Different entities involved in a clinical trial, such as sponsors (e.g., drug manufacturers), hospitals, doctors (principal investigators), and contract research organizations (“CROs”), are interested in recruiting investigative sites that will deliver good performance for their clinical trial. A site performance index (“SPI”) measures or quantifies the performance of an investigative site (or “site”). A comprehensive and realistic SPI is therefore valuable so that the different entities may recruit and select better performing sites.
Where considered appropriate, reference numerals may be repeated among the drawings to indicate corresponding or analogous elements. Moreover, some of the blocks depicted in the drawings may be combined into a single function.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, it will be understood by those of ordinary skill in the art that the embodiments of the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to obscure the present invention.
Embodiments of the present invention may be used in a variety of applications. Although the present invention is not limited in this respect, the systems and methods disclosed herein may be used in or with clinical drug, biologic, or device trials, monitoring of sales operations and associates, monitoring of retail services and locations, and other data-intensive applications in which users may desire to assess quickly the quality of a site or group of sites. For example, it may be appreciated that the present invention could be utilized in sales, retail, or franchise organizations, wherein the quality of data generated by remote offices or individuals in compliance or conjunction with a centralized office or rules could be monitored or assessed.
A clinical trial (also called a clinical study, an interventional study, or, as used herein, a study or a trial) is typically directed to a specific therapeutic area, and may be categorized by phase. In a Phase I clinical trial, the drug, biologic, or device may be tested on approximately 20 to 100 volunteers (also known as patients or subjects) in order to gather clinical data on safety and dosage; in Phase II, clinical data may be gathered from approximately 100 to 500 volunteers in order to gather clinical data on efficacy and side-effects; and in Phase III, clinical data may be gathered from approximately 500 to 3000 or more volunteers in order to collect definitive evidence of safety and efficacy to obtain marketing approval of the drug or device.
A pharmaceutical company, an academic research center, a federal agency, or a clinical research center typically sponsors a clinical trial. The sponsor or its CRO (a person or an organization—commercial, academic, or other—contracted by the sponsor to perform one or more of a sponsor's trial-related duties and functions) generally selects the locations, known as investigative sites, at which the clinical trial will be conducted. Sites typically may be hospitals, clinics, universities, doctors' offices, research institutions, or corporate trial locations. Over the course of a clinical trial, the principal investigator (“PI”) or other personnel at the site are typically responsible for recording data, including information about the subjects and clinical data. Data captured by the PI or other site personnel are entered manually into case report forms (CRFs) or into electronic CRFs (eCRFs) hosted on electronic data capture (EDC) systems. However, clinical data collected for the purpose of the clinical trial is typically first recorded into a site-specific source such as a paper-based patient chart or electronic medical record system prior to being transcribed into the EDC system being utilized for the clinical trial. Such manual transcription may lead to accidental data errors. In addition, a site may be fraudulently entering incorrect clinical data or otherwise deviating from good clinical practice or from the study protocol.
Entities such as sponsors and CROs may be looking for investigative sites that will deliver the desirable performance or results for clinical trials. Thus, sites may be selected based on a variety of selection factors. Examples of such factors may include whether the potential site has a key opinion leader (“KOL”) as a principal investigator, whether the site has a large patient population, and whether the per-patient budget proposed by the site is low. Information relating to such factors may be self-reported through questionnaires, or may be available publicly, sometimes through government sources. It may be beneficial for the sponsor to quantify and measure the factors and the overall appropriateness or desirability of potential sites in the selection process.
A site performance index (“SPI”) may be utilized to quantify the appropriateness or desirability of a potential site to be selected. An SPI may take into account specific factors that are relevant to the site selection to achieve the desirable performance for the clinical trial. A site performance index apparatus may be a rating system that scores investigators/sites based on numerous factors and performance metrics, by taking advantage of system generated information, which may be real time and performance related, while incorporating other site profile factors (e.g. therapeutic area) to create a more complete picture of the investigator/site.
An SPI may be determined by assigning a score to each of the factors considered in the site selection process. However, such a scoring scheme does not allow the interested party, such as a sponsor, to prioritize a particular factor or to assign a higher weight to a factor in determining the SPI, as the priority factors may not come from a static profile, but rather may be derived through use of typical eClinical systems. In other words, such an SPI methodology does not allow those searching for the most desirable sites to weigh the importance of the various factors in an easy, automated way based on the interested party's most desirable operational requirements. For example, Study A and Study B may have very different operational requirements:
Each trial may have its own criteria and priorities associated with those criteria, which may make a site more or less suitable for the particular trial. These priority factors may come from a static site profile. These priority factors may also be derived through the use of an eClinical system.
A method and a system for determining a useful SPI have been developed by incorporating the flexibility to assign different weights to multiple site performance factors, which also may be associated with factor categories such as financial, subject pool and enrollment history, timeliness, quality, and experience, among others. The site performance factors associated with these categories may include:
Financial
Subject Pool and Enrollment History
Timeliness
Quality
Experience
The site performance factors may be filtered based on other factors (“filtering factors”) such as type of site (whether it is a clinical research center, private practice, or academic), geography (based on countries or U.S. metropolitan regions), the claimed patient population for a given indication, clinical trial experience (either in the therapeutic area or based on indications), and the specialty of the principal investigator.
Non-clinical data may be taken into account in determining an SPI. Such non-clinical data may include metadata present in electronic systems employed in clinical trials. An example of such metadata is the average time spent by a candidate site to respond to query.
The factors may be sourced through e-clinical systems, such as EDC systems, clinical trial management systems (“CTMS”), interactive voice/web response systems (“IxRS”), budgeting systems, and grant management systems. In another embodiment, the factors may be manually entered. In yet another embodiment, publicly available data, which may include Form 1572 filings, may be considered for use.
Embodiments of the present invention may include development of metrics concerning dynamically extracting and associating site data with site performance factors, assigning a numerical weight to each site performance factor calculated by a user and/or by the system, and filtering site data based on site performance factors. Other embodiments may aggregate real-time and historic site data in order to generate a site performance index in real time based on the weighted site performance factors.
The relative importance given to any parameter may be made variable by allowing the user to apply a weighting to each factor. The SPI may range from 0 to 100, where a higher score may indicate a better fit for the user's requirements. This may provide the site recruiter with more useful data to aid the selection process than a standard profile (e.g., therapeutic area of expertise, years of experience, competing trials) may offer.
Reference is now made to
Besides the operations shown in
In determining SPI 95, a maximum number of points (or score) assigned for each factor category (“category”) may be determined, either by the system or by a user. The maximum score assigned for each category may be the total of all of the maximum scores assigned to all of the factors within that category.
The maximum score assigned for each factor within a particular category may also be determined, again either by the system or by a user. The maximum score assigned for each factor may be the highest possible (maximum) score that a particular factor may receive. Furthermore, the sum of all of the maximum scores assigned to all of the factors may be the maximum score assigned for a particular category that includes all such factors.
The score obtained for each category for a particular site may be determined by, for example, a pre-determined scoring scheme for each factor, which is illustrated below. The total of all the points obtained for all factors may be determined in order to calculate SPI 95. Such a determination may be performed, for example, according to the following summation:
Σwifi
where wi is the weighted site performance factor, which may correspond to the score for factor fi. Initially, the weighting, which may be the score for each category, may be selected by the user, where the maximum total across all categories is 100 points or 100%. In another embodiment, the weighting for a specific site performance factor may be automatically generated by the system, or may default to a system-designated default value.
The tables in
Referring to the table in
In
In some cases, the user may be able to input more than just factors and weights, but may also be able to define the values used to distinguish among factor choices. For example, in
The factors within the Subject Pool and Enrollment History category scored 34 points out of the maximum 60 points. Referring back to
Similarly, the factors within the Timeliness category scored 13 points out of the maximum 15 points, the factors within the Quality category scored 1 point out of the maximum 5 points, and the factors within the Experience category scored 9 points out of the maximum 15 points. Referring back to the factor choice values shown in
The factor categories are not limited to the ones shown in
More specifically, site data filter 501 separates site 112 data into a type of data used to evaluate each factor, e.g., financial data, enrollment data, timeliness data, quality data, and experience data. Each of these data streams may be input to its respective factor category analyzer. For example, enrollment data may be input to enrollment analyzer 520, which then determines where the data falls statistically based on the enrollment factors used. For the factor “Site meets certain percentage of the Enrollment Target>50% of the time” (Enrollment Factor 2), enrollment analyzer 520 determines the enrollment targets for site 112 for each of the trials in which it has been involved and how well the site met the enrollment targets in those trials, and then determines in which percentile site 112's enrollment target falls>50% of the time. Other factors, such as Enrollment Factor 4, “Average FPFV LPFV compared to industry benchmark,” may use industry data 25 in addition to site and trial data.
Referring back to Enrollment Factor 2, in order to score the enrollment target percentile, the user or the system would assign a value for each percentile or grouping of percentiles—in
In
The blocks shown in
The calculated SPI, based on these factors as well as factors not yet recognized, may be used to compare with the SPI of other sites to aid in site selection and site retention. An entity using the system to calculate the SPI may be able to quickly compare the SPIs for the different sites, and to select the site with the highest SPI. Such a comprehensive and realistic SPI includes more than just identifying sites that enroll an expected number of trial subjects or have investigators who, based on insurance claim data, may appear to treat the target patient population. Such a realistic SPI may also include more than just profile factors such as therapeutic area, years of experience, and facility type. The SPI is based on specific criteria that may be customized to take into account the criteria most important to the user. A further benefit of the calculated SPI of the present invention is that an entity involved in a clinical trial may be better equipped to understand the performance of the site, which may enable the entity to work with the site to increase the SPI.
Aspects of the present invention may be embodied in the form of a system, a computer program product, or a method. Similarly, aspects of the present invention may be embodied as hardware, software or a combination of both. Aspects of the present invention may be embodied as a computer program product saved on one or more computer-readable media in the form of computer-readable program code embodied thereon.
For example, the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. A computer-readable storage medium may be, for example, an electronic, optical, magnetic, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof.
Referring to the data pre-processor and analyzer 50 and SPI calculator 100, in an embodiment, these modules may include a general-purpose computer and may have an internal or external memory for storing data and programs. The general-purpose computer may include a central processing unit (CPU) for executing instructions in response to commands, and a communication device for sending and receiving data.
In one embodiment, the network described above that may be used to upload data may include a communications interface that allows software and data to be transferred between a user's device, a processor, the other components shown in system 10, and ancillary systems such as EDC and CTMS. In this document, the terms “computer program medium” and “computer-readable medium” are generally used to refer to media such as a removable storage device, a disk capable of installation in a disk drive, and signals on a channel. These computer program products may provide software or program instructions to a computer system. The site performance index application may be installed on a user's mobile device.
Computer programs that may be associated with applications of site performance index calculator 100 (called computer control logic) may be stored in the main memory or secondary memory. Such computer programs may also be received via a communications interface. Such computer programs, when executed, may enable the computer system to perform the features as discussed herein. In particular, the computer programs, when executed, may enable the processor to perform the described techniques. Accordingly, such computer programs may represent controllers of the computer system.
In one embodiment, the computer-based methods may be accessed or implemented over the World Wide Web by providing access via a web page to the methods described herein. Accordingly, the web page may be identified by a Uniform Resource Locator (URL). The URL may denote both a server and a particular file or page on the server. In this embodiment, it is envisioned that a client computer system, which may be a user's device (not shown), may interact with a browser to select a particular URL, which in turn may cause the browser to send a request for that URL or page to the server identified in the URL. Typically, the server may respond to the request by retrieving the requested page and transmitting the data for that page back to the requesting client computer system, which may be the user's device (the client/server interaction may be typically performed in accordance with the hypertext transport protocol or HTTP). The selected page may then be displayed to the user on the user's display screen. The user's device may then cause the server containing a computer program to launch an application, for example, to perform an analysis according to the described techniques. In another implementation, the server may download an application to be run on the user's device to perform an analysis according to the described techniques.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.