METHOD AND SYSTEM FOR DETECTION OF BLOWOUT IN PIPES/TUBES

Information

  • Patent Application
  • 20160273993
  • Publication Number
    20160273993
  • Date Filed
    October 21, 2014
    9 years ago
  • Date Published
    September 22, 2016
    7 years ago
Abstract
Disclosed is a method for detecting a blowout in an irrigation pipe. The irrigation pipe is extruded. Further a positive air pressure may be created by circulating air through the irrigation pipe. The irrigation pipe with positive air pressure is then fed into a tank, wherein the tank comprises a coolant liquid. Further at least one air bubble is trapped at a surface of the tank.
Description
TECHNICAL FIELD

The present subject matter described herein, in general, relates to blowout in pipes or tubes, and more particularly to detection of blowout in pipes or tubes.


BACKGROUND

Blowouts are holes in the pipes/tubes generally caused by foreign material in the extrudate creating a weak or open area during the period of stretching and pulling as the extrudate enters the vacuum tank water bath before the material cools off.


Blowouts can be small micro perforations or huge holes that will actually rupture the pipes/tubes and stop the production line. The large holes that shut down the line are easy to detect, they are right at the tube break off point. The micro perforations are more difficult to find as they may simply run through the line undetected. The customer may find them when the customer finishes the irrigation project and turns the water on. Many blowouts detected at that time often manifest either as a geyser or a flooded pool. If the pipes/tubes are buried, as is often the case it is a long job digging in the mud to locate and repair every place where a blowout occurred. Since there is seldom a single occurrence of a blowout, the field could be littered with them, creating a tremendous amount of work for the customer, and a warranty nightmare for the manufacturer.


SUMMARY

This summary is provided to introduce aspects related to a blowout detector for detecting blowouts or fault during the manufacturing of the pips/tubes. This summary is not intended to identify essential features of the claimed subject matter nor is it intended for use in determining or limiting the scope of the claimed subject matter.


In one implementation, a method for detecting a blowout in an irrigation pipe is disclosed. The method may comprise extruding the irrigation pipe. Further the method may further comprise creating a positive air pressure in the irrigation pipe. The positive air pressure may be created by circulating air through the irrigation pipe. The method may comprise feeding the irrigation pipe, with the positive air pressure, into a tank. The tank may comprise a coolant liquid. Further the method may comprise trapping at least one air bubble at a surface of the tank.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The same numbers are used throughout the drawings to refer like features arid components.



FIG. 1, illustrates a flow diagram for detecting a blowout in an irrigation pipe in accordance with an aspect of the present disclosure.



FIG. 2, illustrates a blowout detector in accordance with an aspect of the present disclosure.





DETAILED DESCRIPTION

The present subject matter discloses a blowout detector for detecting blowouts or fault during the manufacturing of the pips/tubes.


The method of detection of blowout implies the differential between the positive air pressure inside the pipes/tubes and the negative pressure of the vacuum tank. When the tank is filled with cooling liquid, the positive air pressure inside the pipes/tubes will push through the defect and create bubbles as it travels the length of the vacuum tank. An apparatus captures a stream of these bubbles as the tube travels under it and feeds (funnels) them to a central area where they are allowed to break the surface of the cooling liquid. The bubbles break the surface inside a small diameter tube and are transported by the tube along with a quantity of the cooling liquid to a point where they can be detected by a sensor. The output signal can be set to sound an alarm, or stop production, or any other manner of alerting.



FIG. 1, illustrates a flow diagram for detecting a blowout in an irrigation pipe in accordance with an aspect of the present disclosure. The flow diagram 100 may comprise step 102, wherein the irrigation pipe may be extrude from a material like Polyvinyl chloride (PVC). At step 104, a positive air pressure may be created in the irrigation pipe by pumping air through the irrigation pipe. Further at the step 106 the irrigation piper with the positive air pressure may be fed into a tank. The tank may comprise a cooling liquid, wherein the tank may be completely filled with the cooling liquid. The complete filing of tank with the cooling liquid may create a negative air pressure in the tank, due to absence of air. As the irrigation pipe is fed to the tank at step 108, any bubbles or at least one bubble escaping from the irrigation pipe may be trapped at a surface of the tank. The at least one bubble may be originate from a blowout in the irrigation pipe, as the irrigation pipe has positive air pressure and the tank has negative air pressure. The at least one air bubble trapped on the surface of the tank may be further transferred to a sensor through a pipe or can be directly sensed at the surface. According to an exemplary embodiment a piezoelectric sensor may be used or an ultrasonic sensor may be used. Further upon detection of the at least one air bubble an alert may be sent to a user or an operator.



FIG. 2, illustrates a blowout detector in accordance with an aspect of the present disclosure. The system 200, for detecting a blowout may comprise an extrusion machine 202. The extrusion machine may be configured to extrude pipes for irrigation. Any conventional machine may be used for this purpose. The extruded irrigation pipe may further be fed into a tank 206. The tank 206 may be filled with a coolant liquid 204. The system may further comprise a sensor 208. The sensor 208, may be configured to detect to any air bubble passing or traveling through the coolant liquid to surface of the tank. The sensor may then be enabled to alert a user or an operator of the system.

Claims
  • 1. A method for detecting a blowout in an irrigation pipe, the method comprising: extruding the irrigation pipe;creating a positive air pressure in the irrigation pipe, wherein the positive air pressure is created by circulating air through the irrigation pipe;feeding the irrigation pipe, with the positive air pressure, into a tank, wherein the tank comprises a coolant liquid; andtrapping at least one air bubble at a surface of the tank.
  • 2. The method for detecting the blowout in the irrigation pipe of claim 1, further comprises sensing of the at least one air bubble at the surface of the tank.
  • 3. The method for detecting the blowout in the irrigation pipe of claim 2, wherein transferring the at least one air bubble from the surface to a sensor for sensing.
  • 4. The method for detecting the blowout in the irrigation pipe of claim 1, further comprises alerting a user upon detection of at least one air bubble in the irrigation pipe.
Priority Claims (1)
Number Date Country Kind
3333/MUM/2013 Oct 2013 IN national
PCT Information
Filing Document Filing Date Country Kind
PCT/IN14/00669 10/21/2014 WO 00