outside of the threshold or boundary, the image is determined to be insufficient. In accordance with this method, the size of the optic disk, for example, is compared to one or more size boundaries to determine if the detected disk is too large or too small. If the detected disk is found to be too big or too small the captured image is determined to be insufficient. Another characteristic of the optic disk that may be analyzed to determine the sufficiency of the captured image is the edge strength. In this embodiment, the edge strength about the optic disk is analyzed to determine if it is generally consistent. If the edge strength of the optic disk is determined to be inconsistent wherein for example, the edge strength of one side of the optic disk is very strong whereas another side of the optic disk is very weak or not detected, the captured image is determined to be insufficient and the microprocessor returns to block 14. Still another characteristic of the optic disk that may be analyzed is the shape of the optic disk. For example, if the optic disk is determined to be too elliptical rather than only slightly elliptical as would be expected for the optic disk, then the captured image is determined to be insufficient to provide the identification data and the microprocessor returns to block 14 to capture another image. A further method for determining the sufficiency of the image includes comparing the intensity of the pixels in the shaded area between the boundaries 75 and 79 to the intensity of the pixels in the shaded area between the boundaries 75 and 77 to see if they are too similar or too different indicating an image of insufficient quality. Another method for testing the sufficiency of the image includes determining an initial estimate of the center of the optic disk as discussed below. If the initial estimate of the center of the optic disk is too far from the mathematical center of the found disk or is too close to the edge of the image, the image is determined to be insufficient. Further, a determination can be made as to whether the initial estimate of the center of the optic disk is actually within the boundary of the optic disk or outside thereof. If the estimated center is outside of the boundary, the image is determined to be insufficient and the microprocessor returns to block 14 to capture another image. Further, if there is a significant difference between the cost function B as calculated in each frame, then the image may be determined to be insufficient.
Another test for determining the sufficiency of the captured image may be implemented at blocks 16 and 17 for the embodiment of the present invention where multiple frames or N frames of an image are captured at block 14. In particular, at block 16, the microprocessor 176 detects the optic disk in each of N frames of the image. As the disk is detected in each of the frames or after the disk has been detected in all of the frames, the microprocessor 176 aligns the images of the respective frames so as to superimpose multiple frames of the image at block 17. In order to align or superimpose N frame images, the microprocessor 176 first finds the optic disk in the first frame, i.e. frame 0. Next, the microprocessor measures the translation between the first frame and a subsequent frame wherein the translation is the change in location and/or shape of the optic disk. The microprocessor 176 then applies the measured translation to subsequent frames so that the translated, subsequent frame is aligned or superimposed on the first frame. The step of measuring the translation and applying the translation so as to superimpose a frame is repeated for all the subsequent frames to align or superimpose the N frames. If N frames cannot be aligned then the captured image is determined to be insufficient and the microprocessor 176 returns to block 14 to capture another image.
More particularly, in order to align N frames of a captured image, N frames of digitized, bit map images of the retina are captured at block 14 and stored in a memory associated with the microprocessor 176 as N separate bit map images. Thereafter, the microprocessor 176 finds the location of the optic disk and the first bit map image, i.e. frame 0. Next, the ellipse parameters x, y, a, b and θ are determined as discussed below and stored in the microprocessor's memory. A cost function B is calculated, for example as discussed below at block 66, starting with the ellipse parameters for the first bit map image. Next, the microprocessor 176 searches left, right and up, down, i.e. x1+1, x1−1, y1+1, and y1−1 for the maximum increase in the cost function B until the maximum B is found. New values of x and y are stored as xi and yi where i is an index of the ith bitmap. Next, starting from xi and yi and using the determined a, b and θ parameters, the microprocessor 176 calculates a cost function B using the next bit map and repeats the steps of searching for the maximum increase in the cost function B until the maximum B is found and storing the new values of x and y as xi and yi until all N bit maps have been considered. Then the microprocessor 176 calculates translation values dxi and dyi where dxi is the displacement in x for the bit map i and dyi is the displacement in y for the bit map i for each bit map. Specifically, dxi is set equal to xi−x1 and dyi is set equal to yi−y1. Thereafter, the microprocessor 176 translates pixel values in each image according to the translation values dxi and dyi to align the frame images. If the microprocessor 176 is not able to align the frames of the captured image because there is too much translation between the N frames of the image, then the microprocessor 176 determines that the image is insufficient to provide identification data and returns to block 14 to capture another image. Further, if there is a significant difference between the cost function B as calculated in each frame, then the image may be determined to be insufficient.
The microprocessor 176, after aligning the N frames at block 17, proceeds to block 19 to detect a vessel pattern in the retina with respect to the optic disk and to generate identification data as discussed in detail below. Before generating the identification data, however, the microprocessor can proceed to bock 250 of
More particularly, as shown in
In an alternate embodiment of the system and method for determining whether the captured retinal images are from a living source or not is shown in
More particularly, as shown at block 20, a histogram of the pixel intensities is first calculated by the processor for a received retinal image. Thereafter, at block 22, the processor calculates an intensity threshold where the threshold is set to a value so that 1% of the pixels in the received image have a higher intensity than the threshold, T. At block 22, the processor assigns those pixels having an intensity greater than the threshold T to a set S. Thereafter, at block 24, the processor calculates, for the pixels assigned to the set S, the variance in the pixel's position or location within the image as represented by the pixel data. The variance calculated at block 24 indicates whether the highest intensity pixels as identified at block 22 are concentrated in a group as would be the case for a good retinal image. If the highest intensity pixels are spread throughout the image, then the image may contain unwanted reflections. At block 26, the processor determines if the variance calculated at block 24 is above a threshold value and if so, the processor proceeds to block 28 to repeat the steps beginning at block 22 for a different threshold value. For example, the new threshold value T might be set so that 0.5% of the pixels have a higher intensity than the threshold or so that 1.5% of the pixels have a higher intensity than the threshold. It is noted that instead of calculating a threshold T at step 22, the threshold can be set to a predetermined value based on typical pixel intensity data for a retinal image. If the variance calculated at block 24 is not above the variance threshold as determined at block 26, the processor proceeds to block 30 to calculate the x and y image coordinates associated with the mean or average position of the pixels assigned to the set S. At block 32, the x, y coordinates determined at block 30 become an estimate of the position of the center of the optic disk in the image.
An alternative method of finding the optic disk could utilize a cluster algorithm to classify pixels within the set S into different distributions. One distribution would then be identified as a best match to the position of the optic disk on the image. A further alternative method for finding the optic disk is illustrated in
After locating the optic disk, the boundary of the disk is found by determining a contour approximating a shape of the optic disk. The shape of a typical optic disk is generally an ellipse. Since a circle is a special type of ellipse in which the length of the major axis is equal to the length of the minor axis, the method first finds the closest fitting circle to the optic disk as shown in
The algorithm depicted in
At block 40, an ellipse is defined having a center located at the coordinates xc and yc within the bit mapped image and a major axis length set equal to a and a minor axis length set equal to b. At block 42, the search for the closest fitting circle starts by setting the center of the ellipse defined at block 40 equal to the estimated location of the center of the optic disk determined at block 32 of
At block 46, the processor calculates the change in the cost function A for each of the following six cases of parameter changes for the ellipse circle: (1) x=x+1; (2) y=y+1; (3) x=×1; (4) y=y−1; (5) a=b=a+1; (6) a=b=a−1. At block 48, the processor changes the parameter of the circle according to the case that produced the largest increase in the cost function A as determined at block 46. For example, if the greatest increase in the cost function A was calculated for a circle in which the radius was decreased by 1, then at block 48, the radius is set to a=b=a−1 and the coordinates of the center remain the same. At block 50, a new value is calculated for the cost function B for the circle defined at block 48. At block 52, the processor determines whether the cost function value B calculated at block 50 exceeds a threshold. If not, the processor proceeds back to block 46 to calculate the change in the cost function A when each of the parameters of the circle defined at block 48 are changed in accordance with the six cases discussed above.
When the cost function B calculated for a set of circle parameters exceeds the threshold as determined at block 52, this indicates that part of the circle has found an edge of the optic disk and the algorithm proceeds to block 54. At block 54, the processor calculates the change in the cost function B when the parameters of the circle are changed for each of the cases depicted in step 5 at block 46. At block 56, the processor changes the ellipse pattern according to the case that produced the largest increase in the cost function B as calculated at step 54. At block 58, the processor determines whether the cost function B is increasing and if so, the processor returns to block 54. When the cost function B, which is the average edge strength of the pixels within the boundary area 14 of the circle being fit onto the optic disk, no longer increases, then the processor determines at block 60 that the closest fitting circle has been found.
After finding the closest fitting circle, the method of the invention distorts the circle into an ellipse more closely matching the shape of the optic disk in accordance with the flow chart depicted in
At block 66, the processor calculates the change in the cost function B when the parameters of the ellipse are changed by S as follows:
The method depicted in
In another embodiment of the present invention, as illustrated in
The signal pattern generated in accordance with the embodiments discussed above represents the intensity of pixels within a predetermined distance of the optic disk boundary 75. It should be appreciated, however, that a signal pattern can be generated having other predetermined relationships with respect to the boundary of the optic disk as well. For example, in another embodiment of the invention, the signal pattern is generated from the average intensity of pixels taken along or with respect to one or more predetermined paths within the optic disk boundary or outside of the optic disk boundary. It is noted that these paths do not have to be elliptical, closed loops or concentric with the determined optic disk boundary. The paths should, however, have a predetermined relationship with the optic disk boundary to produce consistent signal patterns from different retinal images captured for the same individual. In another embodiment, the area within the optic disk boundary is divided into a number of sectors and the average intensity of the pixels within each of the sectors is used to form a signal pattern to identify an individual. These are just a few examples of different methods of generating a signal pattern having a predetermined relationship with respect to the boundary of the optic disk found in accordance with the flow charts depicted in
Further, a signal pattern can be generated by detecting a vessel pattern as shown in
The scan data is denoted by two variables, the pixel's angle and which radius specific scan it is within. A method is then used to locate blood vessels along each scan, i.e. radius, that is applied. This method includes two steps. The first step, implemented at blocks 224 and 226, fits a five parameter model to the intensity profile of the scan and records the results for every angle. The second step, implemented at blocks 228 and 230, records instances of vessels by analysis of the local model parameters. More specifically, at block 224, the microprocessor 176 records window data. That is, for each and every angle, t, along each scan radii, a window of intensity values centered on t is recorded. These intensity values become the local data for the application of the model-fitting method implemented at block 226. For example, a Levenberg-Marquardt method can be used at block 226 to fit a non-linear five-parameter model to the data in the window. The model is constructed from the addition of a one-dimensional Gaussian curve that is used to approximate the profile of a blood vessel and a straight line that is used to approximate the local gradient of the intensity within the image. The five parameters are as follows:
The model function is:
y=p1*exp[−(x−p2)2/(p3)2]+p4*x+p5.
The parameters are set to initial default values with p2 set to t, and the Levenberg-Marquardt method is used to best fit this function to the data and the five parameters are recorded for each angle, t, in each scan. An example of a result is shown in
The second step in the vessel detection method includes identifying vessel-like parameter sets at block 228. In this step, a function is used to record sets of parameters that could represent blood vessels, i.e. those for which the parameters fall within defined tolerances. The remaining parameter sets are considered as candidate vessel-results. If these possible vessel-results match the results for neighboring angles, then an incident of a vessel is recorded at the current angle and is represented by the five parameters. The recorded parameters can be a particular combination of those recorded at a particular angle and those recorded at neighboring values such that repeat detection of a single vessel is consolidated into a single record at block 230. All detected vessels are then recorded for all of the radius-specific-scans for each image. By applying these steps at all angles within a radius-specific-scan, a picture of the vessel pattern is recorded in the form of sets of the five parameters. For example,
As discussed above, each detected retinal blood vessel cross section is characterized by a one dimensional model containing five parameters p1, p2, p3, p4 and p5 where the model function is
y=p1*exp[−(x−p2)2/(p3)2]+p4*x+p5.
In order to determine whether the captured images of a sequence are from a living source or not as discussed above with respect to
σ=|p3|.
Therefore, the position of the centre of each detected blood vessel cross-section is represented by r and θ, and its width is represented by σ. In this way each detected vessel cross-section is represented by the triplet (r, θ, σ).
As shown in the liveness detection method of
|rj−ri|<Δr and |θj−θi|<Δθ,
the two triplets are said to correspond to the same blood vessel cross-section. If this is the case then Δσij, describes the change is width of the blood vessel cross-section from the ith frame to the jth frame.
Δσij=(σj−σi).
Δσ can then be calculated through a sequence of video frames. At block 264, the microprocessor 176 compares the blood vessel width of the identified blood vessel section in each of the images of the sequence and tracks any changes in the width of the blood vessel section so as to determine whether the width is oscillating or not. At block 266, the microprocessor 176 determines whether there are any cardiac like oscillations in the widths of a given blood vessel section that is tracked and recorded at block 264. For example, if Δσ oscillates from negative to positive at a regular rate between upper and lower bounds where the upper and lower bounds are chosen to reflect the range in expected heart rates of the user, then the change in width indicates cardiac like oscillations and a pulsing blood vessel. If cardiac like oscillations in the width of a blood vessel section are detected, the microprocessor 176 determines at block 270 that the source of the captured images is from a living source. If no oscillations in the width of the identified blood vessel section are seen or if oscillations are seen but they are not typical of a cardiac cycle, the source of the captured images is determined to be lifeless at block 268. It is noted that the method of
An alternative to the above method could only identify a source retina as having signs of vitality if a longer section of one blood vessel is found to have cardiac induced oscillations in its width. Here the section of blood vessel is represented by a number of triplets representing different blood vessel sections along the length of the blood vessel:
[(r1,θ1,σ1),(r2,θ2,σ2), . . . (rn,θn,σn)]
as shown diagrammatically in
Many modifications and variations of the present invention are possible in light of the above teachings. For example, the attribute that is analyzed to determine whether captured images are from a living source may be other than the width or pixel intensity associated with a blood vessel as discussed above. The attribute that is analyzed may include the absorption or reflectivity of different wavelengths of light. The attribute that is analyzed may also include, Saccadic movements of the eye which are characterized by rapid intermittent motion. If such Saccadic movements of the eye are detected, this indicates that the source of the captured images is living. Moreover, larger eye movement can be used as well. The system of the present invention can cause the eye to focus on a moving target, for example wherein the system tracks the controlled movement of the eye as it follows the target. Therefore, another attribute that can be analyzed to determine whether the source of the captured image is living or not is controlled eye movement. It should be apparent that other attributes of a living source can be used as well. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as described hereinabove.
This application is related to U.S. patent application Ser. No. 11/028,726, entitled “Method and System for Automatically Capturing an Image of a Retina” and filed Jan. 3, 2005; Ser. No. 10/038,168, entitled “System For Capturing An Image Of The Retina For Identification” and filed Oct. 23, 2001; and Ser. No. 09/705,133, entitled “Method For Generating A Unique And Consistent Signal Pattern For Identification Of An Individual” and filed Nov. 2, 2000.