The present invention generally relates to electrical components, and more particularly relates to a method and system for determining the current flowing through electrical components.
In recent years, advances in technology, as well as ever evolving tastes in style, have led to substantial changes in the design of automobiles. One of the changes involves the complexity, as well as the power usage, of the various electrical systems within automobiles, particularly alternative fuel vehicles, such as hybrid, electric, and fuel cell vehicles.
Such vehicles, particularly fuel cell vehicles, often use two separate voltage sources, such as a battery and a fuel cell, to power the electric motors that drive the wheels. Power converters, such as direct current-to-direct current (DC/DC) converters, are typically used to manage and transfer the power from the two voltage sources. Modern DC/DC converters often include transistors electrically interconnected by an inductor. By controlling the states of the transistors, a desired average current can be impressed through the inductor.
For control and feedback purposes, the current through the inductor is measured. Typically, this measurement occurs at a mid-point of a duty cycle, or “on-period,” of one of the transistors, as theoretically the inductor current will be at its average value at that point. However, due to an inherent delay between the activation of the transistor and the flow of current through the transistor and/or the inductor, the current measurement may be inaccurate. As a result, performance of the power converter, as well as the vehicle, may be less than optimal.
Accordingly, it is desirable to provide a system and method for improving the accuracy of the feedback current conducting through an electrical component, such as an inductor in a DC/DC converter. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
According to one embodiment, a method is provided for determining a current flowing through an electrical component. A switch electrically coupled to the electrical component and two voltage sources is activated. The activation of the switch causes current to flow through the electrical component after an amount of time. The amount of time between said activating the switch and the flow of current through the electrical component is determined. The current flowing through the electrical component is measured. The measured current is modified based at least in part on the amount of time between said activating the switch and the flow of current through the electrical component.
According to another embodiment, an automotive drive system is provided. The system includes a first voltage source to generate a first voltage, a second voltage source to generate a second voltage, a power converter, having a switch and an inductor, coupled to the first voltage source and the second voltage source, an electric motor coupled to the power converter, and a microprocessor in operable communication with the power converter. The microprocessor is configured to activate the switch to cause current to flow through the inductor after an amount of time, determine the amount of time between the activation of the switch and the flow of current through the inductor, determine a measured current value the current flowing through the inductor, and modify the measured current value based at least in part on the amount of time between the activation of the switch and the flow of current through the inductor.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
The following description refers to elements or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “connected” means that one element/feature is directly joined to (or directly communicates with) another element/feature, and not necessarily mechanically. Likewise, unless expressly stated otherwise, “coupled” means that one element/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/feature, and not necessarily mechanically. However, it should be understood that although two elements may be described below, in one embodiment, as being “connected,” in alternative embodiments similar elements may be “coupled,” and vice versa. Thus, although the schematic diagrams shown herein depict example arrangements of elements, additional intervening elements, devices, features, or components may be present in an actual embodiment. It should also be understood that
As will be described in greater detail below, in one embodiment, the electrical component is an inductor within a direct current-to-direct current (DC/DC) converter. The two voltages sources may include a battery and a fuel cell within a fuel cell powered automobile.
The automobile 10 may be any one of a number of different types of automobiles, such as, for example, a sedan, a wagon, a truck, or a sport utility vehicle (SUV), and may be two-wheel drive (2WD) (i.e., rear-wheel drive or front-wheel drive), four-wheel drive (4WD) or all-wheel drive (AWD). The vehicle 10 may also incorporate any one of, or combination of, a number of different types of engines, such as, for example, a gasoline or diesel fueled combustion engine, a “flex fuel vehicle” (FFV) engine (i.e., using a mixture of gasoline and alcohol), a gaseous compound (e.g., hydrogen and natural gas) fueled engine, a combustion/electric motor hybrid engine, and an electric motor.
In the exemplary embodiment illustrated in
As shown, the battery 22 and the FCPM 24 are in operable communication and/or electrically connected to the electronic control system 18 and the DC/DC converter system 26. Although not illustrated, the FCPM 24, in one embodiment, includes, amongst other components, a fuel cell having an anode, a cathode, an electrolyte, and a catalyst. As is commonly understood, the anode, or negative electrode, conducts electrons that are freed from, for example, hydrogen molecules so that they can be used in an external circuit. The cathode, or positive electrode (i.e., the positive post of the fuel cell), conducts the electrons back from the external circuit to the catalyst, where they can recombine with the hydrogen ions and oxygen to form water. The electrolyte, or proton exchange membrane, conducts only positively charged ions while blocking electrons. The catalyst facilitates the reaction of oxygen and hydrogen.
The BDC controller 34 is in operable communication with the BDC converter 32 as shown. Although illustrated as being a separate module, the BDC controller 34 may be implemented within the electronic control system 18 (
Although not illustrated, in one embodiment, the inverter 28 includes a plurality of power module devices. The power module devices may each include a semiconductor substrate (e.g., silicon substrate) with an integrated circuit, having a plurality of semiconductor devices (e.g., transistors and/or switches), formed thereon, as is commonly understood.
Referring again to
The electronic control system 18 is in operable communication with the motor 20, the battery 22, the FCPM 24, the DC/DC converter system 26, and the inverter 28. Although not shown in detail, the electronic control system 18 includes various sensors and automotive control modules, or electronic control units (ECUs), such as the BDC controller 34 (shown in
During operation, still referring to
The electronic control system 18 and/or the BDC controller 34 operate the DC/DC converter system 26 as discussed below. Referring again to
Still referring to
A constant average current, equal to the desired average current, is impressed through the switching inductor 48. The control of the constant average current is generally performed under closed loop operation. The output of the current loop controls the voltage across the switching inductor 48 by switching the state of the IGBTs 40, 42, 44, and 44 (‘ON’ or ‘OFF’). For example, in one embodiment, the IGBT (40 in the first leg 36 or 44 in the second leg 38) connected to the positive (+) terminal of the voltage source with the lower voltaic value is kept continuously ‘ON’ while the IGBTs on the opposing leg are switched ‘ON’/‘OFF’ in order to achieve the power transfer. The rate of this switching may be referred to as the “switching frequency” (fsw). The inverse, or reciprocal, of the switching frequency may be referred to as the “switching period” or “switching cycle” (Tsw). A switch, or IGBT 40-46, may be in the ‘ON’ state for a particular duration (i.e., an “on-period”) within the switching period. The ratio of the ‘ON’ time of a particular switch divided by the switching period may be referred to as the “duty ratio” or “duty cycle.” If considered individually, each duty cycle may be considered to have a beginning point (or leading edge), a mid-point, and a end-point (or trailing edge).
As indicated in
Because the BDC converter 32 is digitally controlled, the operation takes place in discrete time segments (i.e., cycles), which are equal to the switching period (Tsw). During each cycle, the BDC controller 34 (and/or the electronic control system 18) receives the feedback measurements, performs the calculations required by the control algorithm, including those related to the closed loop operation, and outputs duty cycles that control the IGBTs 40-46.
As one of the feedback measurements, the BDC controller 34 samples, or measures, the current (IL) conducting through the switching inductor 48 once per switching cycle. Ideally, the point at which the sampling occurs within the switching cycle corresponds to the point in time where the current flowing through the switching inductor 48 is equal to its average value. Theoretically, because of the quasi-triangular shape of the current, as shown in
As shown in
In the example shown in
Any inductor current value calculated as such will include an error (ε=ΔIL), which corresponds to the difference between the average inductor current ILavg and the instantaneous inductor current IL sampled. The error in the feedback inductor current likewise causes inaccuracy in the current between the two sources (Vdc1 and Vdc2). If this error is not accounted for, the operation of the DC/DC converter system 26, as well as the vehicle 10 as a whole, will be affected. The inaccuracy problem becomes a system issue at low current levels and at zero commanded current, where a small error in the measured feedback current is magnified percentage-wise in respect to the commanded current.
Still referring to
Four operating conditions can be identified for the converter system 26 shown: Vdc1≧Vdc2 with IL≧0, Vdc1≧Vdc2 with IL≦0, Vdc1≦Vdc2 with IL≧0, and Vdc1≦Vdc2 with IL≦0. In each of these situations, an approximation of the slope of the current IL may be expressed as
ΔIL/Δt=(Vdc1−Vdc2)/LS, (1)
as will be appreciated by one skilled in the art. Consequently, the error ΔIL may be expressed as
ΔIL=Δt·(Vdc1−Vdc2)/LS (2)
The corrected feedback current IL′ to be used in the control loop may then be expressed as
IL′=IL+ΔIL (3)
That is, the corrected feedback current is equal to the sum of the measured current value of the switching inductor 48 and the measured current value error. The corrected feedback current IL′ is repeatedly, or continuously, fed into the BDC controller 34 to control the operation of the DC/DC converter system 26.
One advantage of the method and/or system described above is that the accuracy with which the feedback current is determined is improved. As a result, the performance of the power converter system, as well as the motor, and the overall efficiency of the vehicle are improved.
Other embodiments may utilize the method and system described above in different types of automobiles, or in different electrical systems altogether, as it may be implemented in any situation where the voltages of the two sources dynamically change over a wide range. For example, in another embodiment, the battery could be replaced by an ultra-capacitor.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5402053 | Divan et al. | Mar 1995 | A |
5650705 | Hart | Jul 1997 | A |
6608767 | Stanley | Aug 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20080196950 A1 | Aug 2008 | US |