In printing environments, the transport of paper, or other sheets upon which text and images are rendered, is one of many important components in the overall quality of the printed sheet. In this regard, accuracy and precision of registration of the sheets to the text and images printed thereon contribute to the print quality. If the sheets are not transported in an acceptable manner, then the registration process could be adversely impacted.
In high speed, high end printing environments, a technique of agile registration has developed. Agile registration relates to registration techniques that involve high speed, adaptive, closed loop processes.
More particularly, with reference to
In known processes, before the sheet 14 enters the nips A and B, the velocities VA and VB are typically set equal to the paper velocity of the upstream paper path V0. This should assure correct hand-off of the sheet from the upstream path to the paper registration device.
In this regard, agile registration commences shortly after the paper arrival as detected by sensors LEA and LEB. The sensors report the time-of-arrival t0 and the process position x0 and angle β0 of the sheet. The side edge, or lateral, sensor reports the lateral position y0. In many cases, the lead-edge-center or lead-edge-side is considered the point that is being registered. Simple geometric calculation will yield values for the initial conditions of the registration point from sensor measurements.
Typically, delivery strategies calculate velocity profiles VA(t) and VB(t) to deliver the sheet 14 from these initial conditions to an end condition. The velocity profiles VA(t) and VB(t) must be calculated to deliver the sheet to position xf, yf, βf at a time tf with a velocity vf. As noted above, the velocity vf usually matches the velocity of the downstream device. However, in actual implementation, there are many factors that detract from these expectations.
In this regard, agile registration processes using polynomial profiles have been used. However, while polynomial agile registration typically exhibits accurate registration results, a large tail wag is generated. Triangular profiles have also been used. These profiles typically result in a small tail wag, but have less accurate results. Use of trapezoidal profiles has advantages, but typically leads to unpredictable nip forces.
It is desired that velocity profiles be calculated more accurately than is presently known to obtain precise delivery of sheets at various points in the paper path to achieve desired paper registration.
U.S. Pat. No. 5,678,159 is hereby incorporated by reference.
In one aspect of the presently described embodiments, the method comprises determining a lateral position of a sheet entering the nips of a paper path, determining a skew of the sheet as it enters the nips of the paper path, establishing a registration time, establishing a nominal velocity of the sheet on the paper path, determining an amplitude of a process direction correction velocity, computing a first value based on the lateral position, the skew, the registration time, the average velocity and the amplitude of the process direction correction velocity, determining a second value based on the first value, determining a peak of the lateral correction profile based on the second value, determining a velocity profile based on the peak, and, controlling the document processing device based on the profile.
In another aspect of the presently described embodiments, determining the lateral position of the sheet is based on detecting by a lateral sensor.
In another aspect of the presently described embodiments, determining the skew is based on detecting of the sheet by leading edge sensors.
In another aspect of the presently described embodiments, establishing the registration time is based on a target delivery time.
In another aspect of the presently described embodiments, establishing the registration time is based on a difference between a first time when the sheet engages leading edge sensors and a second time when the sheet should reach a target.
In another aspect of the presently described embodiments, determining the nominal velocity of the sheet comprises calculating an average velocity of the sheet.
In another aspect of the presently described embodiments, determining the amplitude of a process direction correction velocity is accomplished in closed form.
In another aspect of the presently described embodiments, the first value is computed using y=y+C*skw*Tee*(Vel Nom+VPro/2)/2.
In another aspect of the presently described embodiments, the second value is computed by dividing the first value by Tee1.5.
In another aspect of the presently described embodiments, the controlling comprises applying the velocity profile to the drive wheels of the document processing device.
In another aspect of the presently described embodiments, suitable means are provided to implement the method.
The velocity registration problem can be transposed. That is, rather than prescribing the motion of the sheet, one can prescribe the motion of the center of the wheels on the sheet.
This approach is illustrated in the
The equations that describe the path are as follows:
These equations can be integrated in closed form only for small values of the angle β.
The presently described embodiments are directed to a method and system for improving sheet registration in a document processing device. The presently described embodiments implement a technique the produces accurate results with merely a small tail wag. To do so, the method ultimately establishes or determines a variety of parameters (e.g. lateral position of a sheet, skew, registration time, nominal sheet velocity, and correction velocity). These parameters are then used by the system to calculate a lateral velocity profile. In this regard, the calculated velocity profiles (such as that determined using the method of
With reference to
The profile of
1. A nominal velocity Vel Nom (line A)
2. A process direction correction velocity (line B) with amplitude, VPro
3. A skew correction velocity (lines C and D) for inboard and outboard wheels, Skew Vel0 and Skew Vel1;
4. A lateral correction velocity (lines E and F) for inboard and outboard wheels, Lat Vel0 and Lat Vel1.
The sum of these elements result in the velocities of the inboard and outboard wheels (lines G and H), Total Vel0 and Total Vel1. Note that the amplitude of the skew correction velocity (lines C and D) and process correction velocity (line B) can be calculated in closed form. This is not true for the lateral profile. Also note that the acceleration of the lateral profile is by far the largest. It is the dominant contributor to the inertial forces that the sheet exhibit onto the wheels. Hence, this lateral acceleration is selected to be a constant and its value is set by maximum sheet force requirements.
A solution method for agile profile generation is presented below.
1. The lateral acceleration ‘acc’ is assumed constant.
2. Vary the process direction registration time ‘Tee’ from the nominal (160 ms in this example) by [−20, 0, +20] ms.
3. Calculate amplitude of process direction correction (line B), VPro.
4. Calculate skew profile amplitude (lines C and/or D) for a range of input skew ‘skw’=[−25, 0, +25] mrad.
5. Impose a range of lateral correction amplitudes (lines E and/or F) from −acc*Tee/4 to +accTee/4 in increments of accTee/128. Note that accTee/4 is the maximum amplitude that can be obtained.
The lateral corrections are then calculated for the above variation from the equations noted above. The results are shown in
The different shapes of the data points correspond to different registration times (diamonds=140 ms, squares=160 ms and circles=180 ms) in
Next, with reference to
ynew=yold−C*skw*Tee*(Vel Nom+VPro/2)/2
As shown in
Next, with reference to
Note that the normalization process makes data points almost coincide. For convenience, this is illustrated as large dots that coincide with no apparent distinction. If the y-values are averaged at different x-locations, then there is a single curve that is useful.
It should be understood that the methods and techniques of the presently described embodiments may be implemented using a variety of software routines and/or hardware configurations. For example, software routines reflecting, for example, the method set forth in
With reference now to
Initially, a variety of input parameters are provided to the controller. For example, input conditions of lateral position of the sheet y (lat) (at 804), a skew of the sheet (skw) (at 806), a desired registration time, Tee (at 802), a nominal velocity, Vel Nom (at 808) and a process correction velocity (at 810).
It should be understood that the lateral position y is determined through implementation of the side edge or lateral sensor illustrated in
The measured skew (skw) is computed by determining the difference in times that the leading edge sensors detect the sheet 14. So, sensors LEA and LEB provide the time at which the sheet 14 is detected by the sensors. The difference in time detected by these sensors is then multiplied by the sum (VA+VB)/2, and then divided by the spacing between the sensors LEA and LEB. This provides a measure that is in radians, or an angle of the skew.
The registration time, Tee, is established to be the target delivery time from the point at which the leading edge sensors detect the sheet 14 to the arrival time (i.e., delivery time) to the appropriate downstream device in the paper path. The nominal velocity, Vel Nom, is an average of the speed of travel of the sheet on the paper path. The process correction velocity, VPro, is an amplitude of process correction velocity.
Also, a constant, C, is used in the equation above and below. This constant is determined through experimentation and varies by families of machines. The constant is dependent upon the geometry of the system, wheel spacing, . . . etc.
Referring back to
Thus, the lateral profile can then be determined (at 818). Note that skew and process correction velocities were calculated in closed form. Since the acceleration is held constant, this profile can be constructed.
With reference now to
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4971304 | Lofthus | Nov 1990 | A |
5169140 | Wenthe, Jr. | Dec 1992 | A |
5219159 | Malachowski et al. | Jun 1993 | A |
5278624 | Kamprath et al. | Jan 1994 | A |
5407191 | Ukai | Apr 1995 | A |
5678159 | Williams et al. | Oct 1997 | A |
5794176 | Milillo | Aug 1998 | A |
6137989 | Quesnel | Oct 2000 | A |
6168153 | Richards et al. | Jan 2001 | B1 |
6533268 | Williams et al. | Mar 2003 | B2 |
7593684 | De Jong et al. | Sep 2009 | B2 |
7717533 | De Jong et al. | May 2010 | B2 |
20030146567 | Williams et al. | Aug 2003 | A1 |
20050206072 | Tanabe | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080237975 A1 | Oct 2008 | US |