The present invention relates generally to wireless data communication systems and more particularly to the detection of different types of packets.
In a wireless communication system such as a WiFi system, information is transmitted and received in orthogonal frequency-division multiplexing (OFDM) packets. A receiver in such a system needs to detect a packet and its format first, and then the receiver configures its hardware and software to receive and decode the data portion of the packet.
Each OFDM packet includes a plurality of pre-amble fields to assist the receiver in detecting, synchronizing, and conditioning the packet. The pre-amble fields are followed by an encoded signal field that carries information about data rate, packet length, modulation and encoding type. The signal field is decoded and then used to configure the receiver to receive and decode the data portion of the packet. In the high throughput (HT) WiFi standard IEEE draft document (802.11n), mixed mode and green field OFDM frame formats are allowed to co-exist with a low throughput legacy frame format. In this standard the mixed mode frame format allows a legacy device to handle an HT packet properly and the green field frame format allows for less overhead and therefore higher throughput in an HT only system.
Accordingly, what is desired is a system and method that allows a receiver to receive and decode data packets in an efficient fashion when the receiver can receive packets in different types of formats. The system and method should be easily implemented, cost effective and adaptable to existing communications systems. The present invention addresses such a need.
A method and system for detecting different packet types is disclosed. The method and system comprises, determining whether the rate of a received packet corresponds to a predetermined rate, and derotating the bits of a symbol in the received packet. The method and system further includes obtaining an energy difference of the symbol at different axes, and determining the type of the received packet based on the energy difference.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The accompanying drawings illustrate an embodiment of the present invention and, together with the description, serve to explain the principle of the invention. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit the scope of the present invention.
The present invention relates generally to wireless data communication systems and more particularly to the detection of different types of packets. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
A system and method in accordance with the present invention allows for a receiver to effectively detect and decode the format of a plurality of packets transmitted in a wireless network. Specifically, the system allows for a receiver which can receive packets in different formats to detect whether the IEE802.11n packets are in a very high throughput (VHT) format or a legacy OFDM format. In so doing, a receiver can operate efficiently when receiving and decoding packets.
Although an embodiment will be described based upon a WiFi system in which OFDM packets are utilized, one of ordinary skill in the art recognizes a system and method in accordance with an embodiment can be utilized in a variety of embodiments and that use would be within the spirit and scope of the present invention. For example, the receiver could receive Complementary Code Keying (CCK) packets, Ethernet packets and the like and their use would be within the spirit and scope of the present invention. For example, the types of high throughput formats may differ from mixed mode format and the green format disclosed herein but those formats would still be applicable in a system and method in accordance with the present invention. Accordingly, although the system and method in accordance with the present invention will be discussed in the context of a particular embodiment, one of ordinary skill in the art recognizes that it can be utilized in a variety of environments and is not limited to the embodiments described herein.
A system that utilizes a detection procedure in accordance with the present invention can take the form of an entirely hardware implementation, an entirely software implementation, or an implementation containing both hardware and software elements. In one implementation, this detection procedure is implemented in software, which includes, but is not limited to, application software, firmware, resident software, microcode, etc.
Furthermore, the detection procedure can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer-readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk, and an optical disk. Current examples of optical disks include DVD, compact disk-read-only memory (CD-ROM), and compact disk—read/write (CD-RAN). To describe the features of the present invention in more detail, refer now to the following description in conjunction with the accompanying figures.
With the release of the draft IEEE 802.11ac standard, a new preamble of the packet is defined for a typical packet data rate—as high as 600 Mb/s. The new preamble requires an extensive set of signal parameters that necessitates the expansion of the signal field into two symbols, such as the HT-SIG118a and HT-SIG218b shown in the portion (b), immediately following the L-SIG 12 field. To ensure co-existence with the 11a devices, the HT-SIG fields 18a and 18b are modulated with a 90-degree rotation. Compared with a conventional BPSK symbol with real components, the HT-SIG fields 18a and 18b are signaled on the imaginary (Q) axis, as shown in
MIMO-AGC 30 is important for performance prior to the reception of the HT-LTF 2 (long training fields). Significant gain changes can occur at the start of the HT-STF 20 for several reasons. For example, CSD changes (from 200 up to 600 microseconds on the transmitted spatial streams) can drastically change the effective wireless channel. Transmit beamforming can also result in 6 to 10 dB of received signal gain increase, and transmit antenna diversity schemes starting at the HT-STF 20 (according to the 11n standard) and spatial expansion (also an 802.11n feature, whereby the transmitter activates additional transmitters) can further modify the channel. These abrupt changes need to be compensated by the MIMO-AGC 30 to prevent effects such as analog-to-digital conversion (ADC) saturation (clipping).
Moreover, with a very high throughput (VHT) standard, which offers even higher data rates, a preamble field must be designed to allow a VHT device to coexist with both 11a and 11n devices. The signal field will preferably be as efficient as the HT-SIG field 18a and 18b, immediately following the L-SIG field 12 as shown in
An approach known to solve the current problem is shown in
One solution, as presented in application Ser. No. 12/563,979, is achieved, by generalizing the 90-degree rotation so that the new VHT-SIG can be easily recognized. That is, a new subcarrier rotation allows the VHTSIG to be distinguished from both an HT-SIG field and a legacy DATA field simultaneously. One embodiment of the design utilizes 90-degree BPSK symbols on alternating subcarriers, odd and even, as shown in
An approach to distinguishing the 11n HT-SIG field is shown in
In particular, if the packet is an 11n packet with the 90-degree shifted BPSK OFDM symbol, all the energy will line up on the imaginary axis, making the Q components large. The output will be a large negative number received by 11n detection mechanism 94. It will be distinguishable from an 11a packet, because the 11a packet will have a data symbol in that corresponding time slot. In general, the data symbol in QAM, and contains equal energy on both I and Q components, so that if the packet is 11a, the output of the 11n detector will read zero. Thus, by comparing the summed output to a preset negative threshold, the 11n and 11a can be uniquely identified.
However, a newly proposed wireless area network (WLAN) standard, IEEE.802.11ac or 11ac, is now being developed. For a packet that complies with the proposed 11ac standard, or a 11ac packet, an alternating subcarrier has a 90 degree shift, which may mean that the degree of a bit and the degree of the previous bit or then next bit in the symbol or symbols has a 90 degree difference. In other words, there's an alternate 0/90 degree BPSK symbols on odd-even subcarriers. In this case, the above-identified method cannot be used to determine the type of received packet because the result of the energy difference of the in-phase axis and the quadrature axis are close to zero. Therefore it is very possible for an 11n receiver to make a false detection. Thus, there is a need for a method to detect a different a packet format.
In an embodiment, equation shown below may be used to calculate the energy difference used to determine the packet type.
Accordingly, a method and system in accordance with the present invention presents a new packet structure and an improved method for detecting the packet.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
The present application claims the benefit of U.S. Provisional Application No. 61/325,465, filed on Apr. 19, 2010, entitled “METHOD AND SYSTEM FOR DETECTING PACKET TYPE,” and is a continuation-in-part of U.S. patent application Ser. No. 12/563,979, filed on Sep. 21, 2009, entitled “METHOD AND SYSTEM TO DETECT PACKETS OF DIFFERENT FORMATS IN A RECEIVER,” and U.S. patent application Ser. No. 12/700,651, filed on Feb. 4, 2010, entitled “METHOD AND SYSTEM TO DETECT PACKETS OF DIFFERENT FORMATS IN A RECEIVER,” and U.S. patent application Ser. No. 13/026,128, filed on Feb. 11, 2011, entitled “METHOD AND SYSTEM TO DETECT PACKETS OF DIFFERENT FORMATS,” all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61325465 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12563979 | Sep 2009 | US |
Child | 13087151 | US | |
Parent | 12700651 | Feb 2010 | US |
Child | 12563979 | US | |
Parent | 13026128 | Feb 2011 | US |
Child | 12700651 | US |