Method and system for determining analyte levels

Information

  • Patent Grant
  • 10991456
  • Patent Number
    10,991,456
  • Date Filed
    Wednesday, January 18, 2017
    7 years ago
  • Date Issued
    Tuesday, April 27, 2021
    3 years ago
Abstract
Systems, methods, and apparatus are provided for analyte level estimation to improve accuracy thereof. Systems include sensor electronics operatively coupled to an analyte sensor configured for contact with a user's biofluid. A user interface device is configured for communication with the sensor electronics and configured to determine a predicted state estimate using exogenous measurement data and a past state estimate and, thereafter, determine a corrected state estimate, including an estimated analyte level, using the predicted state estimate and current analyte sensor measurement data.
Description
BACKGROUND

Analyte, e.g., glucose monitoring systems including continuous and discrete monitoring systems generally include a small, lightweight battery powered and microprocessor controlled system which is configured to detect signals proportional to the corresponding measured glucose levels using an electrometer, and RF signals to transmit the collected data. One aspect of certain analyte monitoring systems include a transcutaneous or subcutaneous analyte sensor configuration which is, for example, partially mounted on the skin of a subject whose analyte level is to be monitored. The sensor cell may use a two or three-electrode (work, reference and counter electrodes) configuration driven by a controlled potential (potentiostat) analog circuit connected through a contact system.


The analyte sensor may be configured so that a portion thereof is placed under the skin of the patient so as to detect the analyte levels of the patient, and another portion of segment of the analyte sensor that is in communication with the transmitter unit. The transmitter unit is configured to transmit the analyte levels detected by the sensor over a wireless communication link such as an RF (radio frequency) communication link to a receiver/monitor unit. The receiver/monitor unit performs data analysis, among others on the received analyte levels to generate information pertaining to the monitored analyte levels.


With increasing use of pump therapy for Type 1 diabetic patients, young and old alike, the importance of controlling the infusion device such as external infusion pumps is evident. Indeed, presently available external infusion devices typically include an input mechanism such as buttons through which the patient may program and control the infusion device. Such infusion devices also typically include a user interface such as a display which is configured to display information relevant to the patient's infusion progress, status of the various components of the infusion device, as well as other programmable information such as patient specific basal profiles.


In the course of using the analyte monitoring system and the infusion device, data associated with a patient's physiological condition such as monitored analyte levels, insulin dosage information, for example, may be stored and processed.


SUMMARY

In one embodiment, a computer implemented method including receiving one or more parameters associated with a medication delivery profile, receiving one or more parameters associated with a physiological condition, and updating the received one or more parameters associated with the physiological condition based at least in part on the received one or more parameters associated with the medication delivery profile is disclosed.


These and other objects, features and advantages of the present disclosure will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a data monitoring and management system for practicing one or more embodiments of the present disclosure;



FIG. 2 is a block diagram of the transmitter unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present disclosure;



FIG. 3 is a block diagram of the receiver/monitor unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present disclosure;



FIGS. 4A-4B illustrate a perspective view and a cross sectional view, respectively of an analyte sensor in accordance with one embodiment of the present disclosure;



FIG. 5 is a flowchart illustrating a rate variance filtering routine in accordance with one embodiment of the present disclosure;



FIG. 6 is a flowchart illustrating glucose level estimation routine in accordance with one embodiment of the present disclosure;



FIG. 7 is a flowchart illustrating the algorithm to estimate glucose level of FIG. 6 in accordance with one embodiment of the present disclosure; and



FIG. 8 is a flowchart illustrating the algorithm to estimate glucose level of FIG. 6 in accordance with another embodiment of the present disclosure.





DETAILED DESCRIPTION

As described in further detail below, in accordance with the various embodiments of the present disclosure, there is provided a method and apparatus for providing improved glucose level estimation in an analyte monitoring device or system including medication delivery device such as an infusion pump.



FIG. 1 illustrates a data monitoring and management system such as, for example, analyte (e.g., glucose) monitoring system 100 in accordance with one embodiment of the present disclosure. The subject invention is further described primarily with respect to a glucose monitoring system for convenience and such description is in no way intended to limit the scope of the invention. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes, e.g., lactate, and the like.


Analytes that may be monitored include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored.


The analyte monitoring system 100 includes a sensor 101, a transmitter unit 102 coupled to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the transmitter unit 102 via a communication link 103. The primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the primary receiver unit 104. Moreover, the data processing terminal in one embodiment may be configured to receive data directly from the transmitter unit 102 via a communication link which may optionally be configured for bi-directional communication.


Also shown in FIG. 1 is a secondary receiver unit 106 which is operatively coupled to the communication link and configured to receive data transmitted from the transmitter unit 102. Moreover, as shown in the Figure, the secondary receiver unit 106 is configured to communicate with the primary receiver unit 104 as well as the data processing terminal 105. Indeed, the secondary receiver unit 106 may be configured for bi-directional wireless communication with each of the primary receiver unit 104 and the data processing terminal 105. As discussed in further detail below, in one embodiment of the present disclosure, the secondary receiver unit 106 may be configured to include a limited number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may be configured substantially in a smaller compact housing or embodied in a device such as a wrist watch, for example. Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functionality as the primary receiver unit 104, and may be configured to be used in conjunction with a docking cradle unit for placement by bedside, for night time monitoring, and/or bi-directional communication device.


Only one sensor 101, transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include one or more sensor 101, transmitter unit 102, communication link 103, and data processing terminal 105. Moreover, within the scope of the present disclosure, the analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each device is configured to be uniquely identified by each of the other devices in the system so that communication conflict is readily resolved between the various components within the analyte monitoring system 100.


In one embodiment of the present disclosure, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In one embodiment, the transmitter unit 102 is coupled to the sensor 101 so that both devices are positioned on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously under the skin layer of the user. The transmitter unit 102 performs data processing such as filtering and encoding on data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103.


In one embodiment, the analyte monitoring system 100 is configured as a one-way RF communication path from the transmitter unit 102 to the primary receiver unit 104. In such embodiment, the transmitter unit 102 transmits the sampled data signals received from the sensor 101 without acknowledgement from the primary receiver unit 104 that the transmitted sampled data signals have been received. For example, the transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the primary receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring system 100 may be configured with a bi-directional RF (or otherwise) communication between the transmitter unit 102 and the primary receiver unit 104.


Additionally, in one aspect, the primary receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the primary receiver unit 104 is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.


In operation, upon completing the power-on procedure, the primary receiver unit 104 is configured to detect the presence of the transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the transmitter unit 102 or a predetermined transmitter identification information. Upon successful synchronization with the corresponding transmitter unit 102, the primary receiver unit 104 is configured to begin receiving from the transmitter unit 102 data signals corresponding to the user's detected analyte level. More specifically, the primary receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.


Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs)), and the like, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected analyte level of the user.


Within the scope of the present disclosure, the data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the transmitter unit 102.


Additionally, the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may each be configured for bi-directional wireless communication such that each of the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may be configured to communicate (that is, transmit data to and receive data from) with each other via a wireless communication link. More specifically, the data processing terminal 105 may in one embodiment be configured to receive data directly from the transmitter unit 102 via a communication link, where the communication link, as described above, may be configured for bi-directional communication.


In this embodiment, the data processing terminal 105, which may include an insulin pump, may be configured to receive the analyte signals from the transmitter unit 102, and thus, incorporate the functions of the receiver including data processing for managing the patient's insulin therapy and analyte monitoring. In one embodiment, the communication link 103 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements) while avoiding potential data collision and interference.



FIG. 2 is a block diagram of the transmitter of the data monitoring and detection system shown in FIG. 1 in accordance with one embodiment of the present disclosure. Referring to the Figure, the transmitter unit 102 in one embodiment includes an analog interface 201 configured to communicate with the sensor 101 (FIG. 1), a user input 202, and a temperature detection section 203, each of which is operatively coupled to a transmitter processor 204 such as a central processing unit (CPU).


Further shown in FIG. 2 are a transmitter serial communication section 205 and an RF transmitter 206, each of which is also operatively coupled to the transmitter processor 204. Moreover, a power supply 207 such as a battery is also provided in the transmitter unit 102 to provide the necessary power for the transmitter unit 102. Additionally, as can be seen from the Figure, clock 208 is provided to, among others, supply real time information to the transmitter processor 204.


As can be seen from FIG. 2, the sensor 101 (FIG. 1) is provided four contacts, three of which are electrodes—work electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213, each operatively coupled to the analog interface 201 of the transmitter unit 102. In one embodiment, each of the work electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213 may be made using a conductive material that is either printed or etched, for example, such as carbon which may be printed, or metal foil (e.g., gold) which may be etched, or alternatively provided on a substrate material using laser or photolithography.


In one embodiment, a unidirectional input path is established from the sensor 101 (FIG. 1) and/or manufacturing and testing equipment to the analog interface 201 of the transmitter unit 102, while a unidirectional output is established from the output of the RF transmitter 206 of the transmitter unit 102 for transmission to the primary receiver unit 104. In this manner, a data path is shown in FIG. 2 between the aforementioned unidirectional input and output via a dedicated link 209 from the analog interface 201 to serial communication section 205, thereafter to the processor 204, and then to the RF transmitter 206. As such, in one embodiment, via the data path described above, the transmitter unit 102 is configured to transmit to the primary receiver unit 104 (FIG. 1), via the communication link 103 (FIG. 1), processed and encoded data signals received from the sensor 101 (FIG. 1). Additionally, the unidirectional communication data path between the analog interface 201 and the RF transmitter 206 discussed above allows for the configuration of the transmitter unit 102 for operation upon completion of the manufacturing process as well as for direct communication for diagnostic and testing purposes.


As discussed above, the transmitter processor 204 is configured to transmit control signals to the various sections of the transmitter unit 102 during the operation of the transmitter unit 102. In one embodiment, the transmitter processor 204 also includes a memory (not shown) for storing data such as the identification information for the transmitter unit 102, as well as the data signals received from the sensor 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the transmitter processor 204. Furthermore, the power supply 207 may include a commercially available battery.


The transmitter unit 102 is also configured such that the power supply section 207 is capable of providing power to the transmitter for a minimum of about three months of continuous operation after having been stored for about eighteen months in a low-power (non-operating) mode. In one embodiment, this may be achieved by the transmitter processor 204 operating in low power modes in the non-operating state, for example, drawing no more than approximately 1 μA of current. Indeed, in one embodiment, the final step during the manufacturing process of the transmitter unit 102 may place the transmitter unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the transmitter unit 102 may be significantly improved. Moreover, as shown in FIG. 2, while the power supply unit 207 is shown as coupled to the processor 204, and as such, the processor 204 is configured to provide control of the power supply unit 207, it should be noted that within the scope of the present disclosure, the power supply unit 207 is configured to provide the necessary power to each of the components of the transmitter unit 102 shown in FIG. 2.


Referring back to FIG. 2, the power supply section 207 of the transmitter unit 102 in one embodiment may include a rechargeable battery unit that may be recharged by a separate power supply recharging unit (for example, provided in the receiver unit 104) so that the transmitter unit 102 may be powered for a longer period of usage time. Moreover, in one embodiment, the transmitter unit 102 may be configured without a battery in the power supply section 207, in which case the transmitter unit 102 may be configured to receive power from an external power supply source (for example, a battery) as discussed in further detail below.


Referring yet again to FIG. 2, the temperature detection section 203 of the transmitter unit 102 is configured to monitor the temperature of the skin near the sensor insertion site. The temperature reading is used to adjust the analyte readings obtained from the analog interface 201. The RF transmitter 206 of the transmitter unit 102 may be configured for operation in the frequency band of 315 MHz to 322 MHz, for example, in the United States. Further, in one embodiment, the RF transmitter 206 is configured to modulate the carrier frequency by performing Frequency Shift Keying and Manchester encoding. In one embodiment, the data transmission rate is 19,200 symbols per second, with a minimum transmission range for communication with the primary receiver unit 104.


Referring yet again to FIG. 2, also shown is a leak detection circuit 214 coupled to the guard contact (G) 211 and the processor 204 in the transmitter unit 102 of the data monitoring and management system 100. The leak detection circuit 214 in accordance with one embodiment of the present disclosure may be configured to detect leakage current in the sensor 101 to determine whether the measured sensor data is corrupt or whether the measured data from the sensor 101 is accurate.



FIG. 3 is a block diagram of the receiver/monitor unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present disclosure. Referring to FIG. 3, the primary receiver unit 104 includes a blood glucose test strip interface 301, an RF receiver 302, an input 303, a temperature detection section 304, and a clock 305, each of which is operatively coupled to a receiver processor 307. As can be further seen from the Figure, the primary receiver unit 104 also includes a power supply 306 operatively coupled to a power conversion and monitoring section 308. Further, the power conversion and monitoring section 308 is also coupled to the receiver processor 307. Moreover, also shown are a receiver serial communication section 309, and an output 310, each operatively coupled to the receiver processor 307.


In one embodiment, the test strip interface 301 includes a glucose level testing portion to receive a manual insertion of a glucose test strip, and thereby determine and display the glucose level of the test strip on the output 310 of the primary receiver unit 104. This manual testing of glucose can be used to calibrate sensor 101. The RF receiver 302 is configured to communicate, via the communication link 103 (FIG. 1) with the RF transmitter 206 of the transmitter unit 102, to receive encoded data signals from the transmitter unit 102 for, among others, signal mixing, demodulation, and other data processing. The input 303 of the primary receiver unit 104 is configured to allow the user to enter information into the primary receiver unit 104 as needed. In one aspect, the input 303 may include one or more keys of a keypad, a touch-sensitive screen, or a voice-activated input command unit. The temperature detection section 304 is configured to provide temperature information of the primary receiver unit 104 to the receiver processor 307, while the clock 305 provides, among others, real time information to the receiver processor 307.


Each of the various components of the primary receiver unit 104 shown in FIG. 3 is powered by the power supply 306 which, in one embodiment, includes a battery. Furthermore, the power conversion and monitoring section 308 is configured to monitor the power usage by the various components in the primary receiver unit 104 for effective power management and to alert the user, for example, in the event of power usage which renders the primary receiver unit 104 in sub-optimal operating conditions. An example of such sub-optimal operating condition may include, for example, operating the vibration output mode (as discussed below) for a period of time thus substantially draining the power supply 306 while the processor 307 (thus, the primary receiver unit 104) is turned on. Moreover, the power conversion and monitoring section 308 may additionally be configured to include a reverse polarity protection circuit such as a field effect transistor (FET) configured as a battery activated switch.


The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 104 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones presently available. In a further embodiment, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.


Referring back to FIG. 3, the primary receiver unit 104 in one embodiment may also include a storage section such as a programmable, non-volatile memory device as part of the processor 307, or provided separately in the primary receiver unit 104, operatively coupled to the processor 307. The processor 307 is further configured to perform Manchester decoding as well as error detection and correction upon the encoded data signals received from the transmitter unit 102 via the communication link 103.


In a further embodiment, the one or more of the transmitter unit 102, the primary receiver unit 104, secondary receiver unit 106, or the data processing terminal/infusion section 105 may be configured to receive the blood glucose value wirelessly over a communication link from, for example, a glucose meter. In still a further embodiment, the user or patient manipulating or using the analyte monitoring system 100 (FIG. 1) may manually input the blood glucose value using, for example, a user interface (for example, a keyboard, keypad, and the like) incorporated in the one or more of the transmitter unit 102, the primary receiver unit 104, secondary receiver unit 106, or the data processing terminal/infusion section 105.


Additional detailed description of the continuous analyte monitoring system, its various components including the functional descriptions of the transmitter are provided in U.S. Pat. No. 6,175,752 issued Jan. 16, 2001 entitled “Analyte Monitoring Device and Methods of Use”, and in U.S. application Ser. No. 10/745,878 filed Dec. 26, 2003, now U.S. Pat. No. 7,811,231, entitled “Continuous Glucose Monitoring System and Methods of Use”, each assigned to the Assignee of the present application.



FIGS. 4A-4B illustrate a perspective view and a cross sectional view, respectively of an analyte sensor in accordance with one embodiment of the present disclosure. Referring to FIG. 4A, a perspective view of a sensor 400, the major portion of which is above the surface of the skin 410, with an insertion tip 430 penetrating through the skin and into the subcutaneous space 420 in contact with the user's biofluid such as interstitial fluid. Contact portions of a working electrode 401, a reference electrode 402, and a counter electrode 403 can be seen on the portion of the sensor 400 situated above the skin surface 410. Working electrode 401, a reference electrode 402, and a counter electrode 403 can be seen at the end of the insertion tip 430.


Referring now to FIG. 4B, a cross sectional view of the sensor 400 in one embodiment is shown. In particular, it can be seen that the various electrodes of the sensor 400 as well as the substrate and the dielectric layers are provided in a stacked or layered configuration or construction. For example, as shown in FIG. 4B, in one aspect, the sensor 400 (such as the sensor 101FIG. 1), includes a substrate layer 404, and a first conducting layer 401 such as a carbon trace disposed on at least a portion of the substrate layer 404, and which may comprise the working electrode. Also shown disposed on at least a portion of the first conducting layer 401 is a sensing layer 408.


Referring back to FIG. 4B, a first insulation layer such as a first dielectric layer 405 is disposed or stacked on at least a portion of the first conducting layer 401, and further, a second conducting layer 409 such as another carbon trace may be disposed or stacked on top of at least a portion of the first insulation layer (or dielectric layer) 405. As shown in FIG. 4B, the second conducting layer 409 may comprise the reference electrode 402, and in one aspect, may include a layer of silver/silver chloride (Ag/AgCl).


Referring still again to FIG. 4B, a second insulation layer 406 such as a dielectric layer in one embodiment may be disposed or stacked on at least a portion of the second conducting layer 409. Further, a third conducting layer 403 which may include carbon trace and that may comprise the counter electrode 403 may in one embodiment be disposed on at least a portion of the second insulation layer 406. Finally, a third insulation layer 407 is disposed or stacked on at least a portion of the third conducting layer 403. In this manner, the sensor 400 may be configured in a stacked or layered construction or configuration such that at least a portion of each of the conducting layers is separated by a respective insulation layer (for example, a dielectric layer).


Additionally, within the scope of the present disclosure, some or all of the electrodes 401, 402, 403 may be provided on the same side of the substrate 404 in a stacked construction as described above, or alternatively, may be provided in a co-planar manner such that each electrode is disposed on the same plane on the substrate 404, however, with a dielectric material or insulation material disposed between the conducting layers/electrodes. Furthermore, in still another aspect of the present disclosure, the one or more conducting layers such as the electrodes 401, 402, 403 may be disposed on opposing sides of the substrate 404.


Referring back to the Figures, in one embodiment, the transmitter unit 102 (FIG. 1) is configured to detect the current signal from the sensor 101 (FIG. 1) and the skin temperature near the sensor 101, which are preprocessed by, for example, by the transmitter processor 204 (FIG. 2) and transmitted to the receiver unit (for example, the primary receiver unit 104 (FIG. 1)) periodically at a predetermined time interval, such as for example, but not limited to, once per minute, once every two minutes, once every five minutes, or once every ten minutes. Additionally, the transmitter unit 102 may be configured to perform sensor insertion detection and data quality analysis, information pertaining to which are also transmitted to the receiver unit 104 periodically at the predetermined time interval. In turn, the receiver unit 104 may be configured to perform, for example, skin temperature compensation as well as calibration of the sensor data received from the transmitter unit 102.


For example, in one aspect, the transmitter unit 102 may be configured to oversample the sensor signal at a nominal rate of four samples per second, which allows the analyte anti-aliasing filter in the transmitter unit 102 to attenuate noise (for example, due to effects resulting from motion or movement of the sensor after placement) at frequencies above 2 Hz. More specifically, in one embodiment, the transmitter processor 204 may be configured to include a digital filter to reduce aliasing noise when decimating the four Hz sampled sensor data to once per minute samples for transmission to the receiver unit 104. As discussed in further detail below, in one aspect, a two stage Kaiser FIR filter may be used to perform the digital filtering for anti-aliasing. While Kaiser FIR filter may be used for digital filtering of the sensor signals, within the scope of the present disclosure, other suitable filters may be used to filter the sensor signals.


In one aspect, the temperature measurement section 203 of the transmitter unit 102 may be configured to measure once per minute the on skin temperature near the analyte sensor at the end of the minute sampling cycle of the sensor signal. Within the scope of the present disclosure, different sample rates may be used which may include, for example, but not limited to, measuring the on skin temperature for each 30 second periods, each two minute periods, and the like. Additionally, as discussed above, the transmitter unit 102 may be configured to detect sensor insertion, sensor signal settling after sensor insertion, and sensor removal, in addition to detecting for sensor—transmitter system failure modes and sensor signal data integrity. Again, this information is transmitted periodically by the transmitter unit 102 to the receiver unit 104 along with the sampled sensor signals at the predetermined time intervals.


Referring again to the Figures, as the analyte sensor measurements are affected by the temperature of the tissue around the transcutaneously positioned sensor 101, in one aspect, compensation of the temperature variations and effects on the sensor signals are provided for determining the corresponding glucose value. Moreover, the ambient temperature around the sensor 101 may affect the accuracy of the on skin temperature measurement and ultimately the glucose value determined from the sensor signals. Accordingly, in one aspect, a second temperature sensor is provided in the transmitter unit 102 away from the on skin temperature sensor (for example, physically away from the temperature measurement section 203 of the transmitter unit 102), so as to provide compensation or correction of the on skin temperature measurements due to the ambient temperature effects. In this manner, the accuracy of the estimated glucose value corresponding to the sensor signals may be attained.


In one aspect, the processor 204 of the transmitter unit 102 may be configured to include the second temperature sensor, and which is located closer to the ambient thermal source within the transmitter unit 102. In other embodiments, the second temperature sensor may be located at a different location within the transmitter unit 102 housing where the ambient temperature within the housing of the transmitter unit 102 may be accurately determined.


Referring again to FIG. 2, the processor 204 of the transmitter unit 102 may include a digital anti-aliasing filter. Using analog anti-aliasing filters for a one minute measurement data sample rate would require a large capacitor in the transmitter unit 102 design, and which in turn impacts the size of the transmitter unit 102. As such, in one aspect, the sensor signals may be oversampled (for example, at a rate of 4 times per second), and then the data is digitally decimated to derive a one-minute sample rate.


As discussed above, in one aspect, the digital anti-aliasing filter may be used to remove, for example, signal artifacts or otherwise undesirable aliasing effects on the sampled digital signals received from the analog interface 201 of the transmitter unit 102. For example, in one aspect, the digital anti-aliasing filter may be used to accommodate decimation of the sensor data from approximately four Hz samples to one-minute samples. In one aspect, a two stage FIR filter may be used for the digital anti-aliasing filter, and which includes improved response time, pass band and stop band properties.


While the use of FIR filter, and in particular the use of Kaiser FIR filter, is within the scope of the present disclosure, other suitable filters, such as FIR filters with different weighting schemes or IIR filters, may be used.


Referring yet again to the Figures, the transmitter unit 102 may be configured in one embodiment to periodically perform data quality checks including error condition verifications and potential error condition detections, and also to transmit the relevant information related to one or more data quality, error condition or potential error condition detection to the receiver unit 104 with the transmission of the monitored sensor data. For example, in one aspect, a state machine may be used in conjunction with the transmitter unit 102 and which may be configured to be updated four times per second, the results of which are transmitted to the receiver unit 104 every minute.


In particular, using the state machine, the transmitter unit 102 may be configured to detect one or more states that may indicate when a sensor is inserted, when a sensor is removed from the user, and further, may additionally be configured to perform related data quality checks so as to determine when a new sensor has been inserted or transcutaneously positioned under the skin layer of the user and has settled in the inserted state such that the data transmitted from the transmitter unit 102 does not compromise the integrity of signal processing performed by the receiver unit 104 due to, for example, signal transients resulting from the sensor insertion.


That is, when the transmitter unit 102 detects low or no signal from the sensor 101 which is followed by detected signals from the sensor 101 that is above a given signal, the processor 204 may be configured to identify such transition is monitored signal levels and associate with a potential sensor insertion state. Alternatively, the transmitter unit 102 may be configured to detect the signal level above the other predetermined threshold level, which is followed by the detection of the signal level from the sensor 101 that falls below the predetermined threshold level. In such a case, the processor 204 may be configured to associate or identify such transition or condition in the monitored signal levels as a potential sensor removal state.


Accordingly, when either of potential sensor insertion state or potential sensor removal state is detected by the transmitter unit 102, this information is transmitted to the receiver unit 104, and in turn, the receiver unit may be configured to prompt the user for confirmation of either of the detected potential sensor related state. In another aspect, the sensor insertion state or potential sensor removal state may be detected or determined by the receiver unit based on one or more signals received from the transmitter unit 102. For example, similar to an alarm condition or a notification to the user, the receiver unit 104 may be configured to display a request or a prompt on the display or an output unit of the receiver unit 104 a text and/or other suitable notification message to inform the user to confirm the state of the sensor 101.


In this manner, in one aspect, when the monitored signal from the sensor 101 crosses a transition level for a (for example, from no or low signal level to a high signal level, or vice versa), the transmitter unit 102 may be configured to generate an appropriate output data associated with the sensor signal transition, for transmission to the receiver unit 104 (FIG. 1). Additionally, as discussed in further detail below, in another embodiment, the determination of whether the sensor 101 has crossed a transition level may be determined by the receiver/monitor unit 104/106 based, at least in part on the one or more signals received from the transmitter unit 102.


In a further embodiment, based on the detected or monitored signal transition, the receiver/monitor unit may be configured to determine the corresponding sensor state without relying upon the user input or confirmation signal associated with whether the sensor is dislocated or removed from the insertion site, or otherwise, operating properly.


Referring again to the Figures, in one aspect, the transmitter unit 102 may be configured to perform one or more periodic or routine data quality check or verification before transmitting the data packet to the receiver/monitor unit 104/106. For example, in one aspect, for each data transmission (e.g., every 60 seconds, or some other predetermined transmission time interval), the transmitter data quality flags in the data packet are reset, and then it is determined whether any data field in the transmission data packet includes an error flag. If one error flag is detected, then in one aspect, the entire data packet may be considered corrupt, and this determination is transmitted to the receiver/monitor unit 104/106. Alternatively, the determination that the entire data packet is corrupt may be performed by the receiver/monitor unit 104/106. Accordingly, in one aspect, when at least one data quality check fails in the transmitter data packet, the entire packet is deemed to be in error, and the associated monitored analyte level is discarded, and not further processed by the receiver/monitor unit 104/106.


In another aspect, the data quality check in the transmitter unit 102 data packet may be performed so as to identify each error flag in the data packet, and those identified error flags are transmitted to the receiver/monitor unit 104/106 in addition to the associated monitored analyte level information. In this manner, in one aspect, if the error flag is detected in the transmitter data packet which is not relevant to the accuracy of the data associated with the monitored analyte level, the error indication is flagged and transmitted to the receiver/monitor unit 104/106 in addition to the data indicating the monitored analyte level.


In one aspect, examples of error condition that may be detected or flagged in the transmitter unit 102 data packet include sensor connection fault verification by, for example, determining, among others, whether the counter electrode voltage signal is within a predetermined range, resolution of the data associated with the monitored analyte level, transmitter unit temperature (ambient and/or on-skin temperature) out of range, and the like. As discussed above, the data quality check in the transmitter unit 102 may be performed serially, such that detection of an error condition or an error flag renders the entire data packet invalid or deemed corrupt. In this case, such data is reported as including error to the receiver/monitor unit 104/106, but not used to process the associated monitored analyte level. In another aspect, all data quality fields in the data packet of the transmitter unit 102 may be checked for error flags, and if there are error flags detected, the indication of the detected error flags is transmitted with the data packet to the receiver/monitor unit 104/106 for further processing.


In one embodiment, on the receiver/monitor unit 104/106 side, for each periodic data packet received (for example every 60 seconds or some other predetermined time interval), the receiver/monitor unit 104/106 may be configured to receive the raw glucose data including any data quality check flags from the transmitter unit 102, and to apply temperature compensation and/or calibration to the raw data to determine the corresponding glucose data (with any data quality flags as may have been identified). The unfiltered, temperature compensated and/or calibrated glucose data is stored along with any data quality flags in a FIFO buffer (including, for example, any invalid data identifier). Alternatively, a further data quality check may be performed on the temperature compensated and calibrated glucose data to determine the rate of change or variance of the measured glucose data. For example, in one embodiment, a high variance check or verification is performed on 30 minutes of glucose data stored in the FIFO buffer. If it is determined that the rate of variance exceeds a predetermined threshold, then the data packet in process may be deemed invalid. On the other hand, if the rate of variance does not exceed the predetermined threshold, the results including the glucose data and any associated validity or error flags are stored in the FIFO buffer.


Thereafter, the data processing is performed on the stored data to determine, for example, the respective glucose level estimation or calculation. That is, the stored data in the FIFO buffer in one embodiment is filtered to reduce unwanted variation in signal measurements due to noise, time delay, among others. In one aspect, when the rate of change or variance of glucose data stored in the FIFO buffer, for example, is within a predetermined limit, the glucose measurements are filtered over a 15 minute period. On the other hand, if it is determined that the rate of change is greater than the predetermined limit, a more responsive 2 minute filtering is performed. In one aspect, the filtering is performed for each 60 second glucose data. In this manner, in one embodiment, a rate variance filter is provided that may be configured to smooth out the variation in the glucose measurement when the glucose level is relatively stable, and further, that can respond quickly when the glucose level is changing rapidly. The rate variance filter may be implemented in firmware as an FIR filter which is stable and easy to implement in integer-based firmware, for example, implemented in fixed point math processor.


In one embodiment, for each 60 second glucose data received, two filtered values and two additional parameters are determined. That is, using an FIR filter, for example, a weighted average for a 15 minute filtered average glucose value and a 2 minute average filtered glucose value are determined. In addition, a rate of change based on 15 minutes of data as well as a standard deviation is determined. To determine the final filtered glucose value for output and/or display to the user, a weighted average of the two determined filtered glucose values is determined, where when the rate of change of the glucose values is above a predetermined threshold (high), then weighting is configured to tend towards the 2 minute filtered value, while when the uncertainly is high, the weighting tends towards the 15 minute filtered value. In this manner, when the rate of change is high, the 2 minute filtered value is weighted more heavily (as the 15 minute filtered average value potentially introduces lag, which at higher rates of change, likely results in large error).


Referring back, during the calibration routine, in one embodiment, when the discrete blood glucose value is received for purposes of calibration of the glucose data from the sensor 101 (FIG. 1), the processing unit of the receiver/monitor unit 104/106 is configured to retrieve from the FIFO buffer two of the last five valid transmitter data packets that do not include any data quality flags associated with the respective data packets. In this manner, in one aspect, calibration validation check may be performed when the blood glucose value is provided to the receiver/monitor unit 104/106 determined using, for example, a blood glucose meter. In the event that two valid data packets from the last five data packets cannot be determined, the receiver/monitor unit 104/106 is configured to alarm or notify the user, and the calibration routine is terminated.


On the other hand, if the calibration validation check is successful, the sensitivity associated with the sensor 101 (FIG. 1) is determined, and its range verified. In one aspect, if the sensitivity range check fails, again, the receiver/monitor unit 104/106 may be configured to alarm or otherwise notify the user and terminate the calibration routine. Otherwise, the determined sensitivity is used for subsequent glucose data measurement and processing (until a subsequent calibration is performed).


Referring back to the Figures, optimal sensitivity accuracy factors into account error sources represented in each blood glucose value calibration and the potential sensitivity drift. Accordingly, using a weighted average of the two most recent blood glucose values used for calibration, the sensitivity accuracy may be optimized. For example, in one embodiment, a weighted average of the two most recent blood glucose values used for calibration may be used to determine a composite sensitivity determination to improve accuracy and reduce calibration errors. In this aspect, earlier blood glucose values used for calibration are discarded to accommodate for sensitivity drift. In one embodiment, the number of blood glucose values used for determining the weighted average, and also, the weighting itself may be varied using one or more approaches including, for example, a time based technique.


For example, for each sensor calibration routine, the sensitivity derived from the current blood glucose value from the current blood glucose test and the stored sensitivity value associated with the most recent prior stored blood glucose value may be used to determine a weighted average value that is optimized for accuracy. Within the scope of the present disclosure, as discussed above, the weighting routine may be time based such that if the earlier stored blood glucose value used for prior calibration is greater than a predetermined number of hours, then the weighting value assigned to the earlier stored blood glucose may be less heavy, and a more significant weighting value may be given to the current blood glucose value to determine the composite sensitivity value.


In one embodiment, a lookup table may be provided for determining the composite sensitivity determination based on a variable weighting average which provides a non-linear correction to reduce errors and improve accuracy of the sensor sensitivity.


The determined composite sensitivity in one embodiment may be used to convert the sensor ADC counts to the corresponding calibrated glucose value. In one aspect, the composite sensitivity determined may be used to minimize outlier calibrations and unstable sensitivity during, for example, the initial use periods. That is, during the data validation routines, outlier check may be performed to determine whether the sensitivity associated with each successive calibration is within a predetermined threshold or range.


For example, the sensor 101 (FIG. 1) may require a predetermined number of baseline calibrations during its use. For a five day operational lifetime of a sensor, four calibrations may be required at different times during the five day period. Moreover, during this time period, additional stability related calibrations may be required if the sensor sensitivity is determined to be unstable after the second baseline calibration performed, for example, at the 12th hour (or other suitable time frame) of the sensor usage after the initial calibration within the first 10 hours of sensor deployment.


During the outlier check routine, it is determined whether the sensitivity variance between two successive calibrations (at predetermined time intervals) is within a predetermined acceptable range. If it is determined that the variance is within the predetermined range, then the outlier check is confirmed, and a new composite sensitivity value is determined based on a weighted average of the two sensitivity values. As discussed above, the weighted average may include a time based function or any other suitable discrete weighting parameters.


If on the other hand, the variance between the two sensitivities is determined to be outside of the predetermined acceptable range, then the second (more recent) sensitivity value is considered to be an outlier (for example, due to ESA, change in sensitivity or due to bad or erroneous blood glucose value), and the user is prompted to perform another fingerstick testing to enter a new blood glucose value (for example, using a blood glucose meter). If the second current sensitivity associated with the new blood glucose value is determined to be within the predetermined acceptable range, then the earlier current sensitivity value is discarded, and the composite sensitivity is determined by applying a weighting function or parameter on the prior sensitivity value, and the second current sensitivity value (discarding the first current sensitivity value which is outside the predetermined acceptable range and considered to be an outlier).


On the other hand, when the second current sensitivity value is determined to be within the predetermined acceptable range of the first current sensitivity value, but not within the predetermined acceptable range of the prior sensitivity value (of the two successive calibrations described above), then it is determined in one embodiment that a sensitivity shift, rather than an outlier, has occurred or is detected from the first current sensitivity value to the second current sensitivity value. Accordingly, the composite sensitivity may be determined based, in this case, on the first and second current sensitivity values (and discarding the earlier of the two successive sensitivities described above).


If, for example, the second current sensitivity value is determined to be outside the predetermined range of both of the two successive sensitivities described above, then the user in one embodiment is prompted to perform yet another blood glucose test to input another current blood glucose value, and the routine described above is repeated.


Referring to the Figures, during the period of use, as discussed above, the sensor 101 (FIG. 1) is periodically calibrated at predetermined time intervals. In one aspect, after the second baseline calibration (for example, at 12th hour of sensor 101 transcutaneously positioned in fluid contact with the user's analyte), sensor sensitivity stability verifications may be performed to determine whether, for example, additional stability calibrations may be necessary before the third baseline calibration is due. In one aspect, the sensitivity stability verification may be performed after the outlier checks as described above is performed, and a new composite sensitivity is determined, and prior to the third scheduled baseline calibration at the 24th hour (or at another suitable scheduled time period).


That is, the sensor sensitivity may be attenuated (e.g., ESA) early in the life of the positioned sensor 101 (FIG. 1), and if not sufficiently dissipated by the time of the first baseline calibration, for example, at the 10th hour (or later), and even by the time of the second calibration at the 12th hour. As such, in one aspect, a relative difference between the two sensitivities associated with the two calibrations is determined. If the determined relative difference is within a predefined threshold or range (for example, approximately 26% variation), then it is determined that the sufficient stability point has been reached. On the other hand, if the relative difference determined is beyond the predefined threshold, then the user is prompted to perform additional calibrations at a timed interval (for example, at each subsequent 2 hour period) to determine the relative difference in the sensitivity compared to the predefined range. This may be repeated for each two hour interval, for example, until acceptable stability point has been reached, or alternatively, until the time period for the third baseline calibration is reached, for example, at the 24th hour of sensor 101 (FIG. 1) use.


In this manner, in one aspect, the stability verification may be monitored as the sensitivity attenuation is dissipating over a given time period. While the description above is provided with particular time periods for baseline calibrations and additional calibration prompts for stability checks, for example, within the scope of the present disclosure, other time periods or calibration schedule including stability verifications may be used. In addition, other suitable predefined threshold or range of the relative sensitivity difference to determine acceptable attenuation dissipation other than approximately 26% may be used. Moreover, as discussed above, the predetermined calibration schedule for each sensor 101 (FIG. 1) may be modified from the example provided above, based on, for example, the system design and/or sensor 101 (FIG. 1) configuration.


Additionally, in one aspect, the user may be prompted to perform the various scheduled calibrations based on the calibration schedule provided. In the case where the scheduled calibration is not performed, in one embodiment, the glucose value determination for user display or output (on the receiver/monitor unit 104/106, for example) based on the received sensor data may be disabled after a predetermined time period has lapsed. Further, the glucose value determination may be configured to resume when the prompted calibration is successfully completed.


In a further aspect, the scheduled calibration timing may be relative to the prior calibration time periods, starting with the initial sensor positioning. That is, after the initial transcutaneous positioning of the sensor 101 (FIG. 1) and the scheduled time period has elapsed to allow the sensor 101 to reach a certain stability point, the user may be prompted to perform the first baseline calibration as described above (for example, at the 10th hour since the initial sensor placement). Thereafter, in the case when the user waits until the 11th hour to perform the initial baseline calibration, the second scheduled calibration at the 12th hour, for example, may be performed at the 13th hour, so that the two hour spacing between the two calibrations are maintained, and the second calibration timing is based on the timing of the first successful baseline calibration performed. In an alternate embodiment, each scheduled calibration time period may be based on the timing of the initial sensor positioning. That is, rather than determining the appropriate subsequent calibration time periods based on the prior calibration performed, the timing of the scheduled calibration time periods may be made to be absolute and based from the time of the initial sensor placement.


Furthermore, in one aspect, when the scheduled calibration is not performed at the scheduled time periods, the glucose values may nevertheless be determined based on the sensor data for display to the user for a limited time period (for example, for no more than two hours from when the scheduled calibration time period is reached). In this manner, a calibration time window may be established or provided to the user with flexibility in performing the scheduled calibration and during which the glucose values are determined for output display to the user, for example. In one aspect, if within the calibration time window the scheduled calibrations are not performed, the glucose values may be deemed in error, and thus not provided to the user or determined until the calibration is performed.


For example, after the initial successful baseline calibration at the 10th hour (for example, or at any other suitable scheduled initial baseline calibration time), glucose values are displayed or output to the user and stored in a memory. Thereafter, at the next scheduled calibration time period (For example, at the 12th hour), the user may be prompted to perform the second calibration. If the user does not perform the second calibration, a grace period of two hours, for example, is provided during which valid glucose values are provided to the user (for example, on the display unit of the receiver/monitor unit 104/106) based on the prior calibration parameters (for example, the initial baseline calibration performed at the 10th hour). However, if the second calibration is still not performed after the grace period, in one aspect, no additional glucose values are provided to user, until the scheduled calibration is performed.


In still another aspect, the user may supplement the scheduled calibrations, and perform manual calibration based on the information that the user has received. For example, in the case that the user determines that the calibration performed and determined to be successful by the receiver/monitor unit 104/106, for example, is not sufficiently accurate, rather than replacing the sensor, the user may recalibrate the sensor even if the scheduled calibration time has not reached. For example, based on a blood glucose test result, if the determined blood glucose level is not close to or within an acceptable range as compared to the sensor data, the user may determine that additional calibration may be needed.


Indeed, as the sensitivity value of a given sensor tends to stabilize over time, a manual user forced calibration later in the sensor's life may provide improved accuracy in the determined glucose values, as compared to the values based on calibrations performed in accordance with the prescribed or predetermined calibration schedule. Accordingly, in one aspect, additional manual calibrations may be performed in addition to the calibrations based on the predetermined calibration schedule.


In a further aspect, user notification functions may be programmed in the receiver/monitor unit 104/106, or in the transmitter unit 102 (FIG. 1) to notify the user of initial conditions associated with the sensor 101 (FIG. 1) performance or integrity. That is, alarms or alerts, visual, auditory, and/or vibratory may be configured to be triggered when conditions related to the performance of the sensor are detected. For example, during the initial one hour period (or some other suitable time period) from the sensor insertion, in the case where data quality flags/conditions (described above) are detected, or in the case where low or no signal from the sensor is detected from a given period of time, an associated alarm or notification may be initiated or triggered to notify the user to verify the sensor position, the sensor contacts with the transmitter unit 102 (FIG. 1), or alternatively, to replace the sensor with a new sensor. In this manner, rather than waiting a longer period until the acceptable sensor stability point has been reached, the user may be notified at an early stage during the sensor usage that the positioned sensor may be defective or has failed.


In addition, other detected conditions related to the performance of the sensor, calibration, detected errors associated with the glucose value determination may be provided to the user using one or more alarm or alert features. For example, when the scheduled calibration has been timely performed, and the grace period as described above has expired, in one embodiment, the glucose value is not processed for display or output to the user anymore. In this case, an alarm or alert notifying the user that the glucose value cannot be calculated is provided so that the user may timely take corrective actions such as performing the scheduled calibration. In addition, when other parameters that are monitored such as the temperature, sensor data, and other variables that are used to determine the glucose value, include error or are otherwise deemed to be corrupt, the user may be notified that the associated glucose value cannot be determined, so that the user may take corrective actions such as, for example, replacing the sensor, verifying the contacts between the sensor and the transmitter unit, and the like.


In this manner, in one embodiment, there is provided an alarm or notification function that detects or monitors one or more conditions associated with the glucose value determination, and notifies the user of the same when such condition is detected. Since the alarms or notifications associated with the glucose levels (such as, for example, alarms associated with potential hyperglycemic, hypoglycemic, or programmed trend or rate of change glucose level conditions) will be inactive if the underlying glucose values cannot be determined, by providing a timely notification or alarm to the user that the glucose value cannot be determined, the user can determine or be prompted/notified that these alarms associated with glucose levels are inactive.


In one aspect of the present disclosure, glucose trend information may be determined and provided to the user, for example, on the receiver/monitor unit 104/106. For example, trend information in one aspect is based on the prior monitored glucose levels. When calibration is performed, the scaling used to determine the glucose levels may change. If the scaling for the prior glucose data (for example, one minute prior) is not changed, then in one aspect, the trend determination may be deemed more error prone. Accordingly, in one aspect, to determine accurate and improved trend determination, the glucose level determination is performed retrospectively for a 15 minute time interval based on the current glucose data when each successive glucose level is determined.


That is, in one aspect, with each minute determination of the real time glucose level, to determine the associated glucose trend information, the stored past 15 minute data associated with the determined glucose level is retrieved, including the current glucose level. In this manner, the buffered prior glucose levels may be updated with new calibration to improve accuracy of the glucose trend information.


In one aspect, the glucose trend information is determined based on the past 15 minutes (or some other predetermined time interval) of glucose data including, for example, the current calibration parameter such as current sensitivity. Thereafter, when the next glucose data is received (at the next minute or based on some other timed interval), a new sensitivity is determined based on the new data point associated with the new glucose data. Also, the trend information may be determined based on the new glucose data and the past 14 minutes of glucose data (to total 15 minutes of glucose data). It is to be noted that while the trend information is determined based on 15 minutes of data as described above, within the scope of the present disclosure, other time intervals may be used to determine the trend information, including, for example, 30 minutes of glucose data, 10 minutes of glucose data, 20 minutes of glucose data, or any other appropriate time intervals to attain an accurate estimation of the glucose trend information.


In this manner, in one aspect of the present disclosure, the trend information for the historical glucose information may be updated based on each new glucose data received, retrospectively, based on the new or current glucose level information, and the prior 14 glucose data points (or other suitable number of past glucose level information). In another aspect, the trend information may be updated based on a select number of recent glucose level information such that, it is updated periodically based on a predetermined number of determined glucose level information for display or output to the user.


In still another aspect, in wireless communication systems such as the data monitoring and management system 100 (FIG. 1), the devices or components intended for wireless communication may periodically be out of communication range. For example, the receiver/monitor unit 104/106 may be placed out of the RF communication range of the transmitter unit 102 (FIG. 1). In such cases, the transmitted data packet from the transmitter unit 102 may not be received by the receiver/monitor unit 104/106, or due to the weak signaling between the devices, the received data may be invalid or corrupt. In such cases, while there may be missing data points associated with the periodically monitored glucose levels, the trend information may be nevertheless determined, as the trend information is determined based on a predetermined number of past or prior glucose data points (for example, the past 15 minutes of glucose data).


That is, in one aspect, even if there are a certain number of glucose data points within the 15 minute time frame that may be either not received by the receiver/monitor unit 104/106, or alternatively be corrupt or otherwise invalid due to, for example, weakness in the communication link, the trend information may be determined. For example, given the 15 minutes of glucose data, if three or less non consecutive data points are not received or otherwise corrupt, the receiver/monitor unit 104/106 may determine the glucose trend information based on the prior 12 glucose data points that are received and considered to be accurate. As such, the features or aspects of the analyte monitoring system which are associated with the determined trend information may continue to function or operate as programmed.


That is, the projected alarms or alerts programmed into the receiver/monitor unit 104/106, or any other alarm conditions associated with the detection of impending hyperglycemia, impending hypoglycemia, hyperglycemic condition or hypoglycemic condition (or any other alarm or notification conditions) may continue to operate as programmed even when there are a predetermined number or less of glucose data points. However, if and when the number of missing glucose data points exceed the tolerance threshold so as to accurately estimate or determine, for example, the glucose trend information, or any other associated alarm conditions, the display or output of the associated glucose trend information or the alarm conditions may be disabled.


For example, in one aspect, the glucose trend information and the rate of change of the glucose level (which is used to determine the trend information) may be based on 15 minute data (or data based on any other suitable time period) of the monitored glucose levels, where a predetermined number of missing data points within the 15 minutes may be tolerated. Moreover, using least squares approach, the rate of change of the monitored glucose level may be determined to estimate the trend, where the monitored glucose data is not evenly spaced in time. In this approach, the least squares approach may provide an uncertainty measure of the rate of change of the monitored glucose level. The uncertainly measure, in turn, may be partially dependent upon the number of data points available.


Indeed, using the approaches described above, the trend information or the rate of change of the glucose level may be estimated or determined without the need to determine which data point or glucose level is tolerable, and which data point is not tolerable. For example, in one embodiment, the glucose data for each minute including the missing data is retrieved for a predetermined time period (for example, 15 minute time period). Thereafter, a least squares technique is applied to the 15 minute data points. Based on the least squares (or any other appropriate) technique, the uncertainty or a probability of potential variance or error of the rate of glucose level change is determined. For example, the rate of change may be determined to be approximately 1.5 mg/dL/minute+/−0.1 mg/dL/minute. In such a case, the 0.1 mg/dL/minute may represent the uncertainly information discussed above, and may be higher or lower depending upon the number of data points in the 15 minutes of data that are missing or corrupt.


In this manner, in one aspect, the glucose trend information and/or the rate of change of monitored glucose level may be determined based on a predefined number of past monitored glucose level data points, even when a subset of the predefined number of past monitored glucose level data points are missing or otherwise determined to be corrupt. On the other hand, when the number of past glucose level data points based on which the glucose trend information is determined, exceeds the tolerance or acceptance level, for example, the display or output of the glucose trend information may be disabled. Additionally, in a further aspect, if it is determined that the underlying data points associated with the monitored glucose level based on which the trend information is determined, includes uncertainty or error factor that exceeds the tolerance level (for example, when there are more than a predetermined number of data points which deviate from a predefined level), the receiver/monitor unit 104/106, for example, may be configured to disable or disallow the display or output of the glucose trend information.


For example, when the 15 minute glucose data including the current glucose level as well as the past 14 minutes of glucose level data is to be displayed or output to the user, and the determined variance of the 15 data points exceeds a preset threshold level (for example, 3.0), the glucose trend information display function may be disabled. In one aspect, the variance may be determined based on the square function of the standard deviation of the 15 data points. In one aspect, this approach may be performed substantially on a real time basis for each minute glucose data. Accordingly, as discussed above, the glucose trend information may be output or displayed substantially in real time, and based on each new glucose data point received from the sensor/transmitter unit.


Additionally, when it is determined that the 15 data points (or any other suitable number of data points for determining glucose trend information, for example), deviate beyond a predetermined tolerance range, in one aspect, the 15 minute data may be deemed error prone or inaccurate. In this case, rather than outputting or displaying glucose trend information that may be erroneous, the receiver/monitor unit 104/106 may be configured to display the output or display function related to the output or display of the determined glucose trend information. The same may apply to the output or display of projected alarms whose estimates may be based in part, on the determined trend information. Accordingly, in one aspect, there may be instances when the projected alarm feature may be temporarily disabled where the underlying monitored glucose data points are considered to include more than an acceptable level of uncertainty or error.


In a further aspect, it is desired to determine an estimate of sensor sensitivity, and/or a range of acceptable or reasonable sensitivity. For example, during determination or verification of the glucose rate of change prior to calibration, the estimated sensor sensitivity information is necessary, for example, to determine whether the rate of change is within or below an acceptable threshold level, and/or further, within a desired range. Moreover, when determining whether the sensor sensitivity is within an acceptable or reasonable level, it may be necessary to ascertain a range of reasonable or acceptable sensitivity—for example, a verification range for the sensitivity value for a given sensor or batch of sensors.


Accordingly, in one aspect, during sensor manufacturing process, a predetermined number of sensor samples (for example, 16 samples) may be evaluated from each manufacturing lot of sensors (which may include, for example, approximately 500 sensors) and the nominal sensitivity for each lot (based, for example, on a mean calculation) may be determined. For example, during the manufacturing process, the predetermined number of sensors (for example, the 16 sensors) is sampled, and the sensitivity of each sampled sensor is measured in vitro. Thereafter, a mean sensitivity may be determined as an average value of the 16 sampled sensor's measured sensitivity, and thereafter, the corresponding sensor code is determined where the determined mean sensitivity falls within the preassigned sensitivity range. Based on the determined sensor code, the sensor packaging is labeled with the sensor code.


For example, each sensor code value (e.g., 105, 106, 107 or any suitable predetermined number or code) may be preassigned a sensitivity range (For example, code 105: S1-S2, code 106: S2-S2, and code 107: S3-S4), where each sensitivity range (e.g., S1-S2, or S2-S3, or S3-S4) is approximately over a 10 percent increment (for example, S1 is approximately 90% of S2). Also, each sensor code (e.g., 105, 106, 107 etc) is assigned a nominal sensitivity value (Sn) that is within the respective preassigned sensitivity range.


Referring back, when the user inserts the sensor or positions the sensor transcutaneously in place, the receiver/monitor unit 104/106 in one embodiment prompts the user to enter the associated sensor code. When the user enters the sensor code (as derived from the sensor packing label discussed above), the receiver/monitor unit 104/106 is configured to retrieve or look up the nominal sensitivity associated with the user input sensor code (and the nominal sensitivity which falls within the preassigned sensitivity range associated with that sensor code, as described above). Thereafter, the receiver/monitor unit 104/106 may be configured to use the sensor code in performing associated routines such as glucose rate of change verification, data quality checks discussed above, and/or sensor sensitivity range acceptability or confirmation.


In a further aspect, the sensor codes may be associated with a coefficient of variation of the predetermined number of sampled sensors discussed above in addition to using the mean value determined as discussed above. In one embodiment, the coefficient of variation may be determined from the predetermined number of sampled sensors during the manufacturing process. In addition, the mean response time of the sampled sensors may be used by separately measuring the predetermined number of sampled sensors which may be used for lag correction adjustments and the like.


In this manner, in one aspect, the manufacturing process control described above ensures that the coefficient of variation of the sampled sensors is within a threshold value. That is, the value of the nominal sensitivity is used to determine a sensor code, selected or looked up from a predetermined table, and that is assigned to the sensors from the respective sensor lot in manufacturing. The user then enters the sensor code into the receiver/monitor unit that uses the sensor code to determine the glucose rate of change for purposes of data quality checking, for example, and also to determine validity or reasonableness of the sensitivity that is determined.



FIG. 5 is a flowchart illustrating a rate variance filtering routine in accordance with one embodiment of the present disclosure. Referring to FIG. 5, when glucose related data is detected or received (510), for example, for each predetermined time intervals such as every minute, every five minutes or any other suitable time intervals, a plurality of filtered values based on the received or detected glucose related data is determined (520). For example, as discussed above, in one aspect, using, for example, an FIR filter, or based on a weighted average, a plurality of filtered values for a 15 minute and two minute glucose related data including the currently received or detected glucose related are determined. Thereafter, a rate of change of the glucose level based in part on the detected or received glucose related data is determined as well as a standard deviation based on the glucose related data (530).


Referring again to FIG. 5, a weighted average associated with the currently detected or monitored glucose related data is determined based on the plurality of filtered values and the determined standard deviation as well as the rate of change of the glucose level (540). For example, when the rate of change is determined to be greater than a predetermined threshold level, the filtered value based on the two minute data is weighted more heavily. On the other hand, when the rate of change is determined to be less than the predetermined threshold level, the filtered glucose related data includes the one of the plurality of filtered values based on the 15 minute data which is weighted more heavily. In this manner, in one aspect, there is provided a rate variance filtering approach which may be configured to dynamically modify the weighting function or data filtering to, for example, reduce undesirable variation in glucose related signals due to factors such as noise.


In a further aspect, estimation of the monitored analyte values may be improved in a system integrated with an infusion device such as an insulin infusion pump. For example, in one aspect, using medication delivery information such as insulin delivery profiles in a control algorithm, the glucose level determination may be improved. That is, in one aspect, information or data associated with the magnitude and/or the timing of medication delivery may be used in the control algorithm to estimate the monitored glucose level. For example, the glucose level estimation routine may be configured to be more sensitive to downward changes in glucose levels for a predetermined period of time following a bolus delivery. This approach may be useful in lag correction routines which are adversely affected by potential overshoot in the glucose estimate when the rate of change of the glucose level is changing direction. That is, information regarding the timing and magnitude of the bolus delivery in one aspect improves the glucose estimation routine in anticipation of such change in direction of the glucose level rate of change.


Furthermore, in another aspect, the insulin update model may be incorporated into the glucose estimation routine, where for example, the bolus delivery of insulin information (such as magnitude and timing of the delivery) may be implemented in the estimation routine to establish a constraint. In one aspect, other exogenous measurements or data may be used in the glucose estimation routine, such as, but not limited to, basal rate profile, calorie intake, and exercise events.


In this manner, in one aspect, the monitored glucose or analyte levels of a patient or a user using the analyte monitoring system 100 (FIG. 1) in conjunction with medication administration using, such as, but not limited to, an ambulatory infusion device, pen-type medication injection device, or an inhalable medication device, may be improved. Since doses of administered medication such as insulin may cause a sudden change in the patient's glucose level, in a closed loop system or a semi-closed loop system, the estimation routine in accordance with the embodiments of the present disclosure provide an improved accuracy.



FIG. 6 is a flowchart illustrating glucose level estimation routine in accordance with one embodiment of the present disclosure. Referring to FIG. 6, data sets from the various components of a medication therapy system are acquired or retrieved. For example, in one aspect, the analyte levels from a continuous monitoring system 100 is retrieved (610), and in addition, the insulin delivery data (stored in the infusion section 105, for example), is retrieved (620), and other exogenous data such as, for example, but not limited to meal intake information, ingested carbohydrate data, or exercise information is received (630). In one aspect, the exogenous data may be manually entered by the patient or the user using a user interface coupled to one or more of the analyte monitoring system 100 or the infusion section 105.


Referring to FIG. 6, glucose estimation routine (640) is performed based in part, on the received analyte level information (610), the medication delivery information (620) and any other exogenous data (630) as described in further detail below in conjunction with FIGS. 7 and 8.



FIG. 7 is a flowchart illustrating the algorithm to estimate glucose level of FIG. 6 in accordance with one embodiment of the present disclosure. Referring to FIG. 7, in one aspect, the present exogenous measurement input parameters such as, for example, insulin delivery information, meal intake information, exercise information (710) and past state estimate (740) are provided to the predictor module (720) which is configured to determine the present predicted state estimate including the estimated glucose level (730).


The present predicted state estimate as shown in the figure is provided as input to the predictor module (720) in the subsequent iteration as the past state estimate (740). Referring to the Figure, as shown, the present predicted state estimate (730) is also provided to the corrector module (750) which, in one aspect, is configured to also receive the present monitored glucose measurements (760), and to generate the present corrected state estimate (770) which includes the glucose estimate.


In one aspect, the predictor and corrector modules 720, 750 may be implemented based on Kalman filter technique. For example, given an assumed discrete-time domain of a model:

x(k)=Ax(k−1)+Bu(k)+w(k)
z(k)=Cx(k)+v(k)


where x represents the state of the system, u represents the known inputs of the system, w represents the unknown disturbances and/or process noise to the system, z represents known measurements as a function of state and output noise v. The values A, B, and C can be assumed practically constant in this case.


A Kalman Filter may be constructed by generating a prediction of the state x, and then correcting the prediction based on available measurement(s) z. Given the above relationship, the predictor module 720 in one aspect may be based on known inputs and past state values:

x(k|k−1)=Ax(k−1)+Bu(k)+w(k)


where the input u(k) may not be known. A stochastic input w(k) with assumed mean (usually zero) and standard deviation may be used to account for model uncertainties/process error. In the common case where the input is not known, the predictor is reduced to the following expression:

x(k|k−1)=Ax(k−1)+Bdw(k)


where the burden of not knowing the input(s) is relegated to the process error signal w. The predictor module 720 also contains a second equation which predicts the covariance of the state(s):

M(k)=[AN(k−1)AT]+[W(k−1)Q(k−1)WT(k−1)]


which depends on N(k−1), the corrected covariance of the states from the previous step.


Furthermore, the corrector module 750 in one aspect may be configured to improve upon the state estimate x(k|k−1) by adjusting the estimate in the following manner:

x(k)=x(k|k−1)+[F(k)ε(k)]


where F(k) is the Kalman Filter gain, and ε(k) is the innovations vector. These are determined by:

F(k)=N(k)CTR−1
ε(k)=z(k)−[Cx(k|k−1)]


The corrector module in one aspect may be configured to keep track of the best corrected estimate of the state covariance:

N(k)=M(k)−└[M(k)CT][[CM(k)CT]+[V(k)R(k)VT(k)]]−1[CM(k)]┘


For example, consider the glucose dynamics following the Bergman Minimal Model:

Ġ=−[p1+X]G+p2Gup


where p1 and p2 are physiological parameters associated to an individual, X is the effective insulin, G is the plasma glucose, and Gup is the glucose due to meal uptake.


In the Bergman Minimal Model, the effective insulin is modeled as:

{dot over (X)}=−p4X+p5I


where p4 and p5 are also physiological parameters associated to an individual, and I is the insulin in the body.


Focusing on the glucose model, one discrete time implementation of the glucose dynamics may be expressed as follows:







G


(
k
)


=



A


(

k
-
1

)




G


(

k
-
1

)



+

Bu


(

k
-
1

)


+

w


(

k
-
1

)










u


(

k
-
1

)


=

[





G
up



(

k
-
1

)








X


(

k
-
1

)




G


(

k
-
1

)






]





where A(k−1) and B can be determined by any continuous to discrete time approximation methods such as Zero Order Hold (ZOH), Forward Difference, or Backward Difference, and w is added to account for process noise/uncertainties.


With an analyte monitoring system 100 that measures a signal proportional to glucose:

z(k)=SG(k)+v(k)


where z is the analyte sensor signal, S is the sensor sensitivity, and v is the assumed measurement noise.


In this example, since we assume an input model both on the effects of meal and insulin, the predictor equation follows the form:







G


(

k
|

k
-
1


)


=



A


(

k
-
1

)




G


(

k
-
1

)



+

Bu


(

k
-
1

)


+

w


(

k
-
1

)










u


(

k
-
1

)


=

[





G
up



(

k
-
1

)








X


(

k
-
1

)




G


(

k
-
1

)






]





where the stochastic input w is constructed to capture the model uncertainty and process error. Note that the input now depends on knowledge of meals and insulin, which are used to compute the input components Gup and X. The predicted glucose G(k|k−1) is the predicted glucose at time k given information up to time k−1.


The associated predictor covariance estimate is governed by the following expression:

M(k)=└A2N(k−1)┘+└W2(k−1)Q┘


where W depends on the assumptions for the model uncertainty and process error. Note that the transpose matrix operations in the general Kalman Filter description has been dropped because A, N, W, and Q are scalars. Q is one of two design parameters used to optimize the tradeoff between noise rejection and responsiveness given the available state(s) and measurement(s).


Moreover, as in the case above, the corrector module processing (750) may be expressed by the following relationship:

G(k)=G(k|k−1)+[F(k)ε(k)]
where:
F(k)=N(k)S/R
ε(k)=z(k)−[SG(k|k−1)]


where S is the sensor sensitivity, and R is the second design parameter used to optimize the tradeoff between noise rejection and responsiveness given the available state(s) and measurement(s).


The corrector's estimated state covariance updates that of the predictor's by the following expression:







N


(
k
)


=


M


(
k
)


-



[


M


(
k
)



S

]

2



[


M


(
k
)




S
2


]

+

[



V
2



(
k
)




R


(
k
)



]








In the manner described above, in one aspect, using as input parameters insulin delivery information and other parameters associated with the patient's physiology or related variables, the monitored glucose estimation accuracy may be improved.



FIG. 8 is a flowchart illustrating a routine to estimate glucose level of FIG. 6 in accordance with another embodiment of the present disclosure using rate variance filter discussed above. Referring to FIG. 8, in a further embodiment, it is determined whether insulin delivery level exceeds a predetermined threshold (810). In one aspect, this determination may be performed every minute. Within the scope of the present disclosure, other time intervals for determining the insulin delivery level may be used.


Referring to FIG. 8, when it is determined that the insulin delivery level exceeds the predetermined threshold, for example, 3 Units/hour or as may be determined by the health care provider, a first predetermined time period lapses (820), such as 20 minutes (for example, set to an appropriate level depending on the type of insulin and the patient responsiveness to insulin as determined by the health care provider), and thereafter, the rate variance filter may be adjusted to be more responsive to the changes in the monitored glucose values (830). That is, for example, rather than using an average glucose value based on 15 minutes of sampled or monitored analyte data, fewer number of sampled or monitored analyte data, such as 2 minutes, are used by the rate variance filter to determine the corresponding glucose level estimation.


On the other hand, when a second predetermined time period lapses (840), such as 60 minutes (or as may be determined by the type of insulin, the patient's responsiveness to insulin, for example), from the determination of when the insulin delivery exceeds the predetermined threshold, in one aspect, the rate variance filter may be adjusted or tuned to a predefined setting, for example, its default setting (850). Accordingly, in one aspect, based at least in part on the monitored insulin delivery information, the estimation of the monitored glucose level may be adjusted.


In one aspect, other exogenous input parameters may be used, separately or in combination with the routine described in conjunction with FIG. 8. For example, 810 may include a check on calorie intake to determine if it exceeds a predefined threshold, where the possible thresholds may include zero calories. Other embodiments are contemplated where insulin delivery and other exogenous feedback can be used to enhance glucose level accuracy.


In the manner described above, in one aspect of the present disclosure, the estimation of the monitored analyte level may be improved using data available from mediation delivery device such as insulin delivery information and other exogenous parameters.


Accordingly, a computer implemented method in one aspect includes receiving one or more parameters associated with a medication delivery profile, receiving one or more parameters associated with a physiological condition, and updating the received one or more parameters associated with the physiological condition based at least in part on the received one or more parameters associated with the medication delivery profile.


The medication delivery profile may include an insulin delivery rate.


The physiological condition includes diabetes.


The received one or more parameters associated with the physiological condition may include a monitored analyte level.


In one aspect, the method includes receiving one or more external parameters associated with the physiological condition, and where updating the received one or more parameters associated with the physiological condition may be based at least in part on the received one or more external parameters, and where the one or more external parameters may include one or more of a calorie intake amount, a level of physical exertion, or carbohydrate amount.


In another aspect, updating the received one or more parameters may include filtering one or more of the received one or more parameters associated with a medication delivery profile or the received one or more parameters associated with a physiological condition, where filtering may include using a rate variance filter or a Kalman filter.


The updated received one or more parameters may include an estimated glucose level.


An apparatus in another aspect includes one or more processing units, and a memory for storing instructions which, when executed by the one or more processing units, causes the one or more processing units to receive one or more parameters associated with a medication delivery profile, receive one or more parameters associated with a physiological condition, and update the received one or more parameters associated with the physiological condition based at least in part on the received one or more parameters associated with the medication delivery profile.


In one aspect, the memory for storing instructions which, when executed by the one or more processing units, may cause the one or more processing units to receive one or more external parameters associated with the physiological condition, and to update the received one or more parameters associated with the physiological condition based at least in part on the received one or more external parameters, where the one or more external parameters may include one or more of a calorie intake amount, a level of physical exertion, or carbohydrate amount.


In a further aspect, the memory for storing instructions which, when executed by the one or more processing units, may cause the one or more processing units to filter one or more of the received one or more parameters associated with a medication delivery profile or the received one or more parameters associated with a physiological condition.


The updated received one or more parameters may include an estimated glucose level.


An apparatus in yet another aspect may include means for receiving one or more parameters associated with a medication delivery profile, means for receiving one or more parameters associated with a physiological condition, and means for updating the received one or more parameters associated with the physiological condition based at least in part on the received one or more parameters associated with the medication delivery profile.


An apparatus in accordance with a further embodiment includes a digital filter unit including a first filter stage and a second filter stage, the digital filter unit configured to receive a sampled signal, where the first filter stage is configured to filter the sampled signal based on a first predetermined filter characteristic to generate a first filter stage output signal, and further, where the second filter stage is configured to filter the first filter stage output signal based on a second predetermined filter characteristic to generate an output signal associated with a monitored analyte level.


The sampled signal may include an over-sampled signal at a frequency of approximately 4 Hz.


The digital filter unit may include one of a Finite Impulse Response (FIR) filter, or an Infinite Impulse Response (IIR) filter.


The first and the second filter stages may include a respective first and second down sampling filter characteristics.


Also, the one or more of the first and second filter stages may include down sampling the sampled signal or the first filter stage output signal, respectively, where the received sampled signal may be associated with the monitored analyte level of a user.


In another aspect, the digital filter unit may be configured to receive the sampled signal at a predetermined time interval.


The predetermined time interval in one aspect may include one of approximately 30 second, approximately one minute, approximately two minutes, approximately five minutes, or any other suitable time periods.


A method in accordance with yet another embodiment includes receiving a sampled signal associated with a monitored analyte level of a user, performing a first stage filtering based on the received sampled signal to generate a first stage filtered signal, performing a second stage filtering based on the generated first stage filtered signal, and generating a filtered sampled signal.


The sampled signal may include an over-sampled signal at a frequency of approximately 4 Hz, and also, where the first and the second stage filtering may include a respective first and second down sampling based on one or more filter characteristics.


The received sampled signal in one aspect may be periodically received at a predetermined time interval, where the predetermined time interval may include one of approximately 30 second, approximately one minute, approximately two minutes, or approximately five minutes.


A method in still another embodiment may include receiving a signal associated with an analyte level of a user, determining whether the received signal deviates from a predetermined signal characteristic, determining an operational state associated with an analyte monitoring device, comparing a prior signal associated with the analyte level of the user to the received signal, generating an output data associated with the operational state of the analyte monitoring device based on one or more of the received signal and the prior signal.


The predetermined signal characteristic in one embodiment may include a signal level transition from below a first predetermined level to above the first predetermined level, a signal level transition from above a second predetermined level to below the second predetermined threshold, a transition from below a predetermined signal rate of change threshold to above the predetermined signal rate of change threshold, or a transition from above the predetermined signal rate of change threshold to below the predetermined signal rate of change threshold.


In one aspect, the first predetermined level and the second predetermined level each may include one of approximately 9 ADC counts or approximately 18 ADC counts, or any other suitable signal levels or analog to digital converter (ADC) counts that respectively represent or correspond to a no sensor signal state, a sensor signal state, or the like.


The predetermine signal characteristic may include in one aspect, a transition from below a predetermined level to above and wherein the signal is maintained above the predetermined level for a predetermined period of time, where the predetermined period of time may include one of approximately 10 seconds, 30 seconds, or less than 30 seconds, or greater than 30 seconds, or any other suitable time periods.


In a further aspect, the operational state may include a no detected sensor state, or a sensor presence state.


The output data in one embodiment may include a user notification alert.


Further, the output data may include an indicator to start one or more processing timers associated with a respective one or more data processing routines, where the one or more processing timers may include a respective one of a calibration timer, or a sensor expiration timer.


The method may include receiving a user input data based on the output data, where the user input data may include a user confirmation of one of change in operational state or no change in operational state.


The method may further include modifying the operational state, where the operational state may be modified based on one of the received user input data, or based on the generated output data.


The method may include presenting the output data, where presenting the output data may include one or more of visually presenting the output data, audibly presenting the output data, vibratorily presenting the output data, or one or more combinations thereof.


The analyte level may include glucose level of the user.


The operational state may include one of an analyte sensor removal state, an analyte sensor insertion state, an analyte sensor dislocation state, an analyte sensor insertion with an associated transient signal state, or an analyte sensor insertion with an associated stabilized signal state.


An apparatus in still yet another embodiment may include a data processing unit including a data processor configured to determine whether a received signal associated with an analyte level of a user deviates from a predetermined signal characteristic, determine an operational state associated with an analyte monitoring device, compare a prior signal associated with the analyte level of the user to the received signal, and generate an output data associated with the operational state of the analyte monitoring device based on one or more of the received signal or the prior signal.


The data processing unit may include a communication unit operatively coupled to the data processor and configured to communicate one or more of the received signal, the prior signal, and the output data associated the operational state of the analyte monitoring device.


The communication unit may include one of an RF transmitter, an RF receiver, an infrared data communication device, a Bluetooth® data communication device, or a Zigbee® data communication device.


The data processing unit may include a storage unit operatively coupled to the data processor to store one or more of the received signal associated with the analyte level, the predetermined signal characteristic, the operational state associated with the analyte monitoring device, the prior signal associated with the analyte level of the user, or the output data associated with the operational state of the analyte monitoring device.


A method in accordance with still yet a further embodiment may include receiving a signal associated with an analyte level of a user, determining whether the received signal deviates from a predetermined signal characteristic, determining an operational state associated with an analyte monitoring device, comparing a prior signal associated with the analyte level of the user to the received signal, presenting an output data associated with the operational state of the analyte monitoring device based at least in part on one or more of the received signal or the prior signal, and receiving a user input data based on the presented output data.


In still another aspect, the predetermined signal characteristic may include a signal level transition from below a first predetermined level to above the first predetermined level, a signal level transition from above a second predetermined level to below the second predetermined level, a transition from below a predetermined signal rate of change threshold to above the predetermined signal rate of change threshold, and a transition from above the predetermined signal rate of change threshold to below the predetermined signal rate of change threshold, and further, where the first predetermined level and the second predetermined level each may include one of approximately 9 ADC counts or approximately 18 ADC counts, or other predetermined ADC counts or signal levels.


The predetermine signal characteristic in another aspect may include a transition from below a predetermined level to above and wherein the signal is maintained above the predetermined level for a predetermined period of time which may include, for example, but not limited to, approximately 10 seconds, 30 seconds, or less than 30 seconds, or greater than 30 seconds.


Further, the operational state may include a no detected sensor state, or a sensor presence state.


Moreover, the output data may include a user notification alert.


The output data may include an indicator to start one or more processing timers associated with a respective one or more data processing routines, where the one or more processing timers may include a respective one of a calibration timer, or a sensor expiration timer.


In another aspect, the user input data may include a user confirmation of one of change in operational state or no change in operational state.


The method may include modifying the operational state based on, for example, one of the received user input data, or based on the generated output data.


Additionally, presenting the output data may include one or more of visually presenting the output data, audibly presenting the output data, vibratorily presenting the output data, or one or more combinations thereof.


Also, the operational state may include one of an analyte sensor removal state, an analyte sensor insertion state, an analyte sensor dislocation state, an analyte sensor insertion with an associated transient signal state, or an analyte sensor insertion with an associated stabilized signal state.


A data processing device in accordance with one embodiment may include a user interface unit, and a data processor operatively coupled to the user interface unit, the data processor configured to receive a signal associated with an analyte level of a user, determine whether the received signal deviates from a predetermined signal characteristic, determine an operational state associated with an analyte monitoring device, compare a prior signal associated with the analyte level of the user to the received signal, present in the user interface unit an output data associated with the operational state of the analyte monitoring device based at least in part on one or more of the received signal or the prior signal, and to receive a user input data from the user interface unit based on the presented output data.


The user interface unit in one aspect may include one or more of a user input unit, a visual display unit, an audible output unit, a vibratory output unit, or a touch sensitive user input unit.


In one embodiment, the device may include a communication unit operatively coupled to the data processor and configured to communicate one or more of the received signal, the prior signal, and the output data associated with the operational state of the analyte monitoring device, where the communication unit may include, for example, but not limited to one of an RF transmitter, an RF receiver, an infrared data communication device, a Bluetooth® data communication device, a Zigbee® data communication device, or a wired connection.


The data processing device may include a storage unit operatively coupled to the data processor to store one or more of the received signal associated with the analyte level, the predetermined signal characteristic, the operational state associated with the analyte monitoring device, the prior signal associated with the analyte level of the user, or the output data associated with the operational state of the analyte monitoring device.


A method in accordance with still yet another embodiment may include executing a predetermined routine associated with an operation of an analyte monitoring device, detecting one or more predefined alarm conditions associated with the analyte monitoring device, outputting a first indication associated with the detected one or more predefined alarm conditions during the execution of the predetermined routine, outputting a second indication associated with the detected one or more predefined alarm conditions after the execution of the predetermined routine, where the predetermined routine is executed without interruption during the outputting of the first indication.


In one aspect, the predetermined routine may include one or more processes associated with performing a blood glucose assay, one or more configuration settings, analyte related data review or analysis, data communication routine, calibration routine, or reviewing a higher priority alarm condition notification compared to the predetermined routine, or any other process or routine that requires the user interface.


Moreover, in one aspect, the first indication may include one or more of a visual, audible, or vibratory indicator.


Further, the second indication may include one or more of a visual, audible, or vibratory indicator.


In one aspect, the first indication may include a temporary indicator, and further, and the second indication may include a predetermined alarm associated with a detected predefined alarm condition.


In still another aspect, the first indication may be active during the execution of the predetermined routine, and may be inactive at the end of the predetermined routine.


Further, the second indication in a further aspect may be active at the end of the predetermined routine.


Moreover, each of the first indication and the second indication may include one or more of a visual text notification alert, a backlight indicator, a graphical notification, an audible notification, or a vibratory notification.


The predetermined routine may be executed to completion without interruption.


An apparatus in accordance with still another embodiment may include a user interface, and a data processing unit operatively coupled to the user interface, the data processing unit configured to execute a predetermined routine associated with an operation of an analyte monitoring device, detect one or more predefined alarm conditions associated with the analyte monitoring device, output on the user interface a first indication associated with the detected one or more predefined alarm conditions during the execution of the predetermined routine, and output on the user interface a second indication associated with the detected one or more predefined alarm conditions after the execution of the predetermined routine, wherein the predetermined routine is executed without interruption during the outputting of the first indication.


The predetermined routine may include one or more processes associated with performing a blood glucose assay, one or more configuration settings, analyte related data review or analysis, data communication routine, calibration routine, or reviewing a higher priority alarm condition notification compared to the predetermined routine.


The first indication or the second indication or both, in one aspect may include one or more of a visual, audible, or vibratory indicators output on the user interface.


In addition, the first indication may include a temporary indicator, and further, wherein the second indication includes a predetermined alarm associated with detected predefined alarm condition.


Also, the first indication may be output on the user interface during the execution of the predetermined routine, and is not output on the user interface at or prior to the end of the predetermined routine.


Additionally, the second indication may be active at the end of the predetermined routine.


In another aspect, each of the first indication and the second indication may include a respective one or more of a visual text notification alert, a backlight indicator, a graphical notification, an audible notification, or a vibratory notification, configured to output on the user interface.


A method in one aspect includes initializing data condition flags, performing a data integrity verification of one or more data associated with signals from an analyte sensor, generating a data condition flag based on the data integrity verification, and storing the generated data condition flag.


The generated data condition flag is indicative of an error condition of the associated with the one or more data.


The data integrity verification may include a data quality check.


The data condition flag may be associated with a failure mode of the analyte sensor.


The method may include receiving the one or more data associated with signals from the analyte sensor.


The method may also include transmitting the generated data condition flag, and further including transmitting one or more data packet including the one or more data associated with the signals from the analyte sensor and the generated data condition flag.


The one or more data packet may be transmitted wirelessly.


The method may include encoding the data packet for wireless transmission, and further, decoding the encoded data packet.


In one aspect, the method may include resetting all data condition flags.


The method may include identifying the decoded data packet as corrupt based on the generated data condition flag, where the data condition flag includes an error flag.


An apparatus in accordance with another embodiment includes a housing, a communication unit coupled to the housing to receive one or more data associated with signals from an analyte sensor, and a processing unit coupled to the housing and the communication unit, the processing unit configured to initialize data condition flags, perform a data integrity verification of the received one or more data associated with signals from the analyte sensor, generate a data condition flag based on the data integrity verification, and to store the generated data condition flag.


The apparatus may include a memory unit coupled to the processing unit for storing the generated data condition flag, where the memory unit may include a buffer.


The housing may be substantially water tight.


The communication unit may include a transceiver to transmit one or more of the one or more data associated with signals from the analyte sensor or the generated data condition flag, where the transceiver may be an RF transceiver.


The data condition flag may be associated with a failure mode of the analyte sensor.


A method in accordance with another embodiment includes receiving a data packet including glucose related data, determining a first filtered value associated with the received data packet based on a first predetermined time period and the received data packet, determining a second filtered value associated with the received data packet based on a second predetermined time period and the received data packet, determining a rate of change of the glucose level based at least in part on the received data packet, generating a weighted average value based upon the first filtered value and the second filtered value, and determining a filtered glucose value based at least in part on the weighted average value and a predetermined parameter.


The first predetermined time period may be greater than the second predetermined time period.


The weighted average value may be based at least in part on a relative weighting parameter associated with each of the first filtered value and the second filtered value, where the weighted average value may be based at least in part on the determined rate of change of the glucose level.


Further, the relative weighted parameter associated with the first filtered value may be different from the relative weighting parameter associated with the second filtered value.


The relative weighting parameter may be varied in proportion to the determined rate of change of the glucose level.


The first predetermined time period may include approximately 15 minutes, and wherein the first filtered value includes an average value based on the 15 minutes of glucose related data, where the 15 minutes of glucose related data may include 15 per minute glucose data points.


The second predetermined time period may include approximately two minutes, and wherein the second filtered value includes an average value based on the two minutes of glucose related data.


The two minutes of glucose data may include two glucose data points.


In another aspect, determining the filtered glucose value may include performing a rate variance filtering based on one or more of the first filtered value, the second filtered value, the determined rate of change of the glucose level, and the predetermined parameter, where rate variance filtering may be proportional to the rate of change of the glucose level.


An apparatus in accordance with another embodiment includes a communication unit to receive a data packet including glucose related data, and a processing unit coupled to the communication unit, the processing unit configured to determine a first filtered value associated with the received data packet based on a first predetermined time period and the received data packet, determine a second filtered value associated with the received data packet based on a second predetermined time period and the received data packet, determine a rate of change of the glucose level based at least in part on the received data packet, generate a weighted average value based upon the first filtered value and the second filtered value, and determine a filtered glucose value based at least in part on the weighted average value and a predetermined parameter.


The first predetermined time period may be greater than the second predetermined time period.


The weighted average value may be based at least in part on a relative weighting parameter associated with each of the first filtered value and the second filtered value, where the weighted average value may be based at least in part on the determined rate of change of the glucose level.


In still another aspect, the relative weighted parameter associated with the first filtered value may be different from the relative weighting parameter associated with the second filtered value.


The processor unit may vary the relative weighting parameter in proportion to the determined rate of change of the glucose level.


The first predetermined time period may include approximately 15 minutes, and wherein the first filtered value includes an average value based on the 15 minutes of glucose related data, where the 15 minutes of glucose related data may include 15 per minute glucose data points.


The second predetermined time period may include approximately two minutes, and wherein the second filtered value includes an average value based on the two minutes of glucose related data.


The two minutes of glucose data may include two glucose data points.


The processing unit may be configured to perform a rate variance filtering based on one or more of the first filtered value, the second filtered value, the determined rate of change of the glucose level, and the predetermined parameter, where the rate variance filtering may be proportional to the rate of change of the glucose level.


A method in still another aspect includes receiving a calibration parameter to calibrate an analyte sensor, determining a sensitivity value associated with the received calibration parameter, retrieving a prior sensitivity value associated with the analyte sensor, and determining a composite sensitivity for the analyte sensor based on one or more of the calibration parameter received, the determined sensitivity value and the retrieved prior sensitivity value.


The calibration parameter may include a blood glucose value.


The retrieved prior sensitivity value may be associated with a prior calibration parameter used to calibrate the analyte sensor.


The prior calibration parameter may include a blood glucose value.


In another aspect, determining the composite sensitivity may include applying a first weighted parameter to the determined sensitivity value and applying a second weighted parameter to the retrieved prior sensitivity value, where the first weighted parameter and the second weighted parameter may be the same or different.


The determined composite sensitivity may be time based.


The prior sensitivity value associated with the analyte sensor may be based on a prior calibration parameter used to calibrate the analyte sensor prior to a predetermined time period of receiving the calibration parameter.


The predetermined time period may include one of a two hour period, less than two hour period, less than ten hour period, or less than 24 hour period.


An apparatus in still yet another embodiment includes an interface unit to receive one or more signals associated with a monitored analyte level or a blood glucose value, and a processing unit coupled to the interface unit configured to determine a sensitivity value associated with a received blood glucose value, retrieve a prior sensitivity value associated with the analyte sensor, and to determine a composite sensitivity based on the determined sensitivity value and the retrieved prior sensitivity value.


The retrieved prior sensitivity value may be associated with a prior calibration parameter used to calibrate the analyte sensor.


The processing unit may be configured to apply a first weighted parameter to the determined sensitivity value and to apply a second weighted parameter to the retrieved prior sensitivity value, where the first weighted parameter and the second weighted parameter are different.


The prior sensitivity value associated with the analyte sensor may be based on a prior calibration event to calibrate the analyte sensor prior to a predetermined time period of receiving the blood glucose value, where the predetermined time period includes one of a two hour period, less than two hour period, less than ten hour period, or less than 24 hour period.


The apparatus may include a housing coupled to the interface unit, the housing including a glucose test strip port, and where the processing unit may be coupled to the housing, and including a display unit to display one or more information associated with the composite sensitivity.


The displayed one or more information associated with the composite sensitivity may include an analyte sensor calibration completion event.


The composite sensitivity may be determined based on a weighted average of the sensitivity value and the prior sensitivity value associated with the analyte sensor.


A method in accordance with yet another embodiment includes determining a variance between two sensitivity values associated with an analyte sensor, comparing the determined variance with a predetermined sensitivity range, and determining a composite sensitivity value based on the two sensitivity values associated with the analyte sensor when the variance between the two sensitivity values are within the predetermined sensitivity range.


In one aspect, the two sensitivity values are determined successively.


Further, each of the two sensitivity values may be associated with a calibration event of the analyte sensor.


The calibration event associated with the two sensitivity values may be separated in time by a predetermined time period, where the predetermined time period may include one of approximately two hours, approximately ten hours, less than ten hours, approximately 24 hours, less than 24 hours, or less than 2 hours.


When the variance between the two sensitivity values are determined to be outside the predetermined sensitivity range, the method may include requesting a blood glucose value, where requesting a blood glucose value may include prompting a user to input a current blood glucose information.


The method may also include receiving the blood glucose value, determining a current sensitivity value associated with the received blood glucose value, comparing the current sensitivity value with a predefined range of the one or more two sensitivity values, where when the determined current sensitivity value is within the predefined range of the one or more two sensitivity values, the method including determining the composite sensitivity value based on the determined current sensitivity value and one of the two sensitivity values.


The one of the two sensitivity values used to determine the composite sensitivity value may include the predefined range within which the current sensitivity value falls.


The determined composite sensitivity may include a weighted average of the current sensitivity value and one of the two sensitivity values.


An apparatus in accordance with still yet another embodiment includes a processing unit configured to determine a variance between two sensitivity values associated with an analyte sensor, to compare the determined variance with a predetermined sensitivity range, and to determine a composite sensitivity value based on the two sensitivity values associated with the analyte sensor when the variance between the two sensitivity values are within the predetermined sensitivity range.


The two sensitivity values may be determined successively.


In one aspect, each of the two sensitivity values is associated with a respective calibration event of the analyte sensor, where each calibration event associated with the two sensitivity values are separated in time by a predetermined time period.


Further, the predetermined time period may include one of approximately two hours, approximately ten hours, less than ten hours, approximately 24 hours, less than 24 hours, or less than 2 hours.


When the variance between the two sensitivity values are determined to be outside the predetermined sensitivity range, the processing unit may be further configured to prompt for a blood glucose value.


The processing unit may be configured to receive the blood glucose value, determine a current sensitivity value associated with the received blood glucose value, and compare the current sensitivity value with a predefined range of the one or more two sensitivity values.


When the determined current sensitivity value is within the predefined range of the one or more two sensitivity values, the processing unit may be configured to determine the composite sensitivity value based on the determined current sensitivity value and one of the two sensitivity values.


The one of the two sensitivity values used to determine the composite sensitivity value may include the predefined range within which the current sensitivity value falls.


The determined composite sensitivity may include a weighted average of the current sensitivity value and one of the two sensitivity values.


A method in still another aspect includes performing a calibration routine associated with an analyte sensor based on a current calibration parameter, retrieving a prior calibration parameter, comparing the current calibration parameter and the retrieved prior calibration parameter, and determining a stability status associated with the analyte sensor based at least in part on comparing the current calibration parameter and the retrieved prior calibration parameter.


The analyte sensor may be determined to be within a predetermined stability range based on the comparing step.


The analyte sensor may be determined to be outside a predetermined stability range based on the comparing step.


The predetermined stability range may be approximately 25% percent of the difference between the current calibration parameter and the retrieved prior calibration parameter.


The current calibration parameter and the prior calibration parameter may be each associated with a respective sensitivity of the analyte sensor.


The performed calibration routine and a prior calibration routine associated with the prior calibration parameter are sequential in one embodiment.


When the current calibration parameter compared with the retrieved prior calibration parameter is within a predetermined range, the determined stability status indicates a stable status associated with the analyte sensor.


When the current calibration parameter compared with the retrieved prior calibration parameter is not within a predetermined range, the determined stability status indicates an unstable status associated with the analyte sensor.


The method also including performing a further calibration routine.


The prior calibration parameter may be associated with a second baseline calibration routine of the analyte sensor.


The second baseline calibration routine may be performed after approximately 12 hours of analyte sensor positioning in fluid contact with an analyte of a user.


The calibration routine may be performed prior to a third baseline calibration routine of the analyte sensor.


The third baseline calibration routine may be performed after approximately 24 hours of analyte sensor positioning in fluid contact with an analyte of a user.


In another aspect, performing the calibration routine may include receiving a current blood glucose data.


An apparatus in another embodiment includes a data storage unit, and a processing unit coupled to the data storage unit, and configured to perform a calibration routine associated with an analyte sensor based on a current calibration parameter, retrieve a prior calibration parameter from the data storage unit, compare the current calibration parameter and the retrieved prior calibration parameter, and determine a stability status associated with the analyte sensor based at least in part on comparing the current calibration parameter and the retrieved prior calibration parameter.


The processing unit may determine the analyte sensor stability level based on a predetermined stability range.


The predetermined stability range may be approximately 25% percent of the difference between the current calibration parameter and the retrieved prior calibration parameter.


The current calibration parameter and the prior calibration parameter may each be associated with a respective sensitivity of the analyte sensor.


The processing unit may perform the calibration routine and a prior calibration routine associated with the prior calibration parameter sequentially.


When the processing unit determines the current calibration parameter compared with the retrieved prior calibration parameter is within a predetermined range, the processing unit determining the stability status indicates a stable status associated with the analyte sensor.


Further, when the processing unit determines the current calibration parameter compared with the retrieved prior calibration parameter is not within a predetermined range, the processing unit determining the stability status indicates an unstable status associated with the analyte sensor.


The processing unit may perform a further calibration routine.


Moreover, the prior calibration parameter may be associated with a second baseline calibration routine of the analyte sensor.


The processing unit may perform the second baseline calibration routine after approximately 12 hours of analyte sensor positioning in fluid contact with an analyte of a user.


The processing unit may perform the calibration routine prior to a third baseline calibration routine of the analyte sensor.


Also, the processing unit may perform the third baseline calibration routine after approximately 24 hours of analyte sensor positioning in fluid contact with an analyte of a user.


A method in another embodiment includes detecting a predetermined condition associated with a failed glucose level determination, generating an output signal associated with the detected predetermined condition.


The predetermined condition may include one or more of a failed calibration condition, an analyte sensor error, an expired calibration condition, or a glucose level related corrupt data condition.


The method may also include outputting the generated output signal associated with the detected predetermined condition, where outputting the generated output signal includes one or more of displaying the generated output signal, audibly outputting the generated output signal or vibratorily outputting the generated output signal.


The method may also include deactivating the output of a current glucose level information.


Also, the method may additionally include receiving a current analyte related signal detected by an analyte sensor.


An apparatus in accordance with still another embodiment including a communication unit to receive one or more signals related to an analyte level of a user, a processing unit coupled to the communication unit, the processing unit configured to detect a predetermined condition associated with a monitored analyte level, and to generate an output signal associated with the detected predetermined condition, and a display unit coupled to the processing unit to display the output signal.


The predetermined condition may include one or more of a failed calibration condition, an analyte sensor error, an expired calibration condition, or a glucose level related corrupt data condition.


The processing unit may be configured to deactivate the display unit based on the detected predetermined condition.


The communication unit in one aspect includes an RF receiver to wirelessly receive the one or more signals related to the analyte level of the user.


The processing unit may be configured to disable the display of data related to the analyte level of the user based on the detected predetermined condition.


A method in accordance with one embodiment includes monitoring a signal level detected by an analyte sensor for a predetermined time period, detecting a predetermined condition associated with the analyte sensor signal levels, generating an output signal associated with the monitored signal level and the detected predetermined condition.


The predetermined condition may include analyte sensor signal levels below a predefined threshold level during the predetermined time period.


The predefined threshold level may include a low signal level.


The predetermined time period may include one or approximately one hour period, approximately a 90 minute period, approximately a two hour period, less than one hour period, or greater than two hour period.


The method in a further embodiment may include presenting the output signal, where presenting the output signal may include one or more of visually displaying the output signal, audibly outputting the output signal, or vibratorily outputting the output signal.


An apparatus in still yet another embodiment includes a communication unit to receive one or more signals related to an analyte level, and a processing unit coupled to the communication unit, the processing unit configured to monitor the signal level detected by an analyte sensor for a predetermined time period, detect a predetermined condition associated with the analyte sensor signal levels, and generate an output signal associated with the monitored signal level and the detected predetermined condition.


The predetermined condition may include analyte sensor signal levels below a predefined threshold level during the predetermined time period.


Also, the predefined threshold level may include a low signal level.


Further, the predetermined time period may include one or approximately one hour period, approximately a 90 minute period, approximately a two hour period, less than one hour period, or greater than two hour period.


The apparatus may also include in one embodiment a display unit coupled to the processing unit to present the output signal, where the processing unit may be configured to present the output signal on the display unit as one or more of visually displaying the output signal, audibly outputting the output signal, or vibratorily outputting the output signal.


A method in another embodiment includes receiving a plurality of signals associated with a monitored analyte level for a predetermined time period, comparing each of the plurality of the received signals to a predefined signal range, modifying a parameter associated with a trend information determined based on comparing the plurality of the received signals to the predefined signal range.


The predetermined time period may include one of 15 minute time interval, less than 15 minute time interval, 30 minute time interval, less than 30 minute time interval, or greater than 30 minute time interval.


The plurality of signals may be substantially evenly spaced within the predetermined time period.


The plurality of signals may be temporally spaced by one of approximately 60 seconds, two minutes, or five minutes.


Further, the predefined signal range may define a valid signal range.


The trend information may be based on the plurality of signals and provides a prospective direction of the monitored analyte level.


Also, modifying the parameter associated with the trend information may include disabling output of the trend information.


Moreover, the trend information output may be disabled when a predetermined number of the plurality of the received signals are outside the predefined signal range.


An apparatus in accordance with still another embodiment includes a communication unit configured to receive a plurality of signals associated with a monitored analyte level for a predetermined time period, and a data processing unit coupled to the communication unit, and configured to compare each of the plurality of the received signals to a predefined signal range, and modify a parameter associated with a trend information determined based on comparing the plurality of the received signals to the predefined signal range.


The data processing unit may be configured to disable output of the trend information, and further, where the data processing unit may be configured to disable the trend information output when a predetermined number of the plurality of the received signals are outside the predefined signal range.


The trend information may include a projected alarm.


The apparatus may also include an output unit coupled to the data processing unit, where the output unit may be configured to present one or more of a visual, an audible or a vibratory output associated with the trend information.


A method in one embodiment includes receiving a current analyte level signal, retrieving a predetermined number of prior analyte level signals, determining a trend information based on the current analyte level signal and the retrieved predetermined number of prior analyte level signals, and updating a prior trend information based on at least a portion of the retrieved predetermined number of prior analyte level signals.


The trend information may be determined based on a current analyte sensor sensitivity.


Also, updating the prior trend information may be based on the current analyte sensor sensitivity.


Further, updating the prior trend information may include determining an updated analyte level of the at least the portion of the retrieved predetermined number of prior analyte levels based on the current analyte sensor sensitivity.


The method may also include displaying the updated prior trend information.


The method may additionally include modifying a current display of the trend information based on the updated prior trend information.


The predetermined number of prior analyte level signals may include approximately 15 analyte level signals, 30 analyte level signals, less than 30 analyte level signals, or greater than 30 analyte level signals.


Further, each of the predetermined number of prior analyte level signals and the current analyte level signal may be temporally separated by approximately one minute.


An apparatus in accordance with one embodiment includes a communication unit to receive a current analyte level signal, and a data processing unit coupled to the communication unit, the data processing unit configured to retrieve a predetermined number of prior analyte level signals, determine a trend information based on the current analyte level signal and the retrieved predetermined number of prior analyte level signals, and update a prior trend information based on at least a portion of the retrieved predetermined number of prior analyte level signals.


The trend information may be determined based on a current analyte sensor sensitivity.


Further, updating the prior trend information may be based on the current analyte sensor sensitivity.


Also, updating the prior trend information may include determining an updated analyte level of the at least a portion of the retrieved predetermined number of prior analyte levels based on the current analyte sensor sensitivity.


The apparatus may include a display unit operatively coupled to the data processing unit to display the updated prior trend information.


The data processing unit may be configured to modify a current display of the trend information based on the updated prior trend information.


The predetermined number of prior analyte level signals may include approximately 15 analyte level signals, 30 analyte level signals, less than 30 analyte level signals, or greater than 30 analyte level signals.


Furthermore, each of the predetermined number of prior analyte level signals and the current analyte level signal may be temporally separated by approximately one minute.


A method in accordance with still yet another embodiment includes receiving a current analyte level signal, retrieving a predetermined number of prior analyte level signals, processing the current analyte level signal and the retrieved predetermined number of prior analyte level signals to determine a tolerance parameter, comparing the tolerance parameter to a predetermined tolerance range, and determining a trend information based on the current analyte level signal, the retrieved predetermined number of prior analyte level signals when the tolerance parameter is within the predetermined tolerance range.


The trend information may be determined based on current analyte sensor sensitivity.


The tolerance parameter in one aspect may include a number of invalid data points in the predetermined number of prior analyte level signals.


The predetermined tolerance range may include a minimum number of analyte level signals necessary to determine the trend information.


Also, the predetermined number of prior analyte level signals may include approximately 15 analyte level signals, 30 analyte level signals, less than 30 analyte level signals, or greater than 30 analyte level signals.


In another aspect, the predetermined number of prior analyte level signals and the current analyte level signal are temporally separated by approximately one minute.


The trend information may include a projected alarm associated with one or more of the rate of change of the analyte level, or a direction of the projected analyte level.


An apparatus in one embodiment includes a communication unit to receive a current analyte level signal, and a data processing unit coupled to the communication unit, the data processing unit configured to retrieve a predetermined number of prior analyte level signals, process the current analyte level signal and the retrieved predetermined number of prior analyte level signals to determine a tolerance parameter, compare the tolerance parameter to a predetermined tolerance range, and determine a trend information based on the current analyte level signal, the retrieved predetermined number of prior analyte level signals when the tolerance parameter is within the predetermined tolerance range.


The trend information may be determined based on current analyte sensor sensitivity.


In one aspect, the tolerance parameter may include a number of invalid data points in the predetermined number of prior analyte level signals.


The predetermined tolerance range may include a minimum number of analyte level signals necessary to determine the trend information.


Also, the predetermined number of prior analyte level signals may include approximately 15 analyte level signals, 30 analyte level signals, less than 30 analyte level signals, or greater than 30 analyte level signals.


Moreover, each of the predetermined number of prior analyte level signals and the current analyte level signal may be temporally separated by approximately one minute.


Additionally, the trend information may include a projected alarm associated with one or more of the rate of change of the analyte level, or a direction of the projected analyte level.


In a further aspect, the apparatus may include a display unit coupled to the processing unit, and configured to display the trend information, and further, where the display unit may be configured to disable the display of the trend information when the tolerance parameter deviates from the predetermined tolerance range.


The trend information may be displayed in one or more of a text representation, a graphical representation, an icon representation, an audible output, or a vibratory output.


In one aspect, a storage unit may be coupled to the data processing unit, the storage unit configured to store one or more of the current analyte level signal, the predetermined number of prior analyte level signals, the tolerance parameter, the predetermined tolerance range or the trend information.


A method in accordance with still another embodiment includes sampling a predetermined number of analyte sensors, determining a sensitivity value for each of the sampled predetermined number of analyte sensors, and determining a mean sensitivity based on the sensitivity value of the predetermined number of analyte sensors.


The predetermined number of analyte sensors may be 16, or any other suitable number.


In one aspect, the sensitivity value may be determined in vitro.


Further, the mean sensitivity may be determined based on an average of the sensitivity value of the sampled number of analyte sensors.


The method may also include determining a sensor code associated with a predetermined sensitivity range, where the mean sensitivity is within the predetermined sensitivity range.


A method in one embodiment may include receiving a sensor code, retrieving a nominal sensitivity associated with the sensor code corresponding to an analyte sensor, and performing data processing based at least in part on the sensor code.


The sensor code may be associated with a predetermined sensitivity range, where the nominal sensitivity may be within the predetermined sensitivity range.


The method may include storing the sensor code.


The method may include performing data processing includes one or more of a glucose rate verification routine, a data integrity verification routine, or a predetermined sensitivity range validity verification.


An apparatus in one embodiment includes a data processing unit configured to receive an analyte sensor code, retrieve a nominal sensitivity associated with the sensor code corresponding to an analyte sensor, and perform data processing based at least in part on the sensor code.


In one aspect, the sensor code may be associated with a predetermined sensitivity range.


The nominal sensitivity may be within the predetermined sensitivity range.


The data processing unit may be configured to perform one or more of a glucose rate verification routine, a data integrity verification routine, or a predetermined sensitivity range validity verification.


In one aspect, the apparatus may include a data storage unit for storing one or more of the sensor code, and the nominal sensitivity.


Further, the data processing unit may be configured to determine a coefficient of variation based on a sampled predetermined number of analyte sensors.


The sampled predetermined number of analyte sensors may include a subset of each sensor lot during manufacturing.


The subset may include approximately 15 sensors, or any other suitable number.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A system, comprising: an analyte sensor comprising sensor electronics operatively coupled thereto and configured to be positioned in fluid contact with biofluid under a skin surface of a user;a user interface device configured to communicate with the sensor electronics over a wireless electrical communication link, the user interface device including a processor, wherein the processor is configured to: receive exogenous measurement data;receive current analyte sensor measurement data from the analyte sensor;iteratively determine a plurality of present predicted state estimates using the exogenous measurement data and a past state estimate, wherein each subsequent present predicted state estimate is provided as input as the past state estimate;determine a present corrected state estimate using the iteratively determined plurality of present predicted state estimates and the current analyte sensor measurement data, the present corrected state estimate including an estimated analyte level; anda medication delivery device system configured for delivery of medication to the user based on the estimated analyte level.
  • 2. The system off claim 1, wherein the exogenous measurement data includes at least one of: insulin delivery information, meal intake information, or exercise information.
  • 3. The system of claim 1, wherein at least one of the predicted state estimate or the corrected state estimate is determined using a Kalman filter.
  • 4. The system of claim 1, wherein the processor is further configured to use an adjustable rate variance filter to filter the exogenous measurement data.
  • 5. The system of claim 4, wherein the processor is further configured to adjust the rate variance filter in response to a determined insulin delivery level.
  • 6. The system of claim 1, wherein the biofluid under the skin surface includes interstitial fluid.
  • 7. The system of claim 1, wherein the exogenous measurement data is data manually received at the user interface device.
  • 8. The system of claim 1, wherein the analyte level is a glucose level.
  • 9. The system of claim 1, wherein the processor is further configured to update a medication delivery profile based on the estimated analyte level.
  • 10. The system of claim 9, wherein the processor is further configured to output the updated medication delivery profile using the user interface device.
  • 11. The system of claim 9, wherein the processor is further configured transmit the updated medication delivery profile to the medication delivery device system.
  • 12. The system of claim 1, wherein the analyte sensor is a continuous analyte sensor.
  • 13. The system of claim 1, wherein the processor is further configured to output the estimated analyte level using the user interface device.
  • 14. A method, comprising: receiving, by a user interface device, exogenous measurement data;receiving, by the user interface device, current analyte sensor measurement data from an analyte sensor, the analyte sensor configured to be positioned in fluid contact with biofluid under a skin surface of a user;iteratively determining, by the user interface device, a plurality of predicated state estimates using the exogenous measurement data and a past state estimate, wherein each subsequent present predicted state estimate is provided as input as the past state estimate;determining, by the user interface device, a present corrected state estimate using the iteratively determined plurality of present predicted state estimates and the current analyte sensor measurement data, the present corrected state estimate including an estimated analyte level;delivering, using a medication delivery device system, medication to the user based on the estimated analyte level.
  • 15. The method of claim 14, further comprising outputting the estimated analyte level to a user interface device.
  • 16. The method of claim 14, wherein the exogenous measurement data includes at least one of: insulin delivery information, meal intake information, or exercise information.
  • 17. The method of claim 14, wherein at least one of the predicted state estimate or the corrected state estimate is determined using a Kalman filter.
  • 18. The method of claim 14, further comprising filtering the exogenous measurement data using an adjustable rate variance filter.
  • 19. The method of claim 14, wherein the exogenous measurement data is data manually received at the user interface device.
  • 20. The method of claim 14, further comprising updating a medication delivery profile based on the estimated analyte level.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/925,685, filed Jun. 24, 2013, now U.S. Pat. No. 9,558,325, which is a continuation of U.S. patent application Ser. No. 13/424,291 filed Mar. 19, 2012, now U.S. Pat. No. 8,484,005, which is a continuation of U.S. patent application Ser. No. 12/024,101 filed Jan. 31, 2008, now U.S. Pat. No. 8,140,312, which claims priority to Provisional Application No. 60/917,873 filed May 14, 2007, entitled “Method and Apparatus for Providing Data Processing and Control in a Medical Communication System”, the disclosures of each of which are incorporated herein by reference for all purposes.

US Referenced Citations (1039)
Number Name Date Kind
3581062 Aston May 1971 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3960497 Acord et al. Jun 1976 A
4033330 Willis et al. Jul 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4129128 McFarlane Dec 1978 A
4245634 Albisser et al. Jan 1981 A
4327725 Cortese et al. May 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4373527 Fischell Feb 1983 A
4392849 Petre et al. Jul 1983 A
4425920 Bourland et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4441968 Emmer et al. Apr 1984 A
4464170 Clemens et al. Aug 1984 A
4478976 Goertz et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4527240 Kvitash Jul 1985 A
4538616 Rogoff Sep 1985 A
4619793 Lee Oct 1986 A
4671288 Gough Jun 1987 A
4703756 Gough et al. Nov 1987 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4757022 Shults et al. Jul 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4847785 Stephens Jul 1989 A
4854322 Ash et al. Aug 1989 A
4871351 Feingold Oct 1989 A
4890620 Gough Jan 1990 A
4925268 Iyer et al. May 1990 A
4953552 DeMarzo Sep 1990 A
4986271 Wilkins Jan 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5051688 Murase et al. Sep 1991 A
5055171 Peck Oct 1991 A
5068536 Rosenthal Nov 1991 A
5082550 Rishpon et al. Jan 1992 A
5106365 Hernandez Apr 1992 A
5122925 Inpyn Jun 1992 A
5135004 Adams et al. Aug 1992 A
5165407 Wilson et al. Nov 1992 A
5202261 Musho et al. Apr 1993 A
5204264 Kaminer et al. Apr 1993 A
5210778 Massart May 1993 A
5228449 Christ et al. Jul 1993 A
5231988 Wernicke et al. Aug 1993 A
5243696 Carr et al. Sep 1993 A
5246867 Lakowicz et al. Sep 1993 A
5251126 Kahn et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5279294 Anderson et al. Jan 1994 A
5284425 Holtermann et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5330634 Wong et al. Jul 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5372427 Padovani et al. Dec 1994 A
5379238 Stark Jan 1995 A
5384547 Lynk et al. Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5408999 Singh et al. Apr 1995 A
5410326 Goldstein Apr 1995 A
5411647 Johnson et al. May 1995 A
5425868 Pedersen Jun 1995 A
5429602 Hauser Jul 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5438983 Falcone Aug 1995 A
5462645 Albery et al. Oct 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5497772 Schulman et al. Mar 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5552997 Massart Sep 1996 A
5555190 Derby et al. Sep 1996 A
5564434 Halperin et al. Oct 1996 A
5568400 Stark et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5628310 Rao et al. May 1997 A
5628324 Sarbach May 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5726646 Bane et al. Mar 1998 A
5733259 Valcke et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5738220 Geszler Apr 1998 A
5748103 Flach et al. May 1998 A
5772586 Heinonen et al. Jun 1998 A
5791344 Schulman et al. Aug 1998 A
5833603 Kovacs et al. Nov 1998 A
5842189 Keeler et al. Nov 1998 A
5899855 Brown May 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5919141 Money et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5935224 Svancarek et al. Aug 1999 A
5942979 Luppino Aug 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5980708 Champagne et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
6001067 Shults et al. Dec 1999 A
6024699 Surwit et al. Feb 2000 A
6028413 Brockmann Feb 2000 A
6049727 Crothall Apr 2000 A
6052565 Ishikura et al. Apr 2000 A
6066243 Anderson et al. May 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6096364 Bok et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6223283 Chaiken et al. Apr 2001 B1
6233471 Berner et al. May 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299347 Pompei Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6314317 Willis Nov 2001 B1
6329161 Heller et al. Dec 2001 B1
6348640 Navot et al. Feb 2002 B1
6359270 Bridson Mar 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6387048 Schulman et al. May 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6440068 Brown et al. Aug 2002 B1
6471689 Joseph et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6498043 Schulman et al. Dec 2002 B1
6514718 Heller et al. Feb 2003 B2
6544212 Galley et al. Apr 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572545 Knobbe et al. Jun 2003 B2
6574490 Abbink et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6631281 Kastle Oct 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6656114 Poulsen et al. Dec 2003 B1
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6675030 Ciuczak et al. Jan 2004 B2
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6698269 Baber et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6730025 Platt May 2004 B1
6733446 Lebel et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6740518 Duong et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6789195 Prihoda et al. Sep 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6850790 Berner et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6882940 Potts et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6954662 Freger et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6983176 Gardner et al. Jan 2006 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999854 Roth Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7011630 Desai et al. Mar 2006 B2
7015817 Copley et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7022219 Mansouri et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025425 Kovatchev et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7027931 Jones et al. Apr 2006 B1
7029444 Shin et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7046153 Oja et al. May 2006 B2
7052472 Miller et al. May 2006 B1
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7092891 Maus et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7118667 Lee Oct 2006 B2
7123950 Mannheimer Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7153265 Vachon Dec 2006 B2
7155290 Von Arx et al. Dec 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7174199 Berner et al. Feb 2007 B2
7179226 Crothall et al. Feb 2007 B2
7183102 Monfre et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226442 Sheppard et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7258673 Racchini et al. Aug 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7286894 Grant et al. Oct 2007 B1
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7317938 Lorenz et al. Jan 2008 B2
7335294 Heller et al. Feb 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7424318 Brister et al. Sep 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7468125 Kraft et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7474992 Ariyur Jan 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7519478 Bartkowiak et al. Apr 2009 B2
7523004 Bartkowiak et al. Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7569030 Lebel et al. Aug 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7630748 Budiman Dec 2009 B2
7632228 Brauker et al. Dec 2009 B2
7635594 Holmes et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7653425 Hayter et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7699775 Desai et al. Apr 2010 B2
7699964 Feldman et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7711493 Bartkowiak et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7736310 Taub et al. Jun 2010 B2
7751864 Buck, Jr. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7768386 Hayter et al. Aug 2010 B2
7768387 Fennell et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7775444 DeRocco et al. Aug 2010 B2
7778680 Goode et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7792562 Shults et al. Sep 2010 B2
7811231 Jin et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7857760 Brister et al. Dec 2010 B2
7885697 Brister et al. Feb 2011 B2
7889069 Fifolt et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7899545 John Mar 2011 B2
7905833 Brister et al. Mar 2011 B2
7914450 Goode, Jr. et al. Mar 2011 B2
7920906 Goode et al. Apr 2011 B2
7928850 Hayter et al. Apr 2011 B2
7938797 Estes May 2011 B2
7941200 Weinert et al. May 2011 B2
7946984 Brister et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7970448 Shults et al. Jun 2011 B2
7972296 Braig et al. Jul 2011 B2
7974672 Shults et al. Jul 2011 B2
7976466 Ward et al. Jul 2011 B2
7978063 Baldus et al. Jul 2011 B2
7996158 Hayter et al. Aug 2011 B2
8005524 Brauker et al. Aug 2011 B2
8010174 Goode et al. Aug 2011 B2
8010256 Oowada Aug 2011 B2
8060173 Goode, Jr. et al. Nov 2011 B2
8103471 Hayter Jan 2012 B2
8140312 Hayter et al. Mar 2012 B2
8160900 Taub et al. Apr 2012 B2
8170803 Kamath et al. May 2012 B2
8192394 Estes et al. Jun 2012 B2
8216138 McGarraugh et al. Jul 2012 B1
8239166 Hayter et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8260558 Hayter et al. Sep 2012 B2
8282549 Brauker et al. Oct 2012 B2
8374668 Hayter et al. Feb 2013 B1
8376945 Hayter et al. Feb 2013 B2
8377271 Mao et al. Feb 2013 B2
8409093 Bugler Apr 2013 B2
8444560 Hayter et al. May 2013 B2
8461985 Fennell et al. Jun 2013 B2
8484005 Hayter et al. Jul 2013 B2
8543354 Luo et al. Sep 2013 B2
8560038 Hayter et al. Oct 2013 B2
8571808 Hayter Oct 2013 B2
8583205 Budiman et al. Nov 2013 B2
8597570 Terashima et al. Dec 2013 B2
8600681 Hayter et al. Dec 2013 B2
8612163 Hayter et al. Dec 2013 B2
8657746 Roy Feb 2014 B2
8682615 Hayter et al. Mar 2014 B2
8710993 Hayter et al. Apr 2014 B2
8834366 Hayter et al. Sep 2014 B2
8845536 Brauker et al. Sep 2014 B2
9060719 Hayter et al. Jun 2015 B2
9289179 Hayter et al. Mar 2016 B2
9398872 Hayter et al. Jul 2016 B2
9408566 Hayter et al. Aug 2016 B2
9439586 Bugler Sep 2016 B2
9483608 Hayter et al. Nov 2016 B2
9558325 Hayter Jan 2017 B2
9743872 Hayter et al. Aug 2017 B2
20010037366 Webb et al. Nov 2001 A1
20020016534 Trepagnier et al. Feb 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020019612 Watanabe et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020054320 Ogino May 2002 A1
20020065454 Lebel et al. May 2002 A1
20020068860 Clark Jun 2002 A1
20020095076 Krausman et al. Jul 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020117639 Paolini et al. Aug 2002 A1
20020120186 Keimel Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020147135 Schnell Oct 2002 A1
20020150959 Lejeunne et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020169439 Flaherty et al. Nov 2002 A1
20020169635 Shillingburg Nov 2002 A1
20030004403 Drinan et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032077 Itoh et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030050546 Desai et al. Mar 2003 A1
20030054428 Monfre et al. Mar 2003 A1
20030055380 Flaherty et al. Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030125612 Fox et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030147515 Kai et al. Aug 2003 A1
20030167035 Flaherty et al. Sep 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030191377 Robinson et al. Oct 2003 A1
20030199744 Buse et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212317 Kovatchev et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040010186 Kimball et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015131 Flaherty et al. Jan 2004 A1
20040024553 Monfre et al. Feb 2004 A1
20040034289 Teller et al. Feb 2004 A1
20040039298 Abreu Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040041749 Dixon Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040064088 Gorman et al. Apr 2004 A1
20040064096 Flaherty et al. Apr 2004 A1
20040099529 Mao et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040111017 Say et al. Jun 2004 A1
20040117204 Mazar et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040133390 Osorio et al. Jul 2004 A1
20040135571 Uutela et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040142403 Hetzel et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040147872 Thompson Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040153032 Garribotto et al. Aug 2004 A1
20040162678 Hetzel et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193020 Chiba et al. Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040199056 Husemann et al. Oct 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040219664 Heller et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050004439 Shin et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050017864 Tsoukalis Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode et al. Feb 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050027462 Goode et al. Feb 2005 A1
20050027463 Goode et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050049473 Desai et al. Mar 2005 A1
20050070774 Addison et al. Mar 2005 A1
20050070777 Cho et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096512 Fox et al. May 2005 A1
20050096516 Soykan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113648 Yang et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050113886 Fischell et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050115832 Simpson et al. Jun 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050134731 Lee et al. Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154271 Rasdal Jul 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187442 Cho et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050196821 Monfre et al. Sep 2005 A1
20050197793 Baker, Jr. Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050204134 Von Arx et al. Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050236361 Ufer et al. Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245904 Estes et al. Nov 2005 A1
20050251033 Scarantino et al. Nov 2005 A1
20050272985 Kotulla et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001551 Kraft et al. Jan 2006 A1
20060004270 Bedard et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025663 Talbot Feb 2006 A1
20060029177 Cranford, Jr. et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060058588 Zdeblick Mar 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060091006 Wang et al. May 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060154642 Scannell Jul 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060156796 Burke et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189851 Tvig et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060193375 Lee et al. Aug 2006 A1
20060202805 Schulman et al. Sep 2006 A1
20060211072 Ryan et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224109 Steil et al. Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060247985 Liamos et al. Nov 2006 A1
20060253296 Liisberg et al. Nov 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060281985 Ward et al. Dec 2006 A1
20060290496 Peeters et al. Dec 2006 A1
20060293607 Alt et al. Dec 2006 A1
20070007133 Mang et al. Jan 2007 A1
20070010950 Abensour et al. Jan 2007 A1
20070016381 Kamath et al. Jan 2007 A1
20070017983 Frank et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070027507 Burdett et al. Feb 2007 A1
20070032706 Kamath et al. Feb 2007 A1
20070032717 Brister et al. Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070060803 Liljeryd et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070060869 Tolle et al. Mar 2007 A1
20070060979 Strother et al. Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070071681 Gadkar et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070078818 Zvitz et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070094216 Mathias et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070118030 Bruce et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070129621 Kellogg et al. Jun 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070153705 Rosar et al. Jul 2007 A1
20070156094 Safabash et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070168224 Letzt et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173709 Petisce et al. Jul 2007 A1
20070173710 Petisce et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070179349 Hoyme et al. Aug 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070202562 Curry et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208244 Brauker et al. Sep 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070232878 Kovatchev et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255321 Gelber et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20070271285 Eichorn et al. Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070299617 Willis Dec 2007 A1
20080004515 Jennewine et al. Jan 2008 A1
20080004601 Jennewine et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080012701 Kass et al. Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021436 Wolpert et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080021972 Huelskamp et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080057484 Miyata et al. Mar 2008 A1
20080058625 McGarraugh et al. Mar 2008 A1
20080058626 Miyata et al. Mar 2008 A1
20080058678 Miyata et al. Mar 2008 A1
20080058773 John Mar 2008 A1
20080060955 Goodnow Mar 2008 A1
20080061961 John Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080081977 Hayter et al. Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080092638 Brenneman et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080114228 McCluskey et al. May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080161666 Feldman et al. Jul 2008 A1
20080167543 Say et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080177149 Weinert et al. Jul 2008 A1
20080177165 Blomquist et al. Jul 2008 A1
20080182537 Manku et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080201325 Doniger et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080208026 Noujaim et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080214900 Fennell et al. Sep 2008 A1
20080214910 Buck Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080234663 Yodfat et al. Sep 2008 A1
20080234943 Ray et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080242963 Essenpreis et al. Oct 2008 A1
20080254544 Modzelewski et al. Oct 2008 A1
20080255434 Hayter et al. Oct 2008 A1
20080255437 Hayter Oct 2008 A1
20080255808 Hayter Oct 2008 A1
20080256048 Hayter Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287762 Hayter Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080288180 Hayter Nov 2008 A1
20080288204 Hayter et al. Nov 2008 A1
20080294024 Cosentino et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312841 Hayter Dec 2008 A1
20080312842 Hayter Dec 2008 A1
20080312844 Hayter et al. Dec 2008 A1
20080312845 Hayter et al. Dec 2008 A1
20080314395 Kovatchev et al. Dec 2008 A1
20080319085 Wright et al. Dec 2008 A1
20080319279 Ramsay et al. Dec 2008 A1
20090005665 Hayter et al. Jan 2009 A1
20090005666 Shin et al. Jan 2009 A1
20090005729 Hendrixson et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006061 Thukral et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090012376 Agus Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018425 Ouyang et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090033482 Hayter et al. Feb 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090040022 Finkenzeller Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054745 Jennewine et al. Feb 2009 A1
20090054747 Fennell Feb 2009 A1
20090054748 Feldman et al. Feb 2009 A1
20090054753 Robinson et al. Feb 2009 A1
20090055149 Hayter et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062767 VanAntwerp et al. Mar 2009 A1
20090063187 Johnson et al. Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090088614 Taub et al. Apr 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105568 Bugler Apr 2009 A1
20090105570 Sloan et al. Apr 2009 A1
20090105571 Fennell et al. Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112626 Talbot et al. Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090149728 Van Antwerp et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090163855 Shin et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090177068 Stivoric et al. Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198118 Hayter et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090227855 Hill et al. Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090240440 Shurabura et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292188 Hoss et al. Nov 2009 A1
20090298182 Schulat et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010329 Taub et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100022988 Wochner et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100057040 Hayter Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100057042 Hayter Mar 2010 A1
20100057044 Hayter Mar 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100064764 Hayter et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081906 Hayter et al. Apr 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100081953 Syeda-Mahmood et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100094111 Heller et al. Apr 2010 A1
20100094251 Estes et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121167 McGarraugh et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100141656 Krieftewirth Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168546 Kamath et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100204557 Kiaie et al. Aug 2010 A1
20100213080 Celentano et al. Aug 2010 A1
20100230285 Hoss et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100275108 Sloan et al. Oct 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110031986 Bhat et al. Feb 2011 A1
20110040163 Telson et al. Feb 2011 A1
20110054282 Nekoomaram et al. Mar 2011 A1
20110060530 Fennell Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110077494 Doniger et al. Mar 2011 A1
20110081726 Berman et al. Apr 2011 A1
20110112696 Yodfat et al. May 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110208027 Wagner et al. Aug 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110282327 Kellogg et al. Nov 2011 A1
20110287528 Fern et al. Nov 2011 A1
20110289497 Kiaie et al. Nov 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120078071 Bohm et al. Mar 2012 A1
20120088995 Fennell et al. Apr 2012 A1
20120108934 Valdes et al. May 2012 A1
20120165626 Irina et al. Jun 2012 A1
20120165640 Galley et al. Jun 2012 A1
20120173200 Breton et al. Jul 2012 A1
20120190989 Kaiser et al. Jul 2012 A1
20120245447 Karan et al. Sep 2012 A1
20130035575 Mayou et al. Feb 2013 A1
20130184547 Taub et al. Jul 2013 A1
20130225959 Bugler Aug 2013 A1
20130231541 Hayter et al. Sep 2013 A1
20130235166 Jones et al. Sep 2013 A1
20130324823 Koski et al. Dec 2013 A1
20140005499 Catt et al. Jan 2014 A1
20140046160 Terashima et al. Feb 2014 A1
20140121480 Budiman et al. May 2014 A1
20150241407 Ou et al. Aug 2015 A1
Foreign Referenced Citations (47)
Number Date Country
2003259741 Feb 2004 AU
2495648 Feb 2004 CA
2498682 Sep 2005 CA
2555749 Sep 2005 CA
2632709 Jun 2007 CA
2615575 Jun 2008 CA
2701374 Apr 2009 CA
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
1568309 Aug 2005 EP
1956371 Aug 2008 EP
2260757 Dec 2010 EP
2409951 Jul 2005 GB
WO-1993006237 Apr 1993 WO
WO-1996025089 Aug 1996 WO
WO-1996035370 Nov 1996 WO
WO-1998035053 Aug 1998 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000074753 Dec 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004015539 Feb 2004 WO
WO-2005010756 Feb 2005 WO
WO-2005040404 May 2005 WO
WO-2006024671 Mar 2006 WO
WO-2006051466 May 2006 WO
WO-2007007459 Jan 2007 WO
WO-2007097754 Aug 2007 WO
WO-2007149319 Dec 2007 WO
WO-2008001366 Jan 2008 WO
WO-2008086541 Jul 2008 WO
WO-2009049252 Apr 2009 WO
WO-2010077329 Jul 2010 WO
Non-Patent Literature Citations (241)
Entry
Mastrototaro the MiniMed Continuous Glucose Monitoring System Diabetes Technology & Therapeutics vol. 2 pp. S-13 to S-18 (Year: 2000).
Wang Electrochemical Glucose Biosensors Chemical Reviews vol. 108 pp. 814-825 (Year: 2008).
Bode et al. Diabetes management in the new millennium using insulin pump therapy Diabetes/Metabolism Research and Reviews vol. 18, pp. S14-S20 (Year: 2002).
U.S. Appl. No. 14/028,358, Office Action dated Mar. 22, 2017.
U.S. Appl. No. 14/052,381, Office Action dated Feb. 21, 2017.
U.S. Appl. No. 14/094,721, Office Action dated Mar. 17, 2107.
U.S. Appl. No. 14/223,893, Office Action dated Mar. 28, 2017.
U.S. Appl. No. 15/294,683, Office Action dated Feb. 10, 2017.
U.S. Appl. No. 14/028,358, Notice of Allowance dated Jul. 19, 2017.
U.S. Appl. No. 14/052,381, Notice of Allowance dated Jun. 16, 2017.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Arnold, M. A., et al., “Selectivity Assessment of Noninvasive Glucose Measurements Based on Analysis of Multivariate Calibration Vectors”, Journal of Diabetes Science and Technology, vol. 1, No. 4, 2007, pp. 454-462.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Boyne, M. S., et al., “Timing of Changes in Interstitial and Venous Blood Glucose Measured With a Continuous Subcutaneous Glucose Sensor”, Diabetes, vol. 52, Nov. 2003, pp. 2790-2794.
Bremer, T. M., et al., “Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 409-418.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/1988, pp. 45-56.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
El-Khatib, F. H, et al., “Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine”, Journal of Diabetes Science and Technology, vol. 1, No. 2, 2007, pp. 181-192.
Eren-Oruklu, M., et al., “Estimation of Future Glucose Concentrations with Subject-Specific Recursive Linear Models”, Diabetes Technology & Therapeutics vol. 11(4), 2009, pp. 243-253.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50.
Hovorka, R., et al., “Nonlinear Model Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes”, Physiological Measurement, vol. 55, Jul. 2004, pp. 905-920.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Kovatchev, B. P., et al., “Graphical and Numerical Evaluation of Continuous Glucose Sensing Time Lag”, Diabetes Technology & Therapeutics, vol. 11, No. 3, 2009, pp. 139-143.
Kuure-Kinsey, M., et al., “A Dual-Rate Kalman Filter for Continuous Glucose Monitoring”, Proceedings of the 28th IEEE, EMBS Annual International Conference, New York City, 2006, pp. 63-66.
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, pp. 211-219.
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mcgarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
Mcgarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
Mckean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410.
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/1988, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Steil, G. M., et al., “Closed-Loop Insulin Delivery—the Path of Physiological Glucose Control”, Advanced Drug Delivery Reviews, vol. 56, 2004, pp. 125-144.
Steil, G. M., et al., “Determination of Plasma Glucose During Rapid Glucose Excursions with a Subcutaneous Glucose Sensor”, Diabetes Technology & Therapeutics, vol. 5, No. 1, 2003, pp. 27-31.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Canadian Patent Application No. 2,683,930, Examiner's Report dated Aug. 17, 2015.
Canadian Patent Application No. 2,683,930, Examiner's Report dated Jul. 22, 2014.
European Patent Application No. 08745803.0, Extended European Search Report dated Sep. 27, 2012.
European Patent Application No. 08745805.5, Examination Report dated Jan. 30, 2015.
European Patent Application No. 08745805.5, Extended European Search Report dated May 23, 2012.
European Patent Application No. 08745807.1, Extended European Search Report dated Oct. 8, 2012.
European Patent Application No. 08745809.7, Extended European Search Report dated Jul. 2, 2012.
European Patent Application No. 08754499.5, Extended European Search Report dated Sep. 20, 2012.
European Patent Application No. 08796500.0, Examination Report dated Dec. 4, 2014.
European Patent Application No. 08796500.0, Extended European Search Report dated Jan. 14, 2014.
European Patent Application No. 08871628.7, Extended European Search Report dated Oct. 15, 2012.
PCT Application No. PCT/US2008/006247, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Nov. 26, 2009.
PCT Application No. PCT/US2008/006247, International Search Report and Written Opinion of the International Searching Authority dated Sep. 5, 2008.
PCT Application No. PCT/US2008/060277, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 29, 2009.
PCT Application No. PCT/US2008/060277, International Search Report and Written Opinion of the International Searching Authority dated Sep. 22, 2008.
PCT Application No. PCT/US2008/060279, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 29, 2009.
PCT Application No. PCT/US2008/060279, International Search Report and Written Opinion of the International Searching Authority dated Jul. 14, 2008.
PCT Application No. PCT/US2008/060281, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 29, 2009.
PCT Application No. PCT/US2008/060281, International Search Report and Written Opinion of the International Searching Authority dated Sep. 23, 2008.
PCT Application No. PCT/US2008/060282, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 29, 2009.
PCT Application No. PCT/US2008/060282, International Search Report and Written Opinion of the International Searching Authority dated Jun. 18, 2009.
PCT Application No. PCT/US2008/060284, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 29, 2009.
PCT Application No. PCT/US2008/060284, International Search Report and Written Opinion of the International Searching Authority dated Sep. 23, 2008.
PCT Application No. PCT/US2008/070923, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority, dated Feb. 11, 2010.
PCT Application No. PCT/US2008/070923, International Search Report and Written Opinion of the International Searching Authority dated Oct. 1, 2008.
PCT Application No. PCT/US2009/032756, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority, dated Aug. 12, 2010.
PCT Application No. PCT/US2009/032756, International Search Report and Written Opinion of the International Searching Authority dated Apr. 7, 2009.
U.S. Appl. No. 11/831,866, Notice of Allowance dated May 26, 2010.
U.S. Appl. No. 11/831,866, Office Action dated Jun. 25, 2009.
U.S. Appl. No. 11/831,866, Supplemental Office Action dated Dec. 9, 2009.
U.S. Appl. No. 11/831,881, Advisory Action dated Aug. 23, 2013.
U.S. Appl. No. 11/831,881, Notice of Allowance dated Jun. 20, 2014.
U.S. Appl. No. 11/831,881, Office Action dated Jun. 21, 2011.
U.S. Appl. No. 11/831,881, Office Action dated Mar. 13, 2014.
U.S. Appl. No. 11/831,881, Office Action dated May 23, 2013.
U.S. Appl. No. 11/831,881, Office Action dated Nov. 17, 2011.
U.S. Appl. No. 11/831,881, Office Action dated Oct. 1, 2012.
U.S. Appl. No. 11/831,895, Advisory Action dated Apr. 22, 2015.
U.S. Appl. No. 11/831,895, Advisory Action dated Aug. 5, 2013.
U.S. Appl. No. 11/831,895, Advisory Action dated Jan. 18, 2012.
U.S. Appl. No. 11/831,895, Advisory Action dated Jan. 25, 2012.
U.S. Appl. No. 11/831,895, Office Action dated Feb. 13, 2015.
U.S. Appl. No. 11/831,895, Office Action dated Jul. 17, 2014.
U.S. Appl. No. 11/831,895, Office Action dated Jul. 20, 2012.
U.S. Appl. No. 11/831,895, Office Action dated Mar. 21, 2016.
U.S. Appl. No. 11/831,895, Office Action dated May 16, 2013.
U.S. Appl. No. 11/831,895, Office Action dated May 25, 2011.
U.S. Appl. No. 11/831,895, Office Action dated Oct. 1, 2013.
U.S. Appl. No. 11/831,895, Office Action dated Oct. 14, 2011.
U.S. Appl. No. 12/024,101, Notice of Allowance dated Jan. 9, 2012.
U.S. Appl. No. 12/024,101, Office Action dated Feb. 17, 2011.
U.S. Appl. No. 12/024,101, Office Action dated Oct. 17, 2011.
U.S. Appl. No. 12/102,839, Advisory Action dated May 1, 2013.
U.S. Appl. No. 12/102,839, Notice of Allowance dated Oct. 30, 2015.
U.S. Appl. No. 12/102,839, Office Action dated Aug. 1, 2013.
U.S. Appl. No. 12/102,839, Office Action dated Aug. 5, 2010.
U.S. Appl. No. 12/102,839, Office Action dated Dec. 14, 2009.
U.S. Appl. No. 12/102,839, Office Action dated Dec. 14, 2012.
U.S. Appl. No. 12/102,839, Office Action dated Dec. 5, 2013.
U.S. Appl. No. 12/102,839, Office Action dated Jan. 25, 2011.
U.S. Appl. No. 12/102,839, Office Action dated Jul. 17, 2015.
U.S. Appl. No. 12/102,839, Office Action dated May 25, 2012.
U.S. Appl. No. 12/102,839, Office Action dated Oct. 27, 2011.
U.S. Appl. No. 12/102,844, Notice of Allowance dated Jan. 10, 2012.
U.S. Appl. No. 12/102,844, Office Action dated Aug. 17, 2011.
U.S. Appl. No. 12/102,847, Advisory Action dated Aug. 27, 2014.
U.S. Appl. No. 12/102,847, Office Action dated Apr. 24, 2014.
U.S. Appl. No. 12/102,847, Office Action dated Aug. 18, 2011.
U.S. Appl. No. 12/102,847, Office Action dated Aug. 3, 2015.
U.S. Appl. No. 12/102,847, Office Action dated Dec. 31, 2015.
U.S. Appl. No. 12/102,847, Office Action dated Feb. 12, 2015.
U.S. Appl. No. 12/102,847, Office Action dated Jan. 10, 2012.
U.S. Appl. No. 12/102,847, Office Action dated Jun. 16, 2014.
U.S. Appl. No. 12/102,855, Office Action dated Aug. 24, 2011.
U.S. Appl. No. 12/102,855, Office Action dated Jan. 10, 2012.
U.S. Appl. No. 12/102,855, Office Action dated Jun. 11, 2014.
U.S. Appl. No. 12/102,855, Office Action dated Mar. 23, 2016.
U.S. Appl. No. 12/102,855, Office Action dated May 13, 2015.
U.S. Appl. No. 12/102,855, Office Action dated Oct. 24, 2014.
U.S. Appl. No. 12/102,855, Office Action dated Sep. 2, 2015.
U.S. Appl. No. 12/102,856, Notice of Allowance dated Feb. 25, 2015.
U.S. Appl. No. 12/102,856, Office Action dated Aug. 17, 2011.
U.S. Appl. No. 12/102,856, Office Action dated Jan. 10, 2012.
U.S. Appl. No. 12/102,856, Office Action dated May 7, 2014.
U.S. Appl. No. 12/102,856, Office Action dated Nov. 25, 2014.
U.S. Appl. No. 12/152,623, Notice of Allowance dated Nov. 3, 2011.
U.S. Appl. No. 12/152,623, Office Action dated May 26, 2011.
U.S. Appl. No. 12/152,636, Advisory Action dated Jan. 19, 2012.
U.S. Appl. No. 12/152,636, Advisory Action dated Jan. 6, 2012.
U.S. Appl. No. 12/152,636, Notice of Allowance dated Jun. 19, 2012.
U.S. Appl. No. 12/152,636, Office Action dated Dec. 27, 2010.
U.S. Appl. No. 12/152,636, Office Action dated Sep. 20, 2011.
U.S. Appl. No. 12/152,648, Notice of Allowance dated Aug. 2, 2013.
U.S. Appl. No. 12/152,648, Office Action dated Aug. 12, 2011.
U.S. Appl. No. 12/152,648, Office Action dated Aug. 29, 2012.
U.S. Appl. No. 12/152,648, Office Action dated Jan. 27, 2012.
U.S. Appl. No. 12/152,648, Office Action dated Mar. 13, 2013.
U.S. Appl.No. 12/152,649, Notice of Allowance dated Jul. 1, 2013.
U.S. Appl. No. 12/152,649, Office Action dated Aug. 5, 2011.
U.S. Appl. No. 12/152,649, Office Action dated Jan. 27, 2012.
U.S. Appl. No. 12/152,649, Office Action dated Nov. 5, 2012.
U.S. Appl. No. 12/152,650, Notice of Allowance dated Jan. 22, 2013.
U.S. Appl. No. 12/152,650, Office Action dated Aug. 11, 2011.
U.S. Appl. No. 12/152,650, Office Action dated Jan. 26, 2012.
U.S. Appl. No. 12/152,650, Office Action dated Jul. 25, 2012.
U.S. Appl. No. 12/152,652, Advisory Action dated Jan. 13, 2012.
U.S. Appl. No. 12/152,652, Notice of Allowance dated May 3, 2012.
U.S. Appl. No. 12/152,652, Office Action dated Jun. 23, 2011.
U.S. Appl. No. 12/152,652, Office Action dated Nov. 1, 2011.
U.S. Appl. No. 12/152,657, Notice of Allowance dated Jul. 10, 2015.
U.S. Appl. No. 12/152,657, Office Action dated Apr. 24, 2015.
U.S. Appl. No. 12/152,657, Office Action dated Aug. 11, 2011.
U.S. Appl. No. 12/152,657, Office Action dated Jan. 26, 2012.
U.S. Appl. No. 12/152,657, Office Action dated Sep. 18, 2014.
U.S. Appl. No. 12/152,662, Advisory Action dated Sep. 3, 2014.
U.S. Appl. No. 12/152,662, Office Action dated Aug. 19, 2011.
U.S. Appl. No. 12/152,662, Office Action dated Aug. 19, 2015.
U.S. Appl. No. 12/152,662, Office Action dated Jan. 11, 2012.
U.S. Appl. No. 12/152,662, Office Action dated Jan. 23, 2015.
U.S. Appl. No. 12/152,662, Office Action dated Jun. 12, 2014.
U.S. Appl. No. 12/152,662, Office Action dated Mar. 9, 2016.
U.S. Appl. No. 12/152,670, Notice of Allowance dated Jun. 20, 2011.
U.S. Appl. No. 12/152,670, Office Action dated Jan. 7, 2011.
U.S. Appl. No. 12/152,673, Advisory Action dated Apr. 9, 2013.
U.S. Appl. No. 12/152,673, Office Action dated Aug. 26, 2011.
U.S. Appl. No. 12/152,673, Office Action dated Jan. 30, 2013.
U.S. Appl. No. 12/152,673, Office Action dated Jan. 5, 2012.
U.S. Appl. No. 12/152,673, Office Action dated Jul. 11, 2012.
U.S. Appl. No. 13/356,598, Notice of Allowance dated Jul. 11, 2013.
U.S. Appl. No. 13/356,598, Office Action dated Aug. 30, 2012.
U.S. Appl. No. 13/356,598, Office Action dated May 2, 2013.
U.S. Appl. No. 13/424,291, Notice of Allowance dated Apr. 24, 2013.
U.S. Appl. No. 13/424,291, Office Action dated Feb. 6, 2013.
U.S. Appl. No. 13/424,291, Office Action dated Jul. 31, 2012.
U.S. Appl. No. 13/567,038, Notice of Allowance dated Nov. 22, 2013.
U.S. Appl. No. 13/567,038, Office Action dated Jun. 6, 2013.
U.S. Appl. No. 13/567,038, Office Action dated Oct. 10, 2013.
U.S. Appl. No. 13/599,847, Notice of Allowance dated Aug. 21, 2013.
U.S. Appl. No. 13/599,847, Office Action dated Jan. 29, 2013.
U.S. Appl. No. 13/898,139, Notice of Allowance dated Sep. 15, 2016.
U.S. Appl. No. 13/898,139, Office Action dated Jan. 21, 2016.
U.S. Appl. No. 13/925,685, Notice of Allowance dated Sep. 20, 2016.
U.S. Appl. No. 13/925,685, Office Action dated May 16, 2016.
U.S. Appl. No. 14/028,358, Office Action dated Nov. 2, 2016.
U.S. Appl. No. 14/052,381, Office Action dated Oct. 3, 2016.
U.S. Appl. No. 14/077,004, Office Action dated Jul. 26, 2016.
U.S. Appl. No. 14/094,721, Advisory Action dated Sep. 28, 2016.
U.S. Appl. No. 14/094,721, Office Action dated Feb. 25, 2016.
U.S. Appl. No. 14/094,721, Office Action dated Jun. 30, 2016.
U.S. Appl. No. 14/094,721, Office Action dated Nov. 17, 2016.
U.S. Appl. No. 14/106,000, Notice of Allowance dated Apr. 24, 2015.
U.S. Appl. No. 14/106,000, Office Action dated Aug. 26, 2014.
U.S. Appl. No. 14/106,000, Office Action dated Jun. 17, 2014.
U.S. Appl. No. 14/106,000, Office Action dated Nov. 26, 2014.
U.S. Appl. No. 14/223,893, Office Action dated Nov. 14, 2016.
U.S. Appl. No. 14/223,893, Office Action dated Nov. 7, 2016.
U.S. Appl. No. 14/472,341, Notice of Allowance dated Mar. 28, 2016.
U.S. Appl. No. 14/472,341, Office Action dated Apr. 10, 2015.
U.S. Appl. No. 14/472,341, Office Action dated Dec. 23, 2014.
U.S. Appl. No. 14/472,341, Office Action dated Oct. 9, 2015.
U.S. Appl. No. 14/741,457, Office Action dated Apr. 8, 2016.
U.S. Appl. No. 14/223,893, Notice of Allowance dated Aug. 11, 2017.
U.S. Appl. No. 14/678,812, Office Action dated Sep. 27, 2107.
U.S. Appl. No. 14/741,457, Notice of Allowance dated Apr. 12, 2017.
U.S. Appl. No. 14/741,457, Office Action dated Oct. 28, 2016.
U.S. Appl. No. 14/846,986, Office Action dated Aug. 3, 2017.
U.S. Appl. No. 14/094,721, Office Action dated Nov. 16, 2017.
U.S. Appl. No. 15/461,459, Office Action dated Dec. 11, 2017.
U.S. Appl. No. 15/796,262, Office Action dated Jan. 11, 2018.
U.S. Appl. No. 15/796,274, Office Action dated Dec. 29, 2017.
Related Publications (1)
Number Date Country
20170124287 A1 May 2017 US
Provisional Applications (1)
Number Date Country
60917873 May 2007 US
Continuations (3)
Number Date Country
Parent 13925685 Jun 2013 US
Child 15409433 US
Parent 13424291 Mar 2012 US
Child 13925685 US
Parent 12024101 Jan 2008 US
Child 13424291 US