Method and system for detection of a tire's change of state

Information

  • Patent Application
  • 20030070478
  • Publication Number
    20030070478
  • Date Filed
    September 10, 2002
    22 years ago
  • Date Published
    April 17, 2003
    21 years ago
Abstract
The present invention comprises and system and method for detecting a change in the state of pneumatic tires. The change of state refers to the state of internal air pressure, temperature or other such parameter. Herein, a difference of at least two successive readings are taken or a further analysis is performed and either is compared with a threshold value below which a change of state has occurred.
Description


BACKGROUND OF THE INVENTION

[0002] The present invention relates to the field of vehicular tire maintenance and more particularly to a method and system for detecting changes in the state of a tire. In particular, the present invention is directed to detecting pressure changes, temperature changes and the like in at least one tire mounted onto a vehicle. Tire air pressure is effected by a plurality of external forces which may result in erroneous pressure readings. Such forces include climate and climate changes, solar radiation, and the like. An unwanted result of such forces may be the false reading that the tire in question is not roadworthy and requires more air, maintenance or even replacement. Accordingly, a need exists to measure tire air pressure while taking into account external forces.


[0003] U.S. Pat. No. 5,895,846 discloses a method for processing signals within a system that monitors tires in a vehicle while the vehicle is in operation. A characteristic of this method includes a retrospective analysis of N number of stored values. As a result of these method steps, a great deal of data (in the form of numbers or values) must be stored and analyze. This results in a need for expensive information processing and supporting equipment and human expertise.



SUMMARY OF THE INVENTION

[0004] An advantage of the present invention is directed to a simple and reliably working method and system for the detection of a change of state of a tire, whereby no expensive information processing systems, support and human expertise are requisite. Another advantage is that the inventive method apply to any type of tire. The present invention operates not by analysis of all gathered data, but rather analysis of modulation of data, the modulation of which is indicative of an alarm worthy state of the tire absent external influences. The present method makes use of relatively few calculations thereby reducing the burden on information processing equipment. Furthermore, the present invention is flexible so as to apply to a variety of parameters as may be preselected before use. The present invention may operate on more than one tire at a time thereby providing a comparison if desired as well as a general state of the all a vehicle's tires. In addition to tire air pressure other considerations may be measured including temperature.


[0005] The present invention comprises a system and method wherein successive data is analyzed, and modulation of such data is obtained and compared with a threshold below which an alarm is sounded. A parameter is used to adjust the level of detail of modulation obtaining. Parameters for data may be set by that being analyzed, namely, temperature, air pressure and the like.


[0006] The present invention further comprises a method for detecting at least one tire's change of state, comprising the steps of: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of a difference of said first and second values with a predetermined threshold value, said comparison being indicative of said tire's change of state.


[0007] The present invention further comprises a method for detecting at least one tire's change of state, comprising the steps of: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of between said successive second values and a predetermined threshold value, said comparison being indicative of said tire's change of state when said second value falls below said threshold.


[0008] The present invention further comprises a system for monitoring change of state of at least one tire, comprising means for: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of a difference of said first and second values with a predetermined threshold value, said comparison being indicative of said tire's change of state.


[0009] The present invention still further comprises a system for monitoring change of state of at least one tire, comprising means for: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of between said second value and a predetermined threshold value, said comparison being indicative of said tire's change of state when said second value falls below said threshold.







BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0010] The novel features and method steps believed characteristic of the invention are set out in the claims below. The invention itself, however, as well as other features and advantages thereof, are best understood by reference to the detailed description, which follows, when read in conjunction with the accompanying drawing, wherein:


[0011]
FIG. 1 depicts a system layout according to the present invention;


[0012]
FIG. 2 depicts a method flow chart according to the present invention;


[0013]
FIG. 3A depicts a time history graph; and


[0014]
FIG. 3B depicts a second time history graph.







DETAILED DESCRIPTION OF THE PRESENT INVENTION

[0015] The present invention will be discussed with respect to the tire characteristic being air pressure. However, it should be understood that the present invention is applicable to any measurable tire characteristic. Tires referred to herein include those belonging to any motor vehicle.


[0016]
FIG. 1 depicts a system according to the present invention. Herein, a pressure sensor 4 is placed in a vehicle tire 2 for the detection of the air pressure within the tire. The structure and function of the sensor is known in the art. Pressure sensor 4 does not have to be placed directly within the interior of the tire. Rather, it can also be placed at a valve, so that the pressure sensitive element of the pressure sensor 4 detects the internal pressure of the tire. Sensor 4 output is communicated to evaluating unit 8 as depending upon structure and location of the sensor. Such may include: mechanically by sliding contacts, radio link 6 such as by transponder which communicates with a sending/receiving unit 10 that edits the sent signals and further directs them to evaluating unit 8. The evaluating unit 8 comprises a properly programmed microprocessor 16 with a program memory 18 and data memory 20 as known in the art. An output of the evaluating unit 8 is connected to alarm unit 22 which may comprise a warning light or display in a vehicle dashboard as well as audio devices if required.


[0017] The operation of the invention will now be described with respect to the example method of FIG. 2. The method starts at step S1 and proceeds to step S2 wherein tire pressure (first characteristic measurement) xi(k) is measured over a select time period. Herein i represents the tire and k the time of each measurement. The time period may be limited by application or be continuous. In step S3, a first value fi(k) is calculated, wherein: fi(k)=a fi(k−1)+xi(k). Herein, parameter (a) is an appropriately selected parameter from between 0 <a <1 and may be a constant. The parameter is selected according to that being measured. The term fi(k−1) indicates a second measured characteristic calculated to a time (k−1). In step S4, a second value yi(k) is calculated according to the formula: yi(k)=fi(k)−fi(k−1) wherein fi(k) is the first value and fi(k−1) is the second measured characteristic. In step S5, the second value yi(k) is then compared with a predetermined threshold value S, to detect in step S6 a change of state of the tire (i) if yi(k) falls below the threshold value. If yi(k) does not fall below threshold value S, the method returns to step S2 to continue with the next value xi(k) now measured at the time (k+1). In an alternate embodiment, the second value may be compared among different tires (i) so as to arrive at a general state of health of the tires as well as any change of state among them. In another embodiment, a difference between first and second values may be calculated and compared to threshold S to determine if a drop has occurred. FIG. 3A depicts a time chart history of varying tire air pressure for two tires x1 and x2. As shown, tire pressure for the second tire x2 drops at about time 1200. FIG. 3B depicts processed measurements from FIG. 3A. y1 marks second values of tire pressure for first tire x1, and y2 marks the second values of the tire pressure of the second tire x2. As further depicted in FIG. 3B, the pressure drop of the second tire x2 is depicted when y2 drops below threshold S and/or when the delta of y1-y2 drops below threshold S. The graph indicates tire pressure trends over time.


[0018] The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations include applicability to temperature and other detectable tire characteristics or parameters. In addition to a single parameter or characteristic, the present invention may apply to simultaneous multi-parameter detection. Such variations are not to be regarded as a departure from the spirit and scope of the invention. All obvious modifications are intended to be included within the scope of the following claims.


Claims
  • 1. A method for detecting at least one tire's change of state, comprising the steps of: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of between said successive second values and a predetermined threshold value, said comparison being indicative of said tire's change of state when said second value falls below said threshold.
  • 2. The method according to claim 1, wherein said parameter is a constant.
  • 3. The method according to claim 1, wherein said parameter is between zero and one.
  • 4. The method according to claim 1 further comprising the steps of generating a comparison of said second value for each of said at least one tire's wherein said comparison is indicative of a second change of state of said at least one tire.
  • 5. The method according to claims 1, wherein said characteristic comprises air pressure within said tire.
  • 6. The method according to claims 1, wherein said characteristic comprises temperature within said tire.
  • 7. A method for detecting at least one tire's change of state, comprising the steps of: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of a difference of said first and second values with a predetermined threshold value, said comparison being indicative of said tire's change of state.
  • 8. The method according to claim 7, wherein said parameter is a constant.
  • 9. The method according to claim 7, wherein said parameter is between zero and one.
  • 10. The method according to claim 7, further comprising the steps of generating a comparison of said second value for each of said at least one tire's wherein said comparison is indicative of a second change of state of said at least one tire.
  • 11. The method according to claims 7, wherein said characteristic comprises air pressure within said tire.
  • 12. The method according to claims 7, wherein said characteristic comprises temperature within said tire.
  • 13. A system for monitoring change of state of at least one tire, comprising means for: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of between said second value and a predetermined threshold value, said comparison being indicative of said tire's change of state when said second value falls below said threshold.
  • 14. The system according to claim 13, wherein said parameter is a constant.
  • 15. The system according to claim 13, wherein said parameter is between zero and one.
  • 16. The system according to claim 13, further comprising the steps of generating a comparison of said second value for each of said at least one tire's wherein said comparison is indicative of a second change of state of said at least one tire.
  • 17. The system according to claims 13, wherein said characteristic comprises air pressure within said tire.
  • 18. The system according to claims 13, wherein said characteristic comprises temperature within said tire.
  • 19. A system for monitoring change of state of at least one tire, comprising means for: repeatedly measuring characteristics of said tire; determining a first value comprising addition of a first and second measured characteristics, said first measured characteristic being taken at a preselect time, said second measured characteristic being taken at a time before said preselect time and further being multiplied by a preselected parameter; determining a second value comprising said first value less said second measured characteristic; and generating a comparison of a difference of said first and second values with a predetermined threshold value, said comparison being indicative of said tire's change of state.
  • 20. The system according to claim 20, wherein said parameter is a constant.
  • 21. The system according to claim 20, wherein said parameter is between zero and one.
  • 22. The system according to claim 20, further comprising the steps of generating a comparison of said second value for each of said at least one tire's wherein said comparison is indicative of a second change of state of said at least one tire.
  • 23. The system according to claims 20, wherein said characteristic comprises air pressure within said tire.
  • 24. The system according to claims 20, wherein said characteristic comprises temperature within said tire.
Priority Claims (1)
Number Date Country Kind
101 44 362.5 Sep 2001 DE
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of priority German Application number, 10144362.5 filed Sep. 10, 2001, which is incorporated herein by reference.