The present invention relates to automatic detection and correction of entrance into an improper MBR state in a computer system.
During a boot operation of a computer system, a power-on self-test (POST) is performed, and an operating system is located from among the disk drives of the computer system. The Master Boot Record (MBR) is the information in the first sector of the bootable hard drive that identifies how and where an operating system is located so that it can be booted (loaded) into the computer's main memory or RAM (random access memory). The MBR is also sometimes called the “partition sector” or the “master partition table” because it includes a table that locates each partition that the hard disk has been formatted into. In addition to this table, the MBR also includes a program that reads the boot sector record of the partition containing the operating system to be booted into RAM. In turn, that record contains a program that loads the rest of the operating system into RAM. This information is critical, because without it, the computer system cannot be run and files cannot be found.
Situations exist where the MBR must be modified to run maintenance routines. Examples of this include modifying the boot loader to boot into a different operating system (OS) partition, such as DOS versus a Linux partition, or use of third party utility programs that modify the MBR for system maintenance, such as PowerQuests's VIRTUAL FLOPPY, which allows for an OS, such as DOS or Linux, to be booted from a non-DOS-based system (e.g., WIN NT's NTFS (NT file system).
A problem with programs which modify the MBR is the potential that they will prohibit a system from properly booting if some unforeseen event occurs. Examples of these events could be code bugs, incompatibilities with other applications, a system hang during the virtual floppy boot, etc. In the VIRTUAL FLOPPY application, for instance, the MBR is modified while the native protected mode OS is running. The system then shuts down and an IPL (initial program load) is forced. During this IPL, the BIOS (basis input/output system) reads the MBR into memory, validates it for correctness, and passes control to the partition entry which is labeled active. If the MBR either does not have the correct bytes in the correct location, has an invalid partition entry, has no active partition, or has a problem within the code which hooks this boot process, the system will stop with an error message (i.e., ‘no bootable partition’, ‘error loading OS’, etc.) or will just hang in a non-operating state. Furthermore, if the VIRTUAL FLOPPY maintenance routine hangs due to an errant condition, the system is stuck in this mode, because it cannot undo itself.
Manual recovery operation, generally with a bootable floppy, CD, etc., is one way of overcoming the hang situation. If a MBR gets corrupted, recovery diskettes can be used locally to restore the system back to its prior state. Remote restoration is not possible, because an Enterprise Software Distribution package requires the OS to be up and running and is managed via an agent. If there is a problem with a MBR modification process due to some undetected incompatibility, all systems (servers, clients, POS registers, etc.) could be put into a remotely unrecoverable state. This risk may prohibit administrators from performing any system maintenance routines remotely, which implement a VIRTUAL FLOPPY by modifying the MBR.
Accordingly, a need exists for an automated detection and correction mechanism in the event that a system gets into an improper or corrupted MBR state. The present invention addresses such a need.
The present invention provides aspects for detection and correction of entrance into an improper master boot record (MBR) state in a computer system. The aspects include providing a proxy MBR at a predetermined location on a storage device of a computer system. The proxy MBR is then utilized during a restart operation. An original MBR maintained at an original location on the storage device is then utilized during a reboot operation when the proxy MBR utilization is unsuccessful.
Through the present invention, a computer system can successfully self-heal from its entrance into a corrupted or improper MBR state by automatically detecting an improper MBR state and correcting system operation by utilizing an unmodified MBR. In this manner, better efficiency and reliability is achieved while avoiding the need to perform more manual and cumbersome recovery activities. These and other advantages of the present invention will become readily apparent from the following detailed description and accompanying drawings.
The present invention relates to detection and correction of entrance into an improper MBR state in a computer system. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
The present invention is suitably embodied in a computer system such as system 100 shown in
In accordance with the present invention, detection and correction of a computer system in an improper or corrupted MBR state is provided. Referring to the flow diagram of
In an alternate implementation, the state flag could also be implemented as a counter, thus allowing the proxy MBR to be booted multiple times before reverting control back to the original MBR, as is well appreciated by those skilled in the art. This alternate embodiment could be used, for instance, to allow for multiple firmware updates to be queued up to occur as a series of virtual floppy service boots before rebooting to the protected mode operating system.
It should also be noted that if the state flag is set, then the BIOS can skip the MBR virus check, which is an option at POST (power-on self test) on certain systems. This would eliminate the problems which can occur today if these programs are run on a system which has the MBR virus check enabled.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the novel concept of the invention. It is to be understood that no limitation with respect to the specific methods and apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5509120 | Merkin et al. | Apr 1996 | A |
5537540 | Miller et al. | Jul 1996 | A |
5694600 | Khenson et al. | Dec 1997 | A |
5701477 | Chejlava, Jr. | Dec 1997 | A |
5809230 | Pereira | Sep 1998 | A |
5974567 | Dickson et al. | Oct 1999 | A |
6016402 | Thomas et al. | Jan 2000 | A |
6272626 | Cobbett | Aug 2001 | B1 |
6421792 | Cromer et al. | Jul 2002 | B1 |
6430663 | Ding | Aug 2002 | B1 |
6449716 | Rickey | Sep 2002 | B1 |
6473655 | Gould et al. | Oct 2002 | B1 |
6542979 | Eckardt | Apr 2003 | B1 |
6560701 | Berstis et al. | May 2003 | B1 |
6640316 | Martin et al. | Oct 2003 | B1 |
6658563 | Ice et al. | Dec 2003 | B1 |
6748553 | McBride et al. | Jun 2004 | B2 |
6792556 | Dennis | Sep 2004 | B1 |
6862681 | Cheston et al. | Mar 2005 | B2 |
6931522 | Raghavan et al. | Aug 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20040153840 A1 | Aug 2004 | US |